Overcoming Limitations of Sampling for Aggregation Queries

Authors: Surajit Chaudhuri, Gautam Das, Mayur Datar, Rajeev Motwani, and Vivek R. Narasayya

Presented by: Andréa Matsunaga (ammatsun@ufl.edu)
Outline

- Introduction
 - The need for Approximate Query Processing
- Issues with uniform sampling
- Solutions
 - Outlier-indexes
 - Exploiting workload information
- Experimental results
Introduction

- Data analysis over large data is hard
- Data analytics often do not need exact answers
 - “ballpark” estimates are enough
- Examples
 - On Line Analytical Processing (OLAP)/Decision Support
 - E.g. what is the percent increase in the sales of Windows XP over last year in California?
 - Data Mining
 - Building models (e.g. decision trees) does not require precise counts
- Focus on Aggregate queries
Issues

- Limitations of uniform sampling in answering *Aggregation* queries:
 - Data skew (large data variance)
 - Outlier-indexes
 - Low selectivity and small groups
 - Exploiting workload information
Data Skew Effect Example

Relation R
(N=10000 tuples)

<table>
<thead>
<tr>
<th>K</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

Sum(C) = 109,900

1% uniform sample
(100 tuples)

Extrapolate
(multiply by 100)

No tuple with 1000:
Est(SUM(C))=10,000

1 tuple with 1000:
Est(SUM(C))=109,900

2 or more tuples with 1000:
Est(SUM(C))=209,800
Est(SUM(C))=309,700

Severe underestimate
if outlier not in sample

Severe overestimate
if outlier not in sample

Probability of 0.63 to get large error in estimate!!!
Theorem 1

- $R = \text{Relation of size } N$
- $\{y_1, y_2, \ldots, y_N\} = \text{Set of values associated with the tuples in the relation}$
- $U = \text{uniform sample of } y_i \text{'s of size } n$

- $Y_e = \left(\frac{N}{n} \right) \sum_{y_i \in U} y_i = \text{Unbiased estimator of the actual sum } Y = \sum_{i=1}^{N} y_i$

- with standard error:
 $\epsilon = \frac{NS}{\sqrt{n}} \cdot \sqrt{1 - \frac{n}{N}}$

- where $S = \text{standard deviation}$
 $S = \sqrt{\frac{\sum_{i=1}^{N} (y_i - \bar{Y})^2}{N - 1}}$
Theorem 1 - Proof

\[Y_e = \left(\frac{N}{n} \right) \sum_{y_i \in U} y_i \]

\[Y = \sum_{i=1}^{N} y_i \]

\[E(Y_e) = E\left(\left(\frac{N}{n} \right) \sum_{y_i \in U} y_i \right) = E\left(\left(\frac{N}{n} \right) \sum_{i=1}^{N} y_i \cdot P_U(i) \right) = E\left(\frac{N}{n} \sum_{i=1}^{N} y_i \cdot \frac{n}{N} \right) = Y \]

\[Var(Y_e) = Var\left(\left(\frac{N}{n} \right) \sum_{y_i \in U} y_i \right) = \left(\frac{N^2}{n^2} \right) \sum_{y_i \in U} Var(y_i) = \left(\frac{N^2}{n^2} \right) \cdot n \cdot S \]

\[\varepsilon = \sqrt{Var(Y_e)} = \frac{NS}{\sqrt{n}} \]

\[Var(y_i) = S = \sqrt{\frac{\sum_{i=1}^{N} (y_i - \overline{Y})^2}{N-1}} \]
Solution 1: Outlier Indexing

- To handle data skew in an aggregation query
- The idea:
 - Separate the outliers (R_O) from the rest of the data or non-outliers (R_{NO}) into an outlier index
 - Keep a uniform random sample of the remaining data
 - Use outlier index as well as random sample to answer queries
Outlier Indexing Implementation

Pre-processing

1. Determine the outliers
2. Sample non-outliers

Query processing

3. Aggregate outliers
4. Aggregate non-outliers
5. Combine aggregates

Note: Since DB content change over time, selection of outliers indexes and samples should be refreshed appropriately.
Outlier Selection: Definition 1

• For any sub-relation \(R' \) \((R' \subset R) \)

• \(\epsilon(R') = \) standard error in estimating the sum of values in \(R' \) (uniform sampling followed by extrapolation)

• An optimal outlier-index \(R_O(R,C,\tau) \) is defined as a sub-relation \(R_O \subset R \):
 • \(| R_O | \leq \tau \)
 • \(\epsilon(R\setminus R_O) = \min_{R' \subset R, |R'| \leq \tau} \{ \epsilon(R\setminus R') \} \)
Outlier Selection: Theorem 2

- Consider a multiset $R = \{y_1, y_2, \ldots, y_N\}$ where the y_i's are in sorted order.

- Let $R_O \subset R$ be the subset such that:
 - $|R_O| \leq \tau$
 - $S(R \setminus R_O) = \min_{R' \subset R, \ |R'| \leq \tau} \{S(R \setminus R')\}$

- Then exists some $0 \leq \tau' \leq \tau$ such that
 $R_O = \{y_i | 1 \leq i \leq \tau'\} \cup \{ y_i | (N+\tau'+1-\tau) \leq i \leq N\}$
Outlier Selection: Algorithm

1) Read the values in column C of the relation R. Let \(\{y_1, y_2, \ldots, y_N\} \) be the sorted order of the values appearing in C (each value corresponds to a tuple).

2) For \(i = 1 \) to \(\tau+1 \), compute
 \[E(i) = S(\{y_i, y_{i+1}, \ldots, y_{N-\tau+i-1}\}). \]

3) Let \(i' \) be the value of \(i \) where \(E(i) \) takes its minimum value. Then the outlier-index is the tuples that correspond to the set of values
 \[\{y_j | 1 \leq j \leq \tau'\} \cup \{y_j | (N+\tau'+1-\tau) \leq j \leq N\} \]
 where \(\tau' = i'-1 \)

 • The algorithm depends on computing standard deviations
 • Standard deviations computed in \(O(1) \) time for insertions and deletions (e.g. \(E(i+1) \) can be computed from \(E(i) \), \(y_i \) and \(y_{N-\tau+1} \)).
Outlier Selection: Example

Relation R

\[\bar{Y} = 10.99 \]

\[Y = 109,900 \]

\[N = 10,000 \text{ tuples} \]

For \(\tau = 100 \):

\[E(1) = 9.99 \]

\[E(2) = 14.09 \]

\[E(3) = 17.25 \]

...\[E(101) \]

\[\text{CREATE VIEW } c_{otl_idx} \text{ AS} \]

\[\text{SELECT * from R} \]

\[\text{WHERE (C > 1000)} \]
Low Selectivity and Small Groups

Effect Example

Relation R

Sample

Query with group-by’s
Sample may not contain even a single row that belongs to the sub-relation

Query with low selectivity
Sample may not contain even a single row selected by the query
Solution 2: Exploiting Workload Information

- To handle low selectivity and small groups
- The idea:
 - Use *weighted sampling*
 - Sample *more* from subsets of data that are small in size but are important (have high usage).
 - Exploit DB access pattern *locality*.
 - Using *pre-computed* samples.
Exploiting Workload Information

Steps:

1) **Workload Collection**: obtain a workload consisting of representative queries against the DB (e.g. Microsoft SQL Server Profiler).

2) **Trace Query Patterns**: analyze workload to obtain parsed information (e.g. the set of selection conditions that are posed).

3) **Trace Tuple Usage**: The execution of the workload reveals additional information on usage of specific tuples (e.g. *frequency of access to each tuple*). Since tracking this information at the level of tuples can be expensive, it can be kept at coarser granularity (e.g. on page-level). For the experiments, assumed that a tuple \(t_i \) has weight \(w_i \) if the tuple \(t_i \) is required to answer \(w_i \) queries in the workload).

4) **Weighted Sampling**: Perform sampling by taking into account weights of tuples in step 3. The probability to accept the sample is \(p_i = n \cdot w_i' \), where:

\[
 w_i' = w_i / \sum_{j=1}^{N} w_j
\]

Need to store the normalized weight \(w_i' \) together with the tuple since its inverse (multiplication factor) will be used to answer the aggregate query.
Exploiting Workload Information

- When weighted sampling based on workload information works well?
 - Access pattern of queries are local
 - We have a workload that is a good representative of future queries.
Experimental Setup

- **Platform**: Dell Precision 610 system with a Pentium III Xeon 450 MHz processor with 128 MB RAM and an external 23GB hard drive.

- **Databases**: 100MB TPC-R databases. TPC-R benchmark modified to vary the degree of skew determined by the Zipfian parameter z^5 distribution, since original data is generated from a uniform distribution.

- **Workloads**: random query generation program with sum aggregate function.

- **Parameters**: (a) skew of the data (z) was varied over 1, 1.5, 2, 2.5, and 3 (b) the sampling fraction (f) was varied over a wide range from 1% to 100%, (c) the storage for the outlier-index was varied over 1%, 5%, 10%, and 20%; and (d) average over 3 runs.

- **Techniques**: USAMP: uniform sampling
 WSAMP: weighted sampling
 WSAMP+OTLIDX: weighted sampling + outlier-indexing
Experimental Results

Figure 1. Error versus data skew

Varying data skew (f=5%, low selectivity workload)

- **Error**
 - 150%
 - 100%
 - 50%
 - 0%

- **Data skew (Z)**
 - 1
 - 1.5
 - 2
 - 2.5
 - 3

- **Graph Lines**
 - USAMP
 - WSA MP
 - WSA MP+
 - OTLIDX
Experimental Results

Figure 2. Error versus sampling fraction
Experimental Results

Figure 3. Error versus selectivity of queries
Questions?

Thank you!