Bifocal Sampling for Skew-Resistant Join Size Estimation

Sumit Ganguly, Phillip B. Gibbons, Yossi Matias, Avi Silberschatz

Outline

- Problem Definition
- Algorithm Overview
- Sparse-Any Estimation Procedure
- Proof of Sparse-Any Estimator
- Probabilistic Elimination
- Cost analysis

Problem Definition

Estimate the size of an equi-join between two relations. Useful for:

- Compare costs of alternate join plans
- Distribute load in a distributed environment
- Sometimes the count is interesting: Financial audits and statistical studies

Algorithm Bifocal Sampling

```
Algorithm Bifocal-Sampling(n, m_1, m_2, \delta)
//n is the number of tuples in each relation.
//m_1 is the sample size for the 1st procedure.
//m_2 is the sample size for the 2nd procedure.
//\delta is a threshold used in the 1st procedure.
\bigcup := NONE;
\hat{A}_d := Dense\_dense\_Estimation(n, m_1, m_2, \delta);
\hat{S}_{s_1} := Sparse\_Any\_Estimation(R, S, n, m_2);
\hat{S}_{s_1} := Sparse\_Any\_Estimation(S, R, n, m_2);
\hat{A} := \hat{A}_d + \hat{A}_{s_1} + \hat{A}_{s_2};
if \hat{A} < nlgn then \bigcup := nlgn;
return (\hat{A}, \bigcup);
For trials used: m_1 = (\sqrt{n} + \lg n) * \lg n, m_2 = \sqrt{n} + \lg n, \delta = \lg n
```

Sparse-Any Estimation Procedure

```
Sparse_Any_Estimation(R, S, n, m_2)
    //n is the number of tuples in each relation.
    //m_2 is the sample size of each relation.
A^* := 0;
Select m_2 random tuples from S, and let S^* be the resulting random sample;
//If determining mult_R(v) is slow then use probabilistic elimination to suppress dense v;
if avoid dense mult then begin
     Select m_2 random tuples from R, and let R^* be the resulting random sample;
     For each join attribute value v appearing in R^* do
         Remove from S^* all tuples with value v;
end;
//Compute the estimate on the (remaining) values that are sparse in R:
For each tuple \tau in S^* do begin
     Determine the number, x, of tuples in R that join with \tau;
    if x < n/m_2 then A^* := A^* + x;
end:
\hat{A}_s := nA * / m_2;
return \hat{A}_s;
```

Sparse-Any Estimation Lemma

- Analyzing for $m_2 = \sqrt{n}$
- \hat{S}^* is the set of the remaining values in S^* after (optional) probabilistic elimination.
- ullet Let A_S be the number of pairs in either sparse-sparse or sparse-dense SubJoins.
- Compute \hat{A}_S as an estimate for A_S .

Lemma $E(\hat{A}_S) = A_S$, and with high probability $\hat{A}_S = \theta(A_S) + O(n \lg n)$. Also, The probe cost is $O(\sqrt{n})$.

Sparse-Any Estimation Proof (sketch)

Let $\varepsilon(\tau)$ be the contribution of tuple τ in S; i.e., $\hat{A}_S = \Sigma_{\tau \in S} \varepsilon(\tau)$:

$$\varepsilon(\tau) = \begin{cases} \frac{n}{m_2} * \mathbf{mult}_R(v) & \text{if } \tau \in \hat{S}^* \land \mathbf{mult}_R(v) < \frac{n}{m_2} \\ 0 & \text{otherwise} \end{cases}$$

If the value of a tuple $\tau \in S$ is dense in R then $\varepsilon(\tau) = 0$.

Consider tuple $\tau \in S$, $\tau \in \text{SubJoin}(v)$, such that $\text{mult}_R(v) < n/m_2$. Since $Pr(\tau \in \hat{S}^*) = m_2/n$, we have $E(\varepsilon(\tau)) = \frac{m_2}{n} * \frac{n}{m_2} * \text{mult}_R(v) = \text{mult}_R(v)$

Probe Cost =
$$m_2 = \sqrt{n}$$

Lemma $E(\hat{A}_S) = A_S$, and with high probability $\hat{A}_S = \theta(A_S) + O(n \lg n)$. Also, The probe cost is $O(\sqrt{n})$.

Probabilistic Elimination

Definition Let m be a positive integer. A join attribute value v is defined to be m-dense in R if $\text{mult}_R \geq n/m$, and otherwise defined to be m-sparse in R. An (m-dense) join attribute value v is defined to be very m-dense in R if $\text{mult}_R(v) \geq 2n \lg n/m$.

Show sample size $m_2 = \sqrt{n}$ satisfies the following requirements:

- (i) With high probability, all tuples whose value is very dense in R are eliminated.
 - Enables us to assume that the maximum contribution of a single tuple is bounded by $2n \lg n/m$. This is useful for bounding the tuple cost.
- (ii) Let τ be a tuple in S with join attribute value v such that SubJoin(v) is of type sparse-sparse or sparse-dense, and not eliminated by R^* . The expected contribution of each such τ to the total estimate is within a small error of $\operatorname{mult}_R(v)$.
 - Guarantees that the expected total contribution of all sparse-sparse and sparse-dense SubJoins is within a small error of their actual total sum of sizes.
- (iii) Some dense tuples in R might not be eliminated by R^* . Nevertheless, each dense tuple in R has constant expected contribution to the total tuple cost.
 - Guarantees that tuples that are not sparse in *R* (but are not necessarily very dense) would not significantly affect the expected total tuple cost.

Probabilistic Elimination Lemma

Let C be the total tuple cost. $C(\tau)$ be the tuple cost resulting from tuple τ .

Let n_d be the number of tuples in S whose value is dense in R.

Lemma We have $A_S/e \leq E(\hat{A}_S) \leq A_S$, and with high probability, $\hat{A}_S = \Theta(A_S) + O(n \ lg \ n)$. Also, the expected tuple cost, E(C), is at most $n_d/e + A_S/\sqrt{n}$.

Prob. Elim. Lemma Proof (sketch)

Consider tuple $\tau \in S^*$ with join attribute value v.

$$Pr(\quad au \text{ is not eliminated from } S^*)$$

$$= (1 - \operatorname{mult}_R(v)/n)^m \approx e^{-(m/n)\operatorname{mult}_R(v)},$$

assuming (without loss of generality) that $\operatorname{mult}_R(v) \leq n/10$.

Thus, since $Pr(\tau \in S^*) = m/n$,

$$\begin{split} Pr(\tau \in \hat{S}^*) &= Pr(\tau \in \hat{S}^* | \tau \in S^*) * Pr(\tau \in S^*) \\ &\thickapprox \frac{m}{n} * e^{-(m/n)} \mathbf{mult}_{R}(v) \end{split}$$

Therefore, if $\operatorname{mult}_R(v) < n/m$ then

$$E(\varepsilon(\tau)) = \operatorname{mult}_R(v) * (n/m) * Pr(\tau \in \hat{S}^*)$$

$$\approx \operatorname{mult}_R(v) * e^{-(m/n)} \operatorname{mult}_R(v)$$

Prob. Elim. Lemma Proof (sketch)

$$E(\varepsilon(\tau)) \approx \operatorname{mult}_R(v) * e^{-(m/n)} \operatorname{mult}_R(v)$$

Since v is sparse, $1/e < e^{-(m/n) \mathsf{mult}_R(v)} \le 1$

Therefore: $\operatorname{mult}_R(v)/e < E(\varepsilon(\tau)) \leq \operatorname{mult}_R(v)$.

We've met requirement (ii):

(ii) Let τ be a tuple in S with join attribute value v such that SubJoin(v) is of type sparse-sparse or sparse-dense, and not eliminated by R^* . The expected contribution of each such τ to the total estimate is within a small error of $\operatorname{mult}_R(v)$.

Also since A_S is the sum of $\operatorname{mult}_R(v)$ for all values v that are sparse in R, the Lemma is not far of: $A_S/e \leq E(\hat{A}_S) \leq A_S$

Weak Cost Model Analysis: Very-Dense

The probe cost is O(m). The tuple cost is $\Sigma_{v \in \hat{S}^*}$ mult $_R(v)$

Let $C(\tau)$ be the tuple cost resulting from tuple τ . If $\tau \in \hat{S}^*$ then $C(\tau) = \operatorname{mult}_R(v)$.

Therefore

$$E(C(\tau)) \approx \operatorname{mult}_R(v) * \frac{m}{n} * e^{-(m/n)} \operatorname{mult}_R(v)$$

If v is very-dense in R (mult $_R(v) \geq 2n \lg n/m$) then

$$e^{-(m/n)}$$
mult_R(v) $< e^{-(m/n)(2nlg \ n/m)} = n^{-2lge}$

therefore

$$E(C(\tau)) \le m * n^{-2lge} = n^{.5-2lg \ e}$$

Weak Cost Model Analysis: Very-Dense

$$E(C(\tau)) \le n^{.5-2lg\ e}$$

Markov Inequality: $Pr(X \ge a) \le \frac{E(X)}{a}$

$$Pr(C(\tau) > 0) \le n^{.5-2lg\ e}$$

The probability that a tuple that is very-dense in R contributes to the tuple cost is very small: requirement (i).

(i) With high probability, all tuples whose value is very dense in ${\cal R}$ are eliminated.

Weak Cost Model Analysis: Dense

If v is dense but not very-dense then $1/n \le e^{-(m/n) \mathsf{mult}_R(v)} \le 1/e$ and therefore $E(C(\tau)) \le 1/e$. Which was requirement (iii).

(iii) Some dense tuples in R might not be eliminated by R^* . Nevertheless, each dense tuple in R has constant expected contribution to the total tuple cost.

Thus the total expected contribution to the tuple cost of dense tuples in R is at most n_d/e .

Weak Cost Model Analysis: Sparse

For sparse v, $e^{-(m/n)\mathsf{mult}_R(v)} \leq 1$ Therefore $E(C(\tau)) \leq \mathsf{mult}_R(v) * (m/n)$ so the total expected contribution to the tuple cost of sparse tuples in R is

$$(m/n) * A_S = A_S / \sqrt{n}$$

From the Lemma: The expected tuple cost, E(C), is at most $n_d/e + A_S/\sqrt{n}$. $\omega\theta\theta\tau$