On Random Sampling over Joins *

Surajit Chaudhuri (M$ research)
Rajeev Motwani (Stanford)
Vivek Narasayya (M$ research)

Presented by
Manas Somaiya (UF CISE)

* SIGMOD 1999
Outline of the talk

- What the paper is about?
- What shall we focus on?
 - Semantics of a Sample
 - Algorithms for Sequential and Weighted Sampling
 - The Join Sampling Problem
 - Strategies for Join Sampling
What the paper is about?

- **Sampling** as a primitive operation
- Difficulty in **commuting** the sample operation
 - Specifically the **join** operator
- Theoretical explanation
- Limits on the efficiency
- Develop new insights and techniques
 - Where the **negative** results do not apply
- Experimental evaluation
Why Sample?

- Provide a sample of the result or approximate answer
- Query optimization
- Privacy preserving data mining
- Advantages:
 - Fast answers to queries
 - Faster post-processing of query results
 - Query optimization decisions
 - Privacy protection in statistical databases
Sample as a primitive relational operator

- $\text{SAMPLE}(R, \phi)$
 - Produces a uniform random sample S
 - S is a ϕ-fraction of a relation R
- Well studied problem and efficient strategies if R is a base relation
- Ineffective if R is produced by a query Q
- Grossly inefficient to evaluate Q
 - Compute the entire relation R
 - Throw away most of it when sampling
Sample as a primitive relational operator ...

- Solution: Partially evaluate Q
 - Generate only the sample of R
- Push the sampling operator down
 - To minimize cost of query evaluation
- Commute the sample operation
 - Can freely interchange with selection
 - Projection:
 - Duplicate removal issue
 - Skews the probability distribution
- Join:
 - Does not commute
Semantics of a Sample

- Relation \(R \) with \(n \) tuples
- \(f \) - fraction sample \(S \)
- Sampling with Replacement (WR)
 - Sample \(f \times n \) tuples
 - Uniformly and independently from \(R \)
 - Sample is a bag of \(f \times n \) tuples from \(R \)
 - A tuple could be sampled multiple times
- Sampling without Replacement (WoR)
 - Sample \(f \times n \) distinct tuples from \(R \)
 - Each successive sample is chosen uniformly
 - From the set of tuples not already sampled
 - Sample is a set of \(f \times n \) distinct tuples from \(R \)
Semantics of a sample ...

- Independent Coin Flips (CF)
 - For each tuple in \(R \)
 - Choose it for the sample with probability \(f \)
 - Independent of other tuples
 - Same as flipping a coin with bias \(f \) for each tuple
 - Sample is a set of \(\chi \) distinct tuples from \(R \)
 - \(\chi \) is a random variable
 - Binomial distribution \(B(n, f) \)
 - Expectation \(f^*n \)
Semantics of a sample ...

- Possible to convert from one type of sample semantics to another
- Can not obtain a CF sample from either a WR or WoR sample
 - Non-zero probability of sampling entire relation in the CF semantics
Algorithms for Sequential and Weighted Sampling

- Can we perform sampling on a relation as it is streaming by?
 - Critical for efficiency when the relation is materialized on the disk
 - More important in a pipeline (query tree)
 - Do not want to materialize it on the disk

- Called *sequential* sampling
- Un-weighted sampling
 - Each element is sampled uniformly at random
- Weighted sampling
 - Each element is sampled with a probability
 - Proportional to its weight
 - For some pre-specified set of weights
Algorithms for Sequential and Weighted Sampling ...

- Easy to get Sequential WoR sampling
 - With CF semantics
 - Flip a coin for each tuple as it goes by
 - With probability f for heads
 - Add it to sample is flip turns out to be a head
 - With standard reservoir sampling
Un-weighted Sequential WR Sampling

Black-Box U1: Given relation R with n tuples, generate an un-weighted WR sample of size r

1. $x \leftarrow r$; $i \leftarrow 0$
2. While tuples are streaming by and $x > 0$ do begin
 a) Get next tuple t
 b) Generate random variable X from $B(x, 1/(n-i))$
 c) Output X copies of t
 d) $x \leftarrow x - X$
 e) $i \leftarrow i + 1$
End
Un-weighted Sequential WR Sampling …

Black-Box U2: Given relation R with n tuples, generate an un-weighted WR sample of size r

1. $N \leftarrow 0$
2. Initialize reservoir array $A[1 \ldots r]$ with dummy values
3. While tuples are streaming by do begin
 a) Get next tuple t
 b) $N \leftarrow N + 1$
 c) For $j = 1$ to r do set $A[j]$ to t with probability $1/N$
End
Weighted Sequential Sampling

- Relation \(r \) with a total of \(n \) tuples
 - Each tuple \(t \) has a specified weight \(w(t) \)
- A weighted WR sample is obtained by repeating \(f*n \) times
 - Choose a tuple from \(R \) at random
 - Any tuple \(t \) is chosen with probability proportional to \(w(t) \)
- Assume \(w(t) \) are non-negative integers
- Weighted WR sample from \(R \)
 - Is the same as an un-weighted WR sample
 - Modify relation \(R \) to a relation \(R^w \)
 - \(w(t) \) copies of each tuple \(t \in R \)
Weighted Sequential Sampling ...

Black-Box WR1: Given relation R with n tuples, generate a weighted WR sample of size r

1. $x \leftarrow r$; $D \leftarrow 0$
2. $W \leftarrow \sum_{t \in R} w(t)$
3. While tuples are streaming by and $x > 0$ do begin
 a) Get next tuple t with weight $w(t)$
 b) Choose random variable X from $B(x, w(t)/(W-D))$
 c) Output X copies of t
 d) $x \leftarrow x - X$
 e) $D \leftarrow D + w(t)$
End
Weighted Sequential Sampling ...

Black-Box WR2: Given relation R with n tuples, generate an weighted WR sample of size r

1. $W \leftarrow 0$
2. Initialize reservoir array $A[1 \ldots r]$ with dummy values
3. While tuples are streaming by do begin
 a) Get next tuple t with weight $w(t)$
 b) $W \leftarrow W + w(t)$
 c) For $j = 1$ to r do set $A[j]$ to t with probability $w(t)/W$

End