Appendix A

Probability and Statistics Notions

In this chapter we review some useful notions from Probability and Statistics lit-
erature to help the reader not familiar with these mathematical tools required to
understand the developments in our thesis. The intent is to focus on intuition and
usefulness rather than strict rigor in order to keep notation and explanations sim-
ple. For the interested reader, we provide references that contain a more rigorous
treatment. Throughout this introduction we assume that the reader is familiar

with elementary notions of set theory and elementary calculus.

A.1 Basic Probability Notions

In this section we give a brief overview of useful notions from Probability Theory.
A rigorous introduction can be found, for example, in (Resnick, 1999), but this

overview should suffice for the purpose of this thesis.
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A.1.1 Probabilities and Random Variables

We first introduce the notion of probability and random variable and their condi-
tional counterparts, then we introduce variance and covariance and give some of

their useful properties.

Probability

Let Q be some set and F be a set of subsets of Q that contains () and Q and it
is closed under union, intersection and complementation with respect to € (i.e.
the intersection, union and complement of sets in F gives sets in F). The pair
(Q, F) is called a probability space, and any element A € F is called an event. If an
event does not contain any other event, it is called an elementary event. We call
Q) the probability space and F the set of measurable sets. With this, a mapping
P :F — [0,1] from the set of measurable sets to the real numbers between 0 and
1 is called a probability function, in short probability, if the following properties

hold:

P[] =1 (A1)

VA, B, ANB =0, P[AUB] = P[A] + P|B] (A.2)

where A, B € F are two measurable sets.
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These properties are enough to show that the following properties also hold:

P[O] =0 (A.3)

P[A]< PB], if AC B (A.4)

P[A] =1 - P|A] (A.5)

P[A - B] = P[A] — PIAN B] (A.6)
P[AUB] = P[A] + P[B] — P[AN B (A7)

where we denoted by A the complement of event A. P[A N B] is usually replaced
by the simpler notation P[A, B|, the probability that events A and B happen
together.

Two types of probabilities are interesting for the purpose of understanding this
thesis: discrete probabilities and continuous probabilities. We briefly take a look
at each, deferring further discussion until random variables are introduced.

If set ) is a finite set and we take F = 29  the powerset of (2, i.e. the set of all
the possible subsets — any probability over € is fully specified by the probabilities
of the elementary events, which are nothing else than the elements of 2. We call
such a probability a discrete probability.

If we take 2 = R, with R the set of all real numbers, and F to be the transi-
tive closure under intersection and complement of the compact intervals over the
real numbers (the so called Borel set), any probability defined over Q is called a
continuous probability. The notion of continuous probability is also extended to
vector spaces over the real numbers in the natural manner. We will see examples
of continuous probabilities in the next section. A continuous probability function
P can be specified by its density function p(x). Intuitively, p(x)dz is the probabil-

ity to see value x. Obviously for any x € R this probability is 0, but this allows
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the specification of the probabilities of intervals, that are the elementary events of

continuous probabilities:
b
Plla.tl = [ pa)ts (A3)

where [a, b] is a compact interval of R.

Independent Events
Events A and B are called independent if:
P[A, B] = P[A] - P|B| (A.9)
The notion of independent events is very important because of this factorization
property of the probability, factorization that greatly simplifies the analysis.
Conditional Probability and

The conditional probability that event B happens given that event A happened,

denoted by P[B|A], is defined as:

_ P[A, B]
P[B|A] = PLA (A.10)
The conditional probability has the following useful properties:
P[A|Q] = P[A] (A.11)
PB|A|=1,ifACB (A.12)
_ P[B]- P[A|B]
P[B|A] = 5T (A.13)

The last formula is called Bayes rule.

Also, conditional probabilities have all the properties normal probabilities have.
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Random Variables

A mapping X : QQ — R is called a random variable with respect to the probability

space (€2, F) if it has the property that:
Va e R, {weQX(w)<a}eF (A.14)

For discrete probability spaces, any mapping is a random variable. For continuous
spaces, it is enough to require the mapping to be continuous everywhere except a
finite number of points. Moreover, by combining random variables using continuous
functions, random variables are also obtained. What this amounts to is the fact
that all mapping we have to deal with in our thesis are random variables.

A random variable defined over a discrete or continuous probability space is
called discrete random wvariable or continuous random variable, respectively. To
specify a discrete random variable, it is enough to specify the value of the random
variable for each elementary event. For continuous random variables, we have
to specify the values of the random variable for each real number. We will see
examples of random variables in the next section.

A very important notion with respect to random variables is the notion of
expectation. Intuitively, the expectation of a random variable is its average value
with respect to a probability function. We denote the expectation of a random
variable X by Ep[X]. If the probability function is understood from the context,
we use the simpler notation F[X].

For discrete random variables, the expectation is defined as:

E[X] =) X(w)Pv] (A.15)

weN

For convenience, we also use the alternative notation X, instead of X (w).
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For continuous variables, the expectation of random variable X with respect

to the probability function P with density p(z) is defined as:

ElX] = /_ " X(2)p(a)da (A.16)

A probability space together with a probability function are usually called
a distribution. Discrete distributions are usually specified by the probability of
the elementary events and continuous distributions by the density function p(z).
We say that a random variable X is distributed according to the distribution D,
denoted by X ~ D, if the probability is specified by the distribution and X is the
identity function. This means that for discrete distributions, €2 is a subset of R in
general but a subset of N or Z most often.

Important properties of expectation are:

1. expectation of a constant:

2. linearity of expectation:

EaX]| = aF [X]

E[X+Y]=E[X]+E[Y]

3. expected value of sum (no independence required):

ZXi] =Y E[X] (A.17)

E

Independent Random Variables

Two random variables X and Y, defined over the same probability space 2, F are

independent if and only if for all z,y € R, the events {w € Q|X(w) < 2z} and
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{w € QY (w) < y} are independent. In this case it can be shown that:
E[XY] = E[X]E[Y] (A.18)

which is one the most useful properties of expectation.

Variance and Covariance

Variance is an important property of distributions since it indicates how spread

(or localized) the distribution is. It is defined as:
Var (X) = E[(X — F [X])]
(A.19)
— B [X?] - (E[X])*

The covariance of two random variables X and Y is defined as:
Cov(X,Y)=F[XY]|-F[X|E[Y]

and gives an idea of how much random variables X and Y influence each-other.
Notice that if X and Y are independent, Cov (X,Y) = 0.

Some of the useful properties of variance are:

1. variance of a constant:

Var (a) =0

2. scalar multiplication:

Var (aX) = a*Var (X)
3. variance of sum of random variables:

Var (X +Y) = Var (X) + Var (Y) + 2Cov (X, Y))

or in general

Var (Z X,) = Z\/ar (X;) + Z Z Cov (X;, Xi)

i il
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4. variance of sum of independent random variables:
Var (Z XZ) = Var (X;)

A very useful property of covariance is the fact that it is bilinear:

Cov (aX,Y) = aCov (X,Y)
Cov (X,aY) = aCov (X,Y)
Cov (X1 + X2,Y) = Cov(X1,Y) + Cov (Xs,Y)

Cov (X,Y1 +Y3) = Cov (X, Y1) + Cov (X, Ys)

Cov (Z X,,ZY;) = ZZCOV (X3, Y))

i

Also, the covariance is commutative:

Cov (X,Y) = Cov (Y, X)

Conditional Expectation

Conditional expectation generalizes the notion of conditional expectation. For
random variable X defined over the discrete probability (£2,2%, P), and an event

A € 2%, the conditional expectation is defined as:

B [X]A] = ZWGA;([X)P[“} (A.20)

For a continuous probability with density p(z), the conditional expectation is

defined as:

[y X (z)p(x)dx
P[A]

E[X|A] = (A.21)

Conditional expectation has all the properties normal expectation has. More-

over, since the notion of variance is entirely based on the notion of expectation,
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we can define conditional variance in terms of the conditional expectation as:

Var (X|A) = E [X2|A] — (B [X|A])?

Random Vectors

The notion of random variable can be extended to vectors and, more generally, to
matrices. If X = [X,...,X,,] is a random vector — a vector of random variables —

its expectation is the vector of expectations of components:
EX]=[E[X], ..., E[X,]

With this, the variance of random vector X is a matrix, called the covariance

matrix:

Var (X) = E [X'X] - E[X]" E[X]

Var (Xl) Cov (Xl,XQ) ... Cov (leXn)
Cov(Xs, X1)  Var(Xa) ... Cov (X X,) (A.22)
Cov (X, X1) Cov(X,,Xa) ... Var (X,,)

A.2 Basic Statistical Notions

In this section we introduce some useful statistical notions. More information can

be found, for example, in (Wilks, 1962; Pratt et al., 1995; Shao, 1999).

P-Value

The p-value of an observed value x of a random variable X is the probability that
the random value X would take a value as high or higher than z. Mathematically,
the p-value is P[X > z|. Intuitively, a very small p-value is statistical proof that

x is not a sample of the random variable X.
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A.2.1 Discrete Distributions
Binomial Distribution

Binomial distribution is the distribution of the number of times one sees the head
in N flips of an asymmetric coin that has probability of tossing head p. If X is a
random variable binomially distributed with parameters N and p it can be shown

that:

Var (X) = Np(1 - p)
The p-value of the binomial distribution is:
PX>z]=1—-1I(p;z+1,N —x)

where

I(z:a,b) — / F @D jry gy

—00

is the incomplete regularized beta function.

Multinomial Distribution

The multinomial distribution generalizes the binomial distribution to multiple di-
mensions. It has as parameters N, the number of trials, and (p1,...,p,), the
probabilities of an n face coin. The multinomial distribution is the distribu-
tion of number of times each of the faces is observed out of N trials. If we let

X ~ Multinomial(N, py,...,p,), and denote by X; the i-th component of X we
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have:

E [Xz] = Np;
Var (X;) = Np;(1 — p;)

A.2.2 Continuous Distributions
Normal (unidimensional Gaussian) Distribution

Normal distribution, denoted by N(u,o?), has two parameters: the mean p and

variance 02. ¢ must always be a positive quantity. Given X ~ N(u,0?),

E[X]=p (A.23)
Var (X) = o2 (A.24)
p) = 127T6‘(12@5)2 (A.25)

PIX > 1] = % (1 — Exf (x\/_%“» (A.26)

where Erf(z) = [7_e*/2dt is the standard error function.

Gaussian Distribution

Gaussian distribution, denoted by N (g, Y), has two parameters: the mean vector
1 and the covariance matrix ¥. ¥ has to be positive definite which means that

it always has a Choleski decomposition ¥ = GG (Golub & Loan, 1996). For
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X~ N(p, %),
E[X] =p (A.27)
Var (X) = ¥ (A.28)
! 3= (o) (A.29)

p(x) = (27T)d/2|2i|1/26
Gamma Distribution

The gamma distribution (with parameters a and ) is the distribution with density

xae—x/G

p(x) = ['(a)f>

and p-value
(o, z/6)

PIX >a2]=1- ]

=1-Q(a,x/0) (A.30)

where I'(x) is the gamma function and I'(z,y) is the incomplete gamma function.
Q(z,y) is called the incomplete regularized gamma function.

Mean and variance or a random variable X with gamma distribution are:

E(X) =af (A.31)

Var(X) = af? (A.32)

Normal distribution is a particular case of the gamma distribution.

Beta Distribution

The beta distribution has parameters o and  and density:

-y

The p-value is 1 — I(z; o, 3) with I the incomplete regularized beta function.
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3-test and y?-distribution

Having a set of random variables X;, the y?-test is defined as:

n

X' = ZI: = ;ZEZ)Q (A.33)

where F; is the expected value of X; under some hypothesis (that is tested using
the y*-test).

It can be shown that asymptoticly x2 has a x? distribution, that coincides with
a gamma distribution with parameters a = 1/2r and 6 = 2, where r is the degrees
of freedom (number of variables n minus number of constrains between variables).

The mean and the variance for the y? distribution are:

E(*) =r (A.34)

Var(y?) = 2r (A.35)



