Bregman Divergences for Data Mining Meta-Algorithms

Joydeep Ghosh

University of Texas at Austin

ghosh@ece.utexas.edu

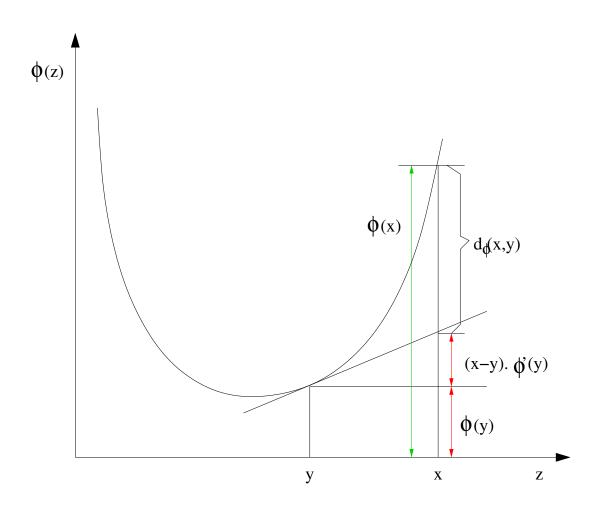
Reflects joint work with

Arindam Banerjee, Srujana Merugu, Inderjit Dhillon, Dharmendra Modha

Measuring Distortion or Loss

- Squared Euclidean distance.
 - kmeans clustering, least square regression, Weiner filtering,...
- Squared loss is not appropriate in many situations
 - Sparse, high-dimensional data
 - Probability distributions
 - KL-divergence (relative entropy)
- What distortion/loss functions make sense, and where?
- Common properties? (meta-algorithms)

Bregman Divergences



 ϕ is strictly convex, differentiable

$$d_{\phi}(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x}) - \phi(\mathbf{y}) - \langle \mathbf{x} - \mathbf{y}, \nabla \phi(\mathbf{y}) \rangle$$

Examples

- $\phi(\mathbf{x}) = \|\mathbf{x}\|^2$ is strictly convex and differentiable on \mathbb{R}^m
 - $d_{\phi}(\mathbf{x},\mathbf{y}) = \|\mathbf{x} \mathbf{y}\|^2$ [squared Euclidean distance]
- $\phi(\mathbf{p}) = \sum_{j=1}^{m} p_j \log p_j$ (negative entropy) is strictly convex and differentiable on the m-simplex
 - $d_{\phi}(\mathbf{p}, \mathbf{q}) = \sum_{j=1}^{m} p_{j} \log \left(\frac{p_{j}}{q_{j}}\right)$ [KL-divergence]
- $\phi(\mathbf{x}) = -\sum_{j=1}^{m} \log x_j$ is strictly convex and differentiable on \mathbb{R}^m_{++}
 - $d_{\phi}(\mathbf{x}, \mathbf{y}) = \sum_{j=1}^{m} \left(\frac{x_{j}}{y_{j}} \log\left(\frac{x_{j}}{y_{j}}\right) 1\right)$ [Itakura-Saito distance]

Properties of Bregman Divergences

- $d_{\phi}(\mathbf{x}, \mathbf{y}) \geq 0$, and equals 0 iff $\mathbf{x} = \mathbf{y}$, but not a metric (symmetry, triangle inequality do not hold)
- Convex in the first argument, but not necessarily in the second one
- KL divergence between two distributions of the same exponential family is a Bregman divergence
- Generalized Law of Cosines and Pythagoras Theorem:

$$d_{\phi}(\mathbf{x}, \mathbf{y}) = d_{\phi}(\mathbf{z}, \mathbf{y}) + d_{\phi}(\mathbf{x}, \mathbf{z}) - \langle (\mathbf{x} - \mathbf{z}), (\nabla \phi(\mathbf{y}) - \nabla \phi(\mathbf{z})) \rangle$$

When $x \in \text{convex}$ (affine) set $\Omega \& z$ is the Bregman projection onto Ω

$$\mathbf{z} \equiv P_{\Omega}(\mathbf{y}) = \underset{\omega \in \Omega}{\operatorname{argmin}} d_{\phi}(\omega, \mathbf{y}),$$

the inner product term becomes negative (equals zero)

Bregman Information

- For squared loss
 - Mean is the best constant predictor of a random variable

$$\mu = \underset{\mathbf{c}}{\operatorname{argmin}} E[\|X - \mathbf{c}\|^2]$$

- The minimum loss is the variance $E[||X \mu||^2]$
- <u>Theorem:</u> For all Bregman divergences

$$\mu = \underset{\mathbf{c}}{\operatorname{argmin}} E[d_{\phi}(X, \mathbf{c})]$$

Definition: The minimum loss is the Bregman information of X

$$I_{\phi}(X) = E[d_{\phi}(X, \boldsymbol{\mu})]$$

(minimum distortion at Rate = 0)

Examples of Bregman Information

- $\phi(\mathbf{x}) = \|\mathbf{x}\|^2, X \sim \nu \text{ over } \mathbb{R}^m$
 - $I_{\phi}(X) = E_{\nu}[\|X E_{\nu}[X]\|^2]$ [Variance]

- $\phi(\mathbf{x}) = \sum_{j=1}^m x_j \log x_j, X \sim p(z) \text{ over } \{p(Y|z)\} \subset m\text{-simplex}$
 - $I_{\phi}(X) = I(Z;Y)$ [Mutual Information]
- $\phi(\mathbf{x}) = -\sum_{j=1}^m \log x_j$, $X \sim \text{uniform over } \{\mathbf{x}^{(i)}\}_{i=1}^n \subset \mathbb{R}^m$
 - $I_{\phi}(X) = \sum_{j=1}^{m} \log\left(\frac{\mu_{j}}{\mathbf{g}_{j}}\right)$ [log AM/GM]

Bregman Hard Clustering Algorithm

- (Std. Objective is same as minimizing loss in Bregman Information when using K representatives.)
- Initialize $\{\mu_h\}_{h=1}^k$
- Repeat until convergence
 - { Assignment Step }
 Assign x to nearest cluster \mathcal{X}_h where

$$h = \underset{h'}{\operatorname{argmin}} \ d_{\phi}(\mathbf{x}, \boldsymbol{\mu}_{h'})$$

• { Re-estimation step }
For all h, recompute mean μ_h as

$$\boldsymbol{\mu}_h = \frac{\sum_{\mathbf{x} \in \mathcal{X}_h} \mathbf{x}}{n_h}$$

Properties

- Guarantee: Monotonically decreases objective function till convergence
- Scalability: Every iteration is linear in the size of the input
- **Exhaustiveness:** If such an algorithm exists for a loss function $L(\mathbf{x}, \boldsymbol{\mu})$, then L has to be a Bregman divergence
- Linear Separators: Clusters are separated by hyperplanes
- Mixed Data types: Allows appropriate Bregman divergence for subsets of features

Example of Algorithms

Convex function Bregman divergence Algorithm

Squared norm Squared Loss KMeans [M'67]

Negative entropy KL-divergence Information Theoretic [DMK'03]

Burg entropy Itakura-Saito distance Linde-Buzo-Gray [LBG'80]

Bijection between BD and Exponential Family

Regular exponential families \leftrightarrow Regular Bregman divergences

Gaussian

→ Squared Loss

Multinomial ← KL-divergence

Geometric

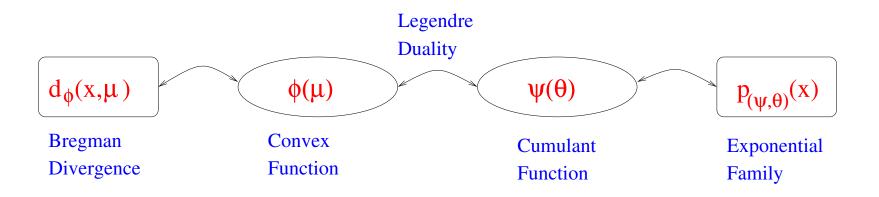
→ Itakura-Saito distance

Bregman Divergences and Exponential Family

__ <u>Theorem:</u> For any regular exponential family $p_{(\psi,\theta)}$, for all $\mathbf{x} \in \text{dom}(\phi)$,

$$p_{(\psi,\theta)}(\mathbf{x}) = \exp(-d_{\phi}(\mathbf{x}, \boldsymbol{\mu}))b_{\phi}(\mathbf{x}),$$

for a uniquely determined b_{ϕ} , where θ is the natural parameter and μ is the expectation parameter



Bregman Soft Clustering

- Soft Clustering
 - Data modeling with mixture of exponential family distributions
 - Solved using Expectation Maximization (EM) algorithm
- Maximum log-likelihood = Minimum Bregman divergence

$$\log p_{(\psi,\boldsymbol{\theta})}(\mathbf{x}) \equiv -d_{\phi}(\mathbf{x},\mu)$$

- Bijection implies a Bregman divergence viewpoint
 - Efficient algorithm for soft clustering

Bregman Soft Clustering Algorithm

- Initialize $\{\pi_h, \boldsymbol{\mu}_h\}_{h=1}^k$
- Repeat until convergence
 - { Expectation Step }
 For all x, h, the posterior probability

$$p(h|\mathbf{x}) = \pi_h \exp(-d_{\phi}(\mathbf{x}, \boldsymbol{\mu}_h))/Z(\mathbf{x}),$$

where $Z(\mathbf{x})$ is the normalization function

• { Maximization step } For all h,

$$\pi_h = \frac{1}{n} \sum_{\mathbf{x}} p(h|\mathbf{x})$$
$$\sum_{\mathbf{x}} p(h|\mathbf{x}) \mathbf{x}$$

$$\mu_h = \frac{\sum_{\mathbf{x}} p(h|\mathbf{x}) \mathbf{x}}{\sum_{\mathbf{x}} p(h|\mathbf{x})}$$

Rate Distortion with Bregman Divergences

- Theorem: If distortion is a Bregman divergence,
 - Either, R(D) is equal to the Shannon-Bregman lower bound
 - Or, $|\hat{X}|$ is finite
- ullet When $|\hat{X}|$ is finite

Bregman divergences

Rate distortion

→

Modeling with mixture of

with Bregman divergences exponential family distributions

- \blacksquare R(D) can be obtained either analytically or computationally
- Compression vs. loss in Bregman information formulation
 - Information bottleneck as a special case

Online Learning (Warmuth)

- **■** Setting: For trials $t = 1, \dots, T$ do
 - Predict target $\hat{y}_t = g(\mathbf{w}_t \cdot \mathbf{x}_t)$ for instance \mathbf{x}_t using link function g
 - Incur loss $L_t^{curr}(\mathbf{w}_t)$
- Update Rule: $\mathbf{w}_{t+1} = \operatorname*{argmin}_{\mathbf{w}} \left(\underbrace{L^{hist}(\mathbf{w})}_{Deviation\ from\ history} + \eta_t \underbrace{L^{curr}_t(\mathbf{w})}_{Current\ loss} \right)$
 - When $L^{hist}(\mathbf{w}) = d_F(\mathbf{w}, \mathbf{w}_t)$, i.e., a Bregman loss function and $L^{curr}_t(\mathbf{w})$ is convex, the update rule reduces to

$$\mathbf{w}_{t+1} = f^{-1} \left(f(\mathbf{w}_t) + \eta_t \nabla L_t^{curr}(\mathbf{w}_t) \right)$$
 where $f = \nabla F$

- Also get Regret Bounds.
- and density estimation Bounds.

Examples

History loss:Update family	Current loss	Algorithm
Squared Loss: Gradient Descent	Squared Loss	Widrow Hoff(LMS)
Squared Loss: Gradient Descent	Hinge Loss	Perceptron
KL-divergence: Exponentiated	Hinge Loss	Normalized Winnow
Gradient Descent		

Generalizing PCA to the Exponential Family

(Collins/Dasgupta/Schapire, NIPS 2001)

PCA: Given data matrix $X = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{m \times n}$, find an orthogonal basis $V \in \mathbb{R}^{m \times k}$ and a projection matrix $A \in \mathbb{R}^{k \times n}$ that solve:

$$\min_{A,V} \sum_{i=1}^{n} ||\mathbf{x}_i - V\mathbf{a}_i||^2$$

- Equivalent to maximizing likelihood when $\mathbf{x}_i \sim Gaussian(V\mathbf{a}_i, \sigma^2)$
- Generalized PCA: For any specified exponential family $p_{(\psi,\theta)}$, find $V \in \mathbb{R}^{m \times k}$ and $A \in \mathbb{R}^{k \times n}$ that maximize the data likelihood, i.e.,

$$\max_{A,V} \sum_{i=1}^{n} \log \left(p_{(\psi,\boldsymbol{\theta}_i)}(\mathbf{x}_i) \right) \text{ where } \boldsymbol{\theta}_i = V \mathbf{a}_i, [i]_1^n$$

• Bregman divergence formulation: $\min_{A,V} \sum_{i=1}^n d_{\phi}(\mathbf{x}_i, \nabla \psi(V\mathbf{a}_i))$

Uniting Adaboost, Logistic Regression

(Collins/Schapire/Singer, *Machine Learning*, 2002)

Boosting: minimize exponential loss; sequential updates

Logistic Regression: min. log-loss; parallel updates

Position Both are special cases of a classical Bregman projection problem: Find $\mathbf{p} \in S = \text{dom}(\phi)$ that is "closest" in Bregman divergence to a given vector $\mathbf{q}_0 \in S$ subject to certain linear constraints:

$$\min_{\mathbf{p}\in S:\ A\mathbf{p}=A\mathbf{p}_0} d_{\phi}(\mathbf{p},\mathbf{q}_0)$$

Boosting: I-divergence;

LR: binary relative entropy

Implications

- convergence proof for Boosting
- parallel versions of Boosting algorithms
- Boosting with [0,1] bounded weights
- Extension to multi-class problems

_

Misc. Work on Bregman Divergences

- Duality results and auxiliary functions for the Bregman projection problem. Della Pietra, Della Pietra and Lafferty
- Learning latent variable models using Bregman divergences. Wang and Schuurmans
- U-Boost: Boosting with Bregman divergences. Murata et al.

Historical Reference

- L. M. Bregman. "The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming." *USSR Computational Mathematics and Physics*, 7:200-217, 1967.
 - Problem:

$$\min \varphi(x)$$
 subject to $\mathbf{a_i^T x} = \mathbf{b_i}, \ \mathbf{i} = \mathbf{0}, \dots, \mathbf{m-1}$

- Iterative procedure:
 - 1. Start with $\mathbf{x}^{(0)}$ that satisfies $\nabla \varphi(\mathbf{x}^0) = -\mathbf{A}^T \pi$. Set t = 0.
 - 2. Compute $\mathbf{x^{(t+1)}}$ to be the "Bregman" projection of $\mathbf{x^{(t)}}$ onto the hyperplane $\mathbf{a_i^T x} = \mathbf{b_i}$, where $i = t \mod m$. Set t = t+1 and repeat.
- Converges to globally optimal solution. This cyclic projection method can be extended to halfspace and convex constraints, where each projection is followed by a correction).
- Censor and Lent (1981) coined the term "Bregman distance"

Bertinoro Challenge

- What other learning formulations can be generalized with BDs?
- Given a problem/application, how to find the "best" Bregman divergence to use?
- Examples of unusual but practical Bregman Divergences?
- Other useful families of loss functions

References

- **BGW'05** On the optimality of conditional expectation as a Bregman predictor IEEE Trans. Info Theory, July 2005
- BMDG'05 Clustering with Bregman Divergences Journal of Machine Learning Research (JMLR, Oct05; SDM04)
- BDGM'04 An Information Theoretic Analysis of Maximum Likelihood Mixture Estimation for Exponential Families ICML, 2004
- BDGMM'04 A Generalized Maximum Entropy Approach to Bregman Co-clustering and Matrix Approximation (KDD), 2004

Backups

The Exponential Family

Definition: A multivariate parametric family with density

$$p_{(\psi,\theta)}(\mathbf{x}) = \exp\{\langle \mathbf{x}, \theta \rangle - \psi(\theta)\} p_0(\mathbf{x})$$

- $m \psi$ is the cumulant or log-partition function
- $m{ ilde{ }} \psi$ uniquely determines a family
 - Examples: Gaussian, Bernoulli, Multinomial, Poisson
- \bullet fixes a particular distribution in the family
- $m{\Psi}$ is a strictly convex function

Online Learning (Warmuth & Co)

- Setting: For trials $t = 1, \dots, T$ do
 - Predict target $\hat{y}_t = g(\mathbf{w}_t \cdot \mathbf{x}_t)$ for instance \mathbf{x}_t using link function g
 - Incur loss $L_t^{curr}(\mathbf{w}_t)$ (depends on true y_t and predicted \hat{y}_t)
 - Update \mathbf{w}_t to \mathbf{w}_{t+1} using past history and the current trial
- Update Rule: $\mathbf{w}_{t+1} = \operatorname*{argmin}_{\mathbf{w}} \left(\underbrace{L^{hist}(\mathbf{w})}_{Deviation\ from\ history} + \eta_t \underbrace{L^{curr}_{t}(\mathbf{w})}_{Current\ loss} \right)$
 - When $L^{hist}(\mathbf{w}) = d_F(\mathbf{w}, \mathbf{w}_t)$, i.e., a Bregman loss function and $L^{curr}_t(\mathbf{w})$ is convex, the update rule reduces to

$$\mathbf{w}_{t+1} = f^{-1} \left(f(\mathbf{w}_t) + \eta_t \nabla L_t^{curr}(\mathbf{w}_t) \right)$$
 where $f = \nabla F$

• Further, if $L_t^{curr}(\mathbf{w})$ is the link Bregman loss $d_G(\mathbf{w} \cdot \mathbf{x}_t, g^{-1}(y_t))$

$$\mathbf{w}_{t+1} = f^{-1} \left(f(\mathbf{w}_t) + \eta_t (g(\mathbf{w} \cdot \mathbf{x}_t) - y_t) \mathbf{x}_t \right)$$
 where $g = \nabla G$

Examples and Bounds

History loss:Update family	Current loss	Algorithm
Squared Loss: Gradient Descent	Squared Loss	Widrow Hoff(LMS)
Squared Loss: Gradient Descent	Hinge Loss	Perceptron
KL-divergence: Exponentiated	Hinge Loss	Normalized Winnow
Gradient Descent		

■ Regret Bounds: For a convex loss L^{curr} and a Bregman loss L^{hist}

$$L_{alg} \leq \min_{\mathbf{w}} \left(\sum_{t=1}^{T} L_{t}^{curr}(\mathbf{w}) \right) + \text{ constant},$$

where $L_{alg} = \sum_{t=1}^{T} L_t^{curr}(\mathbf{w}_t)$ is the total algorithm loss

Uniting Adaboost, Logistic Regression

(Collins/Schapire/Singer, *Machine Learning*, 2002)

Task: Learn target function y(x) from labeled data $\{(x_1,y_1),\cdots,(x_n,y_n)\}$ s.t. $y_i \in \{+1,-1\}$

Boosting	Logistic Regression	
Weak hypotheses $\{h_1(x), \cdots, h_m(x)\}$	Features $\{h_1(x), \cdots, h_m(x)\}$	
Predicts $\hat{y}(x) = \operatorname{sign}(\sum_{j=1}^{m} w_j h_j(x))$	(same)	
Minimizes Exponential Loss	Minimizes Log Loss	
$\sum_{i=1}^{n} \exp(-y_i(\mathbf{w} \cdot \mathbf{h}(x)))$	$\sum_{i=1}^{n} \log(1 + \exp(-y_i(\mathbf{w} \cdot \mathbf{h}(x))))$	
Sequential updates	Parallel updates	

Both are special cases of a classical Bregman projection problem

Bregman Projection Problem

Find $\mathbf{p} \in S = \text{dom}(\phi)$ that is "closest" in Bregman divergence to a given vector $\mathbf{q}_0 \in S$ subject to certain linear constraints:

$$\min_{\mathbf{p}\in S:\ A\mathbf{p}=A\mathbf{p}_0} d_{\phi}(\mathbf{p},\mathbf{q}_0)$$

lacksquare Ada-Boost: $S=\mathbb{R}^n_+,\ \mathbf{p}_0=\mathbf{0},\ \mathbf{q}_0=\mathbf{1},\ A=[y_1\mathbf{h}(x_1),\cdots,y_n\mathbf{h}(x_n)]$ and

$$d_{\phi}(\mathbf{p}, \mathbf{q}) = \sum_{i=1}^{n} \left(p_{i} \log \left(\frac{p_{i}}{q_{i}} \right) - p_{i} + q_{i} \right)$$

Logistic Regression: $S=[0,1]^n, \mathbf{p}_0=\mathbf{0}, \mathbf{q}_0=\frac{1}{2}\mathbf{1}, A=[y_1\mathbf{h}(x_1),\cdots,y_n\mathbf{h}(x_n)]$ and

$$d_{\phi}(\mathbf{p}, \mathbf{q}) = \sum_{i=1}^{n} \left(p_i \log \left(\frac{p_i}{q_i} \right) + (1 - p_i) \log \left(\frac{1 - p_i}{1 - q_i} \right) \right)$$

ullet Optimal combining weights ${f w}^*$ can be obtained from the minimizer ${f p}^*$