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A Sawtooth Waveform Inspired Pitch Estimator (SWIPE) has been developed for 

processing speech and music. SWIPE is shown to outperform existing algorithms on several 

publicly available speech/musical-instruments databases and a disordered speech database. 

SWIPE estimates the pitch as the fundamental frequency of the sawtooth waveform whose 

spectrum best matches the spectrum of the input signal. A decaying cosine kernel provides an 

extension to older frequency-based, sieve-type estimation algorithms by providing smooth peaks 

with decaying amplitudes to correlate with the harmonics of the signal. An improvement on the 

algorithm is achieved by using only the first and prime harmonics, which significantly reduces 

subharmonic errors commonly found in other pitch estimation algorithms. 
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CHAPTER 1 
INTRODUCTION 

Pitch is an important characteristic of sound, providing information about the sound’s 

source. In speech, pitch helps to identify the gender of the speaker (pitch tends to be higher for 

females than for males) (Wang and Lin, 2004), gives additional meaning to words (e.g., a group 

of words can be interpreted as a question depending on whether the pitch is rising or not), and 

may help to identify the emotional state of the speaker (e.g., joy produces high pitch and a wide 

pitch range, while sadness produce normal to low pitch and a narrow pitch range) (Murray and 

Arnott, 1993). Pitch is also important in music because it determines the names of the notes 

(Sethares, 1998). 

Pitch estimation also has applications in many areas that involve processing of sound: 

music, communications, linguistics, and speech pathology. In music, one of the main 

applications of pitch estimation is automatic music transcription. Musicologists are often faced 

with music for which no transcription exists. Therefore, automated tools that extract the pitch of 

a melody, and from there the individual musical notes, are invaluable tools for musicologists 

(Askenfelt, 1979). Automated transcription has also been used in query-by-humming systems 

(e.g., Dannenberg et al., 2004). These systems allow people to search for music in databases by 

singing or humming the melody rather than typing the title of the song, which may be unknown 

for the user or the database.  

In communications, pitch estimation is used for speech coding (Spanias, 1994). Many 

speech coding systems are based on the source-filter model (Fant, 1970), which models speech 

as a filtered source signal. In some implementations, the source is either a periodic sequence of 

glottal pulses (for voiced sound) or white noise (for unvoiced sound). Therefore, the correct 

estimation of the glottal pulse rate is crucial for the correct coding of voiced speech. 
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Pitch estimators are useful in linguistics for the recognition of intonation patterns, which 

are used, for example, in the acquisition of a second language (de Bot, 1983). Pitch estimators 

are also used in speech pathology to determine speech disorders, which are characterized by high 

levels of noise in the voice. Since most methods used to estimate noise are based on the 

fundamental frequency of the signal (e.g., Yumoto, Gould, and Baer, 1982), pitch estimators are 

of vital importance in this area. 

The goal of our work is to develop an automatic pitch estimator that operates on both 

speech and music. The algorithm should be competitive with the best known pitch estimators, 

and therefore be suitable for the many applications mentioned above. Furthermore, the algorithm 

should provide a measure to determine if a pitch exists or not in each region of the signal. The 

remaining sections of this chapter present several psychoacoustics definitions and phenomena 

that will be used to explain the operation and rationale of the algorithm. 

1.1 Pitch Background 

1.1.1 Conceptual Definition 

Several conceptual definitions of pitch have been proposed. The American Standard 

Association (ASA, 1960) definition of pitch is 

“Pitch is that attribute of auditory sensation in terms of which sounds may be ordered on a 
musical scale,” 

and the American National Standards Institute (ANSI, 1994) definition of pitch is 

“Pitch is that auditory attribute of sound according to which sounds can be ordered on a 
scale from low to high. Pitch depends mainly on the frequency content of the sound 
stimulus, but it also depends on the sound pressure and the waveform of the stimulus.” 

These definitions mention an attribute that allows ordering sounds in a scale, but they say 

nothing about what that attribute is.  
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We will propose another definition of pitch, which is based on the fundamental frequency 

of a signal. The fundamental frequency f0 of a signal (sound or no sound) exists only for periodic 

signals, and is defined as the inverse of the period of the signal, where the period T0 of the signal 

(a.k.a. fundamental period) is the minimum repetition interval of the signal x(t), i.e.,  

{ })()(:|0min0 TtxtxtTT +=∀>= . (1-1) 

It is also possible, to define the fundamental frequency in the frequency domain: 

⎭
⎬
⎫

⎩
⎨
⎧

+=∃∃≥= ∑
∞

=0
0 )2sin()(:}{},{|0max

k
kkkk kftctxcff φπφ . (1-2) 

Although both equations are mathematically equivalent (i.e., it can be shown that f0 = 1/T0), they 

are conceptually different: Equation 1-1 looks at the signal in the time domain, while 

Equation 1-2 looks at the signal as a combination of sinusoids using a Fourier series expansion. 

The key element for periodicity in Equation 1-1 is the equality in x(t) = x(t + T), and the key 

element for periodicity in Equation 1-2 is the existence of components only at multiples of the 

fundamental frequency. Unfortunately, no signal in nature is perfectly periodic because of 

natural variations in frequency and amplitude, and contamination produced by noise. 

Nevertheless, when listening to many natural signals, we perceive pitch. This suggests that, to 

determine pitch, the brain probably uses either a modified version of Equation 1-1, where the 

equality x(t) = x(t + T) is substituted by an approximation, or a modified version of Equation 1-2, 

where noise and fluctuations in the frequency of the components are allowed. Based on this 

suggestion, we define pitch as the perceived “fundamental frequency” of a sound, in other words, 

as the estimate our brain does of the (quasi) fundamental frequency of a sound. 

1.1.2 Operational Definition 

Since the previous definitions of pitch do not indicate how to measure it, they are of no 

practical use, and an operational definition of pitch is required. The usual way in which pitch is 
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measured is the following. A listener is presented with two sounds: a target sound, for which the 

pitch is to be determined, and a matching sound. The matching sound is usually a pure tone, 

although sometimes harmonic complex tones are used as well. The levels of the target and the 

matching sounds are usually equalized to avoid any effect of differences in level in the 

perception of pitch. The sounds are presented sequentially, simultaneously, or in any 

combination of them, depending on the design of the experiment. The listener is asked to adjust 

the fundamental frequency of the matching sound such that it matches the target sound, in the 

sense of the conceptual definitions of pitch presented above. The fundamental frequency of the 

matching sound is recorded and the experiment is repeated several times and with different 

listeners. The data is summarized, and if the distribution of fundamental frequencies shows a 

clear peak around a certain frequency, the target sound is said to have a pitch corresponding to 

that frequency. 

1.1.3 Strength 

Some sounds elicit a strong pitch sensation, and some do not. For example, when we 

speak, some sounds are highly periodic and elicit a strong pitch sensation (e.g., vowels), but 

some do not (e.g., some consonants: /s/, /sh/, /p/, and /k/). In the case of musical instruments, the 

attack tends to contain transient components that obscure the pitch, but they disappear quickly 

letting the pitch show more clearly. The quality of the sound that allows us to determine whether 

pitch exists is called pitch strength. Pitch strength is not a categorical variable but a continuum. 

Also, pitch strength is independent of pitch: two sounds may have the same pitch and differ in 

pitch strength. For example, a pure tone and a narrow band of noise centered at the frequency of 

the tone have the same pitch, however, the pure tone elicit a stronger pitch sensation than the 

noise.  
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Unfortunately, not much research exists on pitch strength, and the few studies that exist 

have concentrated mostly on noise (Yost, 1996; Wiegrebe and Patterson, 1998), although some 

have explored harmonic sounds as well (Fastl and Stoll, 1979; Shofner and Selas, 2002). In terms 

of variety of sounds, the most complete study is probably Fastl and Stoll’s, which included pure 

tones, complex tones, and several types of noises. In that study, pure tones were reported to have 

the strongest pitch among all sounds. However, other studies have found that pitch identification 

improves as harmonics are added (Houtsma, 1990), which suggests that pitch strength increases 

as well. 

We hypothesize that our brain determines pitch by searching for a match between our 

voice, produced or imagined, and the target signal for which pitch is to be determined, probably 

based on their spectra. This hypothesis agrees with studies of pitch determination in which 

subjects have been allowed to hum the target sound to facilitate pitch matching tasks (Houtgast, 

1976). Based on this hypothesis, we believe that the higher the similarity of the target signal with 

our voice, the higher its pitch strength. If the similarity is based on the spectrum, a signal will 

have maximum pitch strength when its spectrum is closest to the spectrum of a voiced sound. If 

we assume that voiced sounds have harmonic spectra with envelopes that decay on average as 1/f 

(i.e., inversely proportional to frequency) (Fant, 1970), then a signal will have maximum pitch 

strength if its spectrum has that structure.  

An example of a signal with such property is a sawtooth waveform, which is exemplified 

in Figure 1-1. A sawtooth waveform is formed by adding sines with frequencies that are 

multiples of a common fundamental f0, and whose amplitude decays inversely proportional to 

frequency: 

∑
∞

=

=
1

02sin1)(
k

tkf
k

tx π . (1-3) 
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Though sawtooth waveforms play a key role in our research, their importance resides in 

their spectrum, and not in their time-domain waveform. In particular, the phase of the 

components can be manipulated (destroying its sawtooth waveform shape) and the signal would 

still play the same role in our work as the sawtooth waveform. In other words, it is assumed in 

this work that what matters to estimate pitch and its strength is the amplitude of the spectral 

components of the sound, and not their phase, which in fact is ignored here. However, phase 

does play a role in pitch perception, as have been shown by some researchers (Moore, 1977; 

Shackleton and Carlyon, 1994; Galembo, et al., 2001). These researchers have created pairs of 

sounds that have the same spectral amplitudes but significantly different pitches, by choosing the 

phases of the components appropriately. Nevertheless, it is not the aim of this research to cover 

the whole range of pitch phenomena, but to concentrate only on the most common speech and  

 

 
 

Figure 1-1.  Sawtooth waveform. A) Signal. B) Spectrum. 

Object 1-1.  Sawtooth waveform (WAV file, 32 KB). 
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musical instruments sounds. As we will see later, good pitch predictions are obtained for these 

types of sounds based solely on the amplitude of their spectral components. 

1.1.4 Duration Threshold 

Doughty and Garner (1947) studied the minimum duration required to perceive a pitch for 

a pure tone. They found that there are two duration thresholds with two different properties. 

Tones with durations below the shorter threshold are perceived as a click, and no pitch is 

perceived. Tones with durations between the two thresholds are perceived as having pitch, and 

an increase in their duration causes an increase in their pitch strength. Tones with durations 

above the largest threshold are also perceived as having pitch, but further increases in their 

duration do not increase their pitch strength. 

These thresholds are not constant, but approximately proportional to the pitch period of the 

tone. In other words, the threshold corresponds to a certain number of periods of the tone. 

However, there is some interaction between pitch and the minimum number of cycles required to 

perceive it (lower frequencies have a tendency to require fewer cycles to elicit a pitch). The 

shorter threshold is approximately two to four cycles, and the larger threshold is approximately 

three to ten cycles. For frequencies above 1 kHz the thresholds become constant: 4 ms the 

shorter and 10 ms the larger, regardless of their corresponding number of cycles. 

Robinson and Patterson (1995a; 1995b) studied note discriminability as a function of the 

number of cycles in the sound using strings, brass, flutes, and harpsichords. A large increase in 

discriminability can be observed in their data as the number of cycles increases from one to 

about ten, but beyond ten cycles the discriminability of the notes does not seem to increase 

much. This trend agrees with the thresholds for pure tones mentioned above, which suggests that 

the thresholds are also valid for musical instruments, and probably for sawtooth waveforms as 

well. 
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1.2 Illustrative Examples and Pitch Determination Hypotheses 

In previous sections, conceptual and operational definitions of pitch were given. From a practical 

point of view, both types of definitions are of limited use since the conceptual definitions are too 

abstract and the operational definition requires a human to determine the pitch. In this section we 

propose more algorithmic ways for determining pitch, through the search for cues that may give 

us hints regarding the pitch. These cues, hereafter referred as hypotheses, are illustrated with 

examples of sounds in which they are valid, and examples in which they are not. 

1.1.2 Pure Tone 

From a frequency domain point of view, the simplest periodic sound is a pure tone. A pure 

tone with a frequency of 100 Hz and its spectrum is shown in Figure 1-2. Based on our 

operational definition of pitch (i.e., the one that uses a pure tone as matching tone presented at 

the same intensity level as the testing tone), the pitch of a pure tone is its frequency, and  

 

 
 

Figure 1-2.  Pure tone. A) Signal. B) Spectrum. 

Object 1-2.  Pure tone (WAV file, 32 KB). 
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therefore frequency determines pitch in this case. This may not be true if the tones are presented 

at different levels. Intriguingly, the pitch of a pure tone may change with intensity level (Stevens, 

1935): as intensity increases, the pitch of high frequency tones tends to increase, and the pitch of 

low frequency tones tends to decrease. However, this change is usually less than 1% or 2% 

(Verschuure and van Meeteren, 1975), occurs at very disparate intensity levels, and varies 

significantly from person to person.  

Since the goal in this research is to predict pitch for sounds represented in a computer as a 

sequence of numbers without knowing the level at which the sound will be played, it will be 

assumed that the sound will be played at a “comfortable” level, and therefore the algorithm will 

be designed to predict the pitch at that level. Nevertheless, variations of pitch with level are 

small, and have little effect even for complex tones (Fastl, 2007), otherwise, music would 

become out of tune as we change the volume. 

1.2.2 Sawtooth Waveform and the Largest Peak Hypothesis 

The sawtooth waveform presented in Section 1.1.3 was shown to have a harmonic 

spectrum with components whose amplitude decays inversely proportional to frequency (see 

Figure 1-1). The computational determination of the pitch of a sawtooth waveform is not as easy 

as it is for a pure tone because its spectrum has more than one component. Since the pitch of a 

sawtooth waveform corresponds to its fundamental frequency, and the fundamental frequency in 

this case is the component with the highest energy, one possible hypothesis for the derivation of 

the pitch is that the pitch corresponds to the largest peak in the spectrum. However, as we will 

show in the next section, this hypothesis does not always hold. 

1.2.3 Missing Fundamental and the Components Spacing Hypothesis 

This section shows that it is possible to create a periodic sound with a pitch corresponding 

to a frequency at which there is no energy in the spectrum. A sound with such property is said to  
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Figure 1-3.  Missing fundamental. A) Signal. B) Spectrum. 

Object 1-3.  Missing fundamental (WAV file, 32 KB). 

 

have a missing fundamental. It is easy to build such a signal: just take a sawtooth waveform and 

remove its fundamental, as shown in Figure 1-3. Certainly, the timbre of the sound will change, 

but not its pitch. This fact disproves the hypothesis that the pitch corresponds to the largest peak 

in the spectrum. 

After it was realized that the pitch of a complex tone was unaffected by removing the 

fundamental frequency, it was hypothesized that the pitch corresponds to the spacing of the  

frequency components. However, this hypothesis is not always valid, as we will show in the next 

section. 

1.2.4 Square Wave and the Maximum Common Divisor Hypothesis 

The previous section hypothesized that the pitch corresponds to the spacing between the 

frequency components. However, it is easy to find an example for which this hypothesis fails: a  
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Figure 1-4.  Square wave. A) Signal. B) Spectrum. 

Object 1-4.  Square wave (WAV file, 32 KB). 

 

square wave. A square wave is similar to a sawtooth wave, but does not have even order 

harmonics:  

∑
∞

=

−
−

=
1

0)12(2sin
)12(

1)(
k

tfk
k

tx π . (1-4) 

A square wave with a fundamental frequency of 100 Hz and its spectrum is shown in 

Figure 1-4. The components are located at odd multiples of 100 Hz, producing a spacing of 200 

Hz between them. However, the fundamental frequency, and indeed its pitch, is 100 Hz. Thus, 

the components spacing hypothesis is invalid. 

A hypothesis that seems to work for this example, and all the previous ones, is that the 

pitch must correspond to the maximum common divisor of the frequency components. As shown 

in Equation 1-2, this is equivalent to saying that the pitch corresponds to the fundamental 

frequency. However, we will show in the next section that this hypothesis is also wrong. 
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1.2.5 Alternating Pulse Train 

A pulse train is a sum of pulses separated by a constant time interval T0: 

∑
∞

=

−=
1

0 )()(
k

kTttx δ , (1-5) 

where δ  is the delta or pulse function, a function whose value is one if its argument is zero, and 

zero otherwise. A pulse train with a fundamental frequency of 100 Hz (fundamental period of 10 

ms) and its spectrum are shown in Figure 1-5. The spectrum of a pulse train is another pulse train 

with pulses at multiples of the fundamental frequency, which corresponds to the pitch. If the 

signal is modified by decreasing the height of every other pulse in the time domain to 0.7, as 

shown in Figure 1-6, the period of the signal will change to 20 ms. This will be reflected in the 

spectrum as a change in the fundamental frequency from 100 Hz to 50 Hz. However, although 

this change may cause an effect on the timbre (depending on the overall level of the signal), the  

 

 
 

Figure 1-5.  Pulse train. A) Signal. B) Spectrum. 

Object 1-5.  Pulse train (WAV file, 32 KB). 
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Figure 1-6.  Alternating pulse train. A) Signal. B) Spectrum. 

Object 1-6.  Alternating pulse train (WAV file, 32 KB). 

 

pitch will remain the same: 100 Hz, refuting the hypothesis that the pitch of a sound corresponds 

to its fundamental frequency (i.e., the maximum common divisor of the frequency components). 

1.2.6 Inharmonic Signals 

This section shows another example of a signal whose pitch does not correspond to its 

fundamental frequency (i.e., the maximum common divisor of its frequency components). 

Consider a signal built from the 13th, 19th, and 25th harmonics of 50 Hz (i.e., 650, 950, and 

1250 Hz), as shown in Figure 1-7. Its fundamental frequency is 50 Hz, but its pitch is 334 Hz 

(Patel and Balaban, 2001). This is interesting since the ratios between the components and the 

pitch are far from being integer multiples: 1.95, 2.84, and 3.74. In any case, the pitch of the 

signal no longer corresponds to its fundamental frequency. Although the true period of the signal 

is T0
 = 20 ms, the signal peaks about every 3 ms, which corresponds to the pitch period of the  

 



 

26 

 
 

Figure 1-7.  Inharmonic signal. A) Signal. T0 corresponds to the fundamental period of the signal 
and t0 corresponds to the pitch period. B) Spectrum. 

Object 1-7.  Inharmonic signal (WAV file, 32 KB). 

 

signal t0 (see Panel A). These type of signals for which the components are not integer multiples 

of the pitch are called inharmonic signals. 

1.3 Loudness 

Loudness is another perceptual quality of sound that provides us with information about its 

source. It is important for pitch because the unification of the components of a sound into a 

single entity, for which we identify a pitch, may be mediated by the relative loudness of the 

components of the sound.  

A conceptual definition of loudness is (Moore, 1997) 

“…that attribute of auditory sensation in terms of which sounds can be ordered on a scale 
extending from quiet to loud.” 
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The most common unit to measure loudness is the sone. A sone is defined as the loudness 

elicited by a 1 kHz tone presented at 40 dB sound pressure level. The loudness L of a pure tone is 

usually modeled as a power function of the sound pressure P of the tone, i.e.,  

αPkL = , (1-6) 

where k is a constant that depends on the units and α is the exponent of the power law. 

In a review of loudness studies, Takeshima et. al (2003) found that the value of α is 

usually reported to be within the range 0.4-0.6. They also reviewed more elaborate models with 

many more parameters, but for simplicity, in this work we will use the simpler power model, and 

for reasons we will explain later, we choose the value of α to be 0.5. In other words, we model 

the loudness of a tone as being proportional to the square-root of its amplitude. 

1.4 Equivalent Rectangular Bandwidth 

The bandwidth and the distribution of the filters used to extract the spectral components of 

a sound are important issues that may affect our perception of pitch. Since each point of the 

cochlea responds better to certain frequencies than others, the cochlea acts as a spectrum 

analyzer. The bandwidth of the frequency response of each point of the cochlea is not constant 

but varies with frequency, being almost proportional to the frequency of maximum response at 

each point (Glasberg and Moore, 1990). 

The concept of Equivalent Rectangular Bandwidth (ERB) was introduced as a description 

of the spread of the frequency response of a filter. The ERB of a filter F is defined as the 

bandwidth (in Hertz) of a rectangular filter R centered at the frequency of maximum response of 

F, scaled to have the same output as F at that frequency, and passing the overall same amount of 

white noise energy as F. In other words, when the power responses of F and R are plotted as a  

 



 

28 

 
 

Figure 1-8.  Equivalent rectangular bandwidth. 

 

function of frequency, as in Figure 1-8, the central frequency of R corresponds to the mode of F, 

and both curves have the same height and area.  

Glasberg and Moore (1990) studied the response of auditory filters at different frequencies, 

and proposed the following formula to approximate the ERB of the filters: 

ff 108.07.24)(ERB += . (1-7) 

Another property of the cochlea is that the relation between frequency and site of 

maximum excitation in the cochlea is not linear. If the distance between the apex of the cochlea 

and the site of maximum excitation of a pure tone is plotted as a function of frequency of the 

tone, it will be found that a displacement of 0.9 mm in the cochlea corresponds approximately to 

one ERB (Moore, 1986). Therefore, it is possible to build a scale to measure the position of 

maximum response in the cochlea for a certain frequency f by integrating Equation 1-7 to obtain 

the number of ERBs below f, and then multiplying it by 0.9 mm to obtain the position. However,  
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Figure 1-9.  Equivalent-rectangular-bandwidth scale. 

 

it is common practice in psychoacoustics to merely compute the number of ERBs below f, which 

can be computed as  

)229/1(log4.21)(ERBs 10 ff += . (1-8) 

This scale is shown in Figure 1-9, and it will be the scale used by SWIPE to compute spectral 

similarity. 

1.5 Dissertation Organization 

The rest of this dissertation is organized as follows. Chapter 2 presents previous pitch 

estimation algorithms that are related to SWIPE, their problems and possible solutions to these 

problems. Chapter 3 will discuss how these problems, plus some ones and their solutions, lead to 

SWIPE. Chapter 4 evaluates SWIPE using publicly available speech/music databases and a 

disordered speech database. Publicly available implementations of other algorithms are also 

evaluated on the same databases, and their performance is compared against SWIPE’s. 
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1.6 Summary 

Here we have presented the motivations and applications for pitch estimation. Then, we 

presented conceptual and operational definitions of pitch, together with the related concept of 

pitch strength and the duration threshold to perceive pitch. Next, we presented examples of 

signals and their pitch, together with hypotheses about how pitch is determined. The sawtooth 

waveform was highlighted, since it plays a key role in the development of SWIPE. 

Psychoacoustic concepts such as inharmonic signals, loudness, and the ERB scale were also 

introduced since they are also relevant for the development of SWIPE. 
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CHAPTER 2 
PITCH ESTIMATION ALGORITHMS: PROBLEMS AND SOLUTIONS 

This chapter presents some well known pitch estimation algorithms that appear in the 

literature. These algorithms were chosen because of their influence upon the creation of SWIPE. 

We will present the algorithms in a very basic form with the intent to capture their essence in a 

simple expression, although their actual implementations may have extra details that we do not 

present here. The purpose of those details is usually to fine tune the algorithms, but the actual 

power of the algorithms is based on the essence we describe here. 

 

 
 

Figure 2-1.  General block diagram of pitch estimators. 
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Traditionally, there have been two types of pitch estimation algorithms (PEAs): algorithms 

based on the spectrum1 of the signal, and algorithms based on the time-domain representation of  

the signal. The time-domain based algorithms presented in this chapter can also be formulated 

based on the spectrum of the signal, which will be the approach followed here. 

The basic steps that most PEAs perform to track the pitch of a signal are shown in the 

block diagram of Figure 2-1. First, the signal is split into windows. Then, for each window the 

following steps are performed: (i) the spectrum is estimated using a short-time Fourier transform 

(STFT), (ii) a score is computed for each pitch candidate within a predefined range by computing 

an integral transform (IT) over the spectrum, and (iii) the candidate with the highest score is 

selected as the estimated pitch. The algorithms will be presented in an order that is convenient 

for our purposes, but does not necessarily correspond to the chronological order in which they 

were developed.  

2.1 Harmonic Product Spectrum (HPS) 

The first algorithm to be presented is Harmonic Product Spectrum (HPS) (Schroeder, 

1968). This algorithm estimates the pitch as the frequency that maximizes the product of the 

spectrum at harmonics of that frequency, i.e. as 

|)(|maxarg
1
∏
=

=
n

kf
kfXp , (2-1) 

where X is the estimated spectrum of the signal, n is the number of harmonics to be used 

(typically between 5 and 11), and p is the estimated pitch. The purpose of limiting the number of 

harmonics to n is to reduce the computational cost, but there is no logical reason behind this 

limit; it is hard to believe that the n-th harmonic is useful for pitch estimation, but not the n+1-th. 
                                                 
1 Since all the pitch estimators presented here use the magnitude of the spectrum but not its phase, the words 
“magnitude of” will be omitted, and the word spectrum should be interpreted as magnitude of the spectrum unless 
explicitly noted otherwise. 
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Figure 2-2.  Harmonic product spectrum. 

Object 2-1.  Bandpass filtered /u/ (WAV file 6 KB) 

 

Since the logarithm is an increasing function, an equivalent approach is to estimate the 

pitch as the frequency that maximizes the logarithm of the product of the spectrum at harmonics 

of that frequency. Since the logarithm of a product is equal to the sum of the logarithms of the 

terms, HPS can also be written as  

|)(|logmaxarg
1
∑
=

=
n

kf
kfXp , (2-2) 

or using an integral transform, as  

∫ ∑
∞

=

−=
0 1

')'()|'(|logmaxarg dfkfffXp
n

kf
δ . (2-3) 

Figure 2-2 shows the kernel of this integral for a pitch candidate with frequency 190 Hz.  

A pitfall of this algorithm is that if any of the harmonics is missing (i.e., its energy is zero), 

the product will be zero (equivalently, the sum of the logarithms will be minus infinity) for the 

candidate corresponding to the pitch, and therefore the pitch will not be recognized. Figure 2-2 
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also shows the spectrum of the vowel /u/ (as in good) with a pitch of 190 Hz (Object 2-1). This 

sample was passed through a filter with a bandpass range of 300−3400 Hz to simulate telephone-

quality speech. Therefore, the fundamental is missing and HPS is not able to recognize the pitch 

of this signal. Another salient characteristic of this sample is its intense second harmonic at 380 

Hz, caused probably by the first formant of the vowel, which is on average around 380 Hz as 

well (Huang, Acero, and Hon, 2001). 

2.2 Sub-harmonic Summation (SHS) 

An algorithm that has no problem with missing harmonics is Sub-Harmonic Summation 

(SHS) (Hermes, 1988), which solves the problem by using addition instead of multiplication. 

Therefore, if any harmonic is missing, it will not contribute to the total, but will not bring the 

sum to zero either. In mathematical terms, SHS estimates the pitch as  

|)(|maxarg
1
∑
=

=
n

kf
kfXp , (2-4) 

 

 
 

Figure 2-3.  Subharmonic summation. 
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or using an integral transform as 

∫ ∑
∞

=

−=
0 1

')'()|'(|maxarg dfkfffXp
n

kf
δ . (2-5) 

An example of the kernel of this integral is shown in Figure 2-3.  

A pitfall of this algorithm is that since it gives the same weight to all the harmonics, 

subharmonics of the pitch may have the same score as the pitch, and therefore they are valid 

candidates for being recognized as the pitch. For example, suppose that a signal has a spectrum 

consisting of only one component at f Hz. By definition, the pitch of the signal is f Hz as well. 

However, since the algorithm adds the spectrum at n multiples of the candidate, each of the 

subharmonics f/2, f/3,…, f/n will have the same score as f, and therefore they are equally valid to 

be recognized as the pitch.  

 

 
 

Figure 2-4.  Subharmonic summation with decay. 
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This problem can be solved by introducing a monotonically decaying weighting factor for 

the harmonics. SHS implements this idea by weighting the harmonics with a geometric 

progression as 

∫ ∑
∞

=

− −=
0 1

1 ')'(|)'(|maxarg dfkffrfXp
n

k

k

f
δ , (2-6) 

where the value of r was empirically set to 0.84 based on experiments using speech. The kernel 

of this integral is shown in Figure 2-4. SHS is the only algorithm in this chapter that solves the 

subharmonic problem by applying this decay factor. Later, another algorithm will be presented 

(Biased Autocorrelation) which solves this problem in a different way.  

2.3 Subharmonic to Harmonic Ratio (SHR) 

A drawback of the algorithms presented so far is that they examine the spectrum only at 

the harmonics of the fundamental, ignoring the contents of the spectrum everywhere else. An 

example will illustrate why this is a problem. Suppose that the input signal is white noise (i.e., a 

signal with a flat spectrum). This signal is perceived as having no pitch. However, the previous 

algorithms will produce the same score for each pitch candidate, making each of them a valid 

estimate for the pitch.  

This problem is solved by the Subharmonic to Harmonic Ratio algorithm (SHR) (Sun, 

2000), which not only adds the spectrum at harmonics of the pitch candidate, but also subtracts 

the spectrum at the middle points between harmonics. However, this algorithm uses the 

logarithm of the spectrum, and therefore has the problem previously discussed for HPS. Also, 

this algorithm gives the same weight to all the harmonics and therefore it suffers from the 

subharmonics problem. SHR can be written as 

∫ ∑
∞

=

−−−−=
0 1

'))2/1('()'()|'(|logmaxarg dffkfkfffXp
n

kf
δδ . (2-7) 
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Figure 2-5.  Subharmonic to harmonic ratio. 

 

The kernel of the integral is shown in Figure 2-5. Notice that SHR will produce a positive score 

for a signal with a harmonic spectrum and a score of zero for white noise. However, this 

algorithm has a problem that is shared by all the algorithms presented so far: since they examine 

the spectrum only at harmonic locations, they cannot recognize the pitch of inharmonic signals. 

Before we move on to the next algorithm, we wish to add some insight to SHR. If we 

further divide the sum in Equation 2-7 by n, the algorithm would compute the average peak-to-

valley ratio, where the peaks are expected to be at the harmonics of the candidate, and the valleys 

are expected to be at the middle point between harmonics. This idea will be exploited later by 

SWIPE, albeit with some refinements: the average will be weighted, the ratio will be replaced 

with the distance, and the peaks and valleys will be examined over wider and blurred regions.  

2.4 Harmonic Sieve (HS) 

One algorithm that is able to recognize the pitch of some inharmonic signals is the 

Harmonic Sieve (HS) (Duifhuis and Willems, 1982). This algorithm is similar to SHS, but has 
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two key differences: instead of using pulses it uses rectangles, and instead of computing the inner 

product between the spectrum and the rectangles, it counts the number of rectangles that contain 

at least one component (a rectangle is said to contain a component if the component fits within 

the rectangle and its amplitude exceeds a certain threshold T). The rectangles are centered at the 

harmonics of the pitch candidates, and their width is 8% of the frequency of the harmonics. This 

algorithm can be expressed mathematically as  

∑
=

∈ ⎥⎦
⎤

⎢⎣
⎡ <=

n

k kfkfff
fXTp

1 )04.1,96.0('
|)'(|maxmaxarg , (2-8) 

where [⋅] is the Iverson bracket (i.e., produces a value of one if the bracketed proposition is true, 

and zero otherwise). Notice that the expression in the sum is a non-linear function of the 

spectrum, and therefore this algorithm cannot be written using an integral transform. Figure 2-6 

shows the kernel used by this algorithm.  

 

 
 

Figure 2-6.  Harmonic sieve. 
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A pitfall of HS is that, when a component is close to an edge of a rectangle, a slight change 

in its frequency could put it in or out of the rectangle, possibly changing the estimated pitch 

drastically. Such radical changes do not typically occur in pitch perception, where small changes 

in the frequency of the components lead to small changes in the perceived pitch, as mentioned in 

Section 1.2.6. This problem can be solved by using smoother boundaries to decide whether a 

component should be considered as a harmonic or not, as done by the next algorithm. 

2.5 Autocorrelation (AC) 

One of the most popular methods for pitch estimation is autocorrelation. The 

autocorrelation function r(t) of a signal x(t) measures the correlation of the signal with itself after 

a lag of size t, i.e.,  

∫
−

∞→
+=

2/

2/

')'(')(1lim)(
T

T
T

dtttxtx
T

tr . (2-9) 

The Wiener-Khinchin theorem shows that autocorrelation can also be computed as the inverse 

Fourier cosine transform of the squared spectrum of the signal, i.e., as 

∫
∞

=
0

2 )2cos(|)(|)( dfftfXtr π . (2-10) 

The autocorrelation-based pitch estimation algorithm (AC) estimates the pitch as the frequency 

whose inverse maximizes the autocorrelation function of the signal, i.e., as 

∫
∞

<
=

0

2 ')/'2cos(|)'(|maxarg
max

dffffXp
ff

π , (2-11) 

where the parameter fmax is introduced to avoid the maximum that the integral has at infinity. The 

kernel for this integral is shown in Figure 2-7. It is easy to see that as f increases, the kernel 

stretches without limit, and since the cosine starts with a value of one and decays smoothly, 

eventually it will give a weight of one to the whole spectrum, producing a maximum at infinity.  
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Figure 2-7.  Autocorrelation. 

 

Notice that this problem can be easily solved by removing the first quarter of the first cycle of 

the cosine (i.e., setting it to zero). Since the DC of a signal (i.e., it zero-frequency component) 

only adds a constant to the signal, ignoring the DC should not affect the pitch estimation of a 

periodic signal. 

Because of the frequency domain representation of autocorrelation, we can see that there is 

a large resemblance between AC and SHR (compare the kernel of Figure 2.7 with the kernel of  

Figure 2.5), although with three main differences. First, instead of using an alternating sequence 

of pulses, AC uses a cosine, which adds a smooth interpolation between the pulses. Second, AC 

adds an extra lobe at DC, which was already shown to have a negative effect. Third, AC uses the 

power of the spectrum (i.e., the squared spectrum) instead of the logarithm of the spectrum. 

Therefore, both algorithms measure the average peak-to-valley distance, one in the power 

domain and the other in the logarithmic domain, although AC does it in a much smoother way. 
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There is also a similarity between AC and HS (compare the kernel of Figure 2.7 with the 

kernel of Figure 2.6). HS allows for inharmonicity of the components of the signal by 

considering as harmonic any component within a certain distance from a harmonic of the 

candidate pitch. AC does the same in a smoother way by assigning to a component a weight that 

is a function of its distance to the closer harmonic of the candidate pitch; the smaller the distance, 

the larger the weight, and the further the distance, the smaller the weight. In fact, if the 

component is too far from any harmonic, its weight can be negative.  

Like all the algorithms presented so far, except SHS, AC exhibits the subharmonics 

problem caused by the equal weight given to all the harmonics (see Section 2.2). To solve this 

problem, it is common to take the local maximum of highest frequency rather than the global 

maximum. However, this technique sometimes fails. For example, consider a signal with 

fundamental frequency 200 Hz (i.e., period of 5 ms) and first four harmonics with amplitudes 

1,6,1,1, as shown in Figure 2-8A (Object 2-2). Except at very low intensity levels, the four 

components are audible, and the pitch of the signal corresponds to its fundamental frequency. 

However, as shown in Figure 2-8C, AC has its first non-zero local maximum at 2.5 ms, which 

corresponds to a pitch of 400 Hz.  

Another common solution is to use the biased autocorrelation (BAC) (Sondhi, 1968; 

Rabiner, 1977), which introduces a factor that penalizes the selection of low pitches. This factor 

gives a weight of one to a pitch period of zero and decays linearly to zero for a pitch period 

corresponding to the window size T. This can be written as  
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Figure 2-8.  Comparison between AC, BAC, ASDF, and AMDF. A) Spectrum of a signal with 

pitch and fundamental frequency of 200 Hz. B) Waveform of the signal with a 
fundamental period of 5 msec. C) AC has a maximum at every multiple of 5 ms, 
making it hard to choose the best candidate. The first (non-zero) local maxima is at 
2.5 ms, making the “first peak” criteria to fail.  D) BAC has its first peak and its non-
zero largest local maximum at 2.5 ms. E) ASDF is an inverted, shifted, ands scaled 
AC. F) AMDF is similar to ASDF. 

Object 2-2.  Signal with strong second harmonic (WAV file, 32 KB) 

 

However, the combination of this bias and the squaring of the spectrum may introduce new 

problems. For example, if T = 20 ms as in the BAC function of Figure 2-8D, the bias will make 

the height of the peak at 2.5 ms larger than the height of the peak at 5 ms, consequently causing 

an incorrect pitch estimate.  



 

43 

2.6 Average Magnitude and Squared Difference Functions (AMDF, ASDF) 

Two functions similar to autocorrelation (in the sense that they compare the signal with 

itself after a lag of size t ) are the magnitude difference function (AMDF) and the average 

squared difference function (ASDF). The AMDF is defined as  

∫ +−=
2/

2/

')|'()'(|1)(
T

T

dtttxtx
T

td , (2-13) 

and the ASDF as 

∫ +−=
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dtttxtx
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It is easy to show that ASDF and autocorrelation are related through the equation (Ross, 1974) 

( ))()0(2)( trrts −= , (2-15) 

and therefore, s(t) is just an inverted, shifted, and scaled version of autocorrelation. Therefore, as 

illustrated in the panels C (or D) and E of Figure 2-8, where (biased) autocorrelation has peaks, 

s(t) has dips. Thus, an ASDF-based algorithm must look for minima instead of maxima to 

estimate pitch.  

It has also been shown (Ross, 1974) that d(t) can be approximated as 

.)]([)()( 2/1tsttd β≅  (2-16) 

Although the relation between d(t) and s(t) depends on t through β (t), it is found in practice that 

this factor does not play a significant role, and a large similarity between d(t) and s(t) exists, as 

observed in panels E and F of Figure 2-8. Therefore, since the functions r(t), s(t), and d(t) are so 

strongly related, none of them is expected to offer much more than the others for pitch 

estimation. However, modifications to these functions, which cannot be expressed in terms of the 

other functions, have been used successfully to improve their performance on pitch estimation. 
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An example is given by YIN (de Cheveigne, 2002), which uses a variation of s(t) to avoid the dip 

at lag zero, improving its performance. Another variation is the one we proposed in the previous 

section (i.e., the removal of the first quarter of the cosine) to avoid the maximum at zero lag for 

autocorrelation. 

2.7 Cepstrum (CEP) 

An algorithm similar to AC is the cepstrum-based pitch estimation algorithm (CEP) (Noll, 

1967). The cepstrum c(t) of a signal x(t) is very similar to its autocorrelation. The only difference 

is that it uses the logarithm of the spectrum instead of its square, i.e., 

∫
∞

=
0

)2cos(|)(|log)( dfftfXtc π . (2-17) 

CEP estimates the pitch as the frequency whose inverse maximizes the cepstrum of the signal, 

i.e., as 

 

 
 

Figure 2-9.  Cepstrum. 
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∫
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The kernel of this integral is shown in Figure 2-9. Like AC, CEP exhibits the subharmonics 

problem and the problem of having a maximum at a large value of f. The maximum is not 

necessarily at infinity because, depending on the scaling of the signal, the logarithm of the 

spectrum may be negative at large frequencies, and therefore assigning a positive weight to that 

region may in fact decrease the score. Figure 2-10 shows the spectrum of the speech signal that 

has been used in previous figures and the kernel that produces the highest score for that 

spectrum, which corresponds to a candidate pitch of about 10 kHz. Notice that the logarithm of 

the spectrum was arbitrarily set to zero for frequencies below 300 Hz because its original value 

(minus infinity) would make unfeasible the evaluation of the integral in Equation 2-18. This 

problem of the use of the logarithm when there are missing harmonics was already discussed in 

Section 2.1. 

 

 
 

Figure 2-10.  Problem caused to cepstrum by cosine lobe at DC. 
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2.8 Summary 

In this chapter we presented pitch estimation algorithms that have influenced the creation 

of SWIPE. The most common problems found in these algorithms were the inability to deal with 

missing harmonics (HPS, SHR, and CEP) and inharmonic signals (HPS, SHS, and SHR), and the 

tendency to produce high scores for subharmonics of the pitch (all the algorithms, although to a 

lesser extent SHS and BAC). Solutions to these problems were either found in other algorithms 

or were proposed by us. 
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CHAPTER 3 
THE SAWTOOTH WAVEFORM INSPIRED PITCH ESTIMATOR 

Aiming to improve upon the algorithms presented in Chapter 2, we propose the Sawtooth 

Waveform Inspired Pitch Estimator (SWIPE)2. The seed of SWIPE is the implicit idea of the 

algorithms presented in Chapter 2: to find the frequency that maximizes the average peak-to-

valley distance at harmonics of that frequency. However, this idea will be implemented trying to 

avoid the problem-causing features found in those algorithms. This will be achieved by avoiding 

the use of the logarithm of the spectrum, applying a monotonically decaying weight to the 

harmonics, observing the spectrum in the neighborhood of the harmonics and middle points 

between harmonics, and using smooth weighting functions. 

3.1 Initial Approach: Average Peak-to-Valley Distance Measurement 

If a signal is periodic with fundamental frequency f, its spectrum must contain peaks at 

multiples of f and valleys in between. Since each peak is surrounded by two valleys, the average 

peak-to-valley distance (APVD) for the k-th peak is defined as  
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Averaging over the first n peaks, the global APVD is  
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2 The name of the algorithm will become clear in a posterior section. 
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Figure 3-1.  Average-peak-to-valley-distance kernel. 

 

Our first approach to estimate pitch is to find the frequency that maximizes the APVD. Staying 

with the integral transform notation used in Chapter two, and dropping the unnecessary 1/n term, 

the algorithm can be expressed as  
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The kernel Kn ( f, f ′ ) for f = 190 Hz and n = 9 is shown in Figure 3-1 together with the spectrum 

of the sample vowel /u/ used in Chapter 2, which will be used extensively in this chapter as well. 

The kernel is a function not only of the frequencies but also of n, the number of harmonics to be 

used. Each positive pulse in the kernel has a weight of 1, each negative pulse between positive 

pulses has a weight of -1, and the first and last negative pulses have a weight of -1/2. This kernel 
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is similar to the kernel used by SHR (see Chapter 2), with the only difference that in Kn the first 

negative pulse has a weight of -1/2 and Kn has an extra negative pulse at the end, also with a 

weight of -1/2. 

3.2 Blurring of the Harmonics 

The previous method of measuring the APVD works if the signal is harmonic, but not if it 

is inharmonic. To allow for inharmonicity, our first approach was to blur the location of the 

harmonics by replacing each pulse with a triangle function with base f/2, 
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ffff
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The base of the triangle was set to f/2 to produce a triangular wave as shown in Figure 3-2. To be 

consistent with the APVD measure, the first and last negative triangles were given a height of 

1/2. One reason for using a base that is proportional to the candidate pitch is that it allows for a 

pitch-independent handling of inharmonicity, as seems to be done in the auditory system (see 

section 1.2.6).  

 
 

Figure 3-2.  Triangular wave kernel. 
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Figure 3-3.  Necessity of strictly convex kernels. 

Object 3-1.  Beating tones (WAV file, 32 KB) 

 

The triangular kernel approach was abandoned because it was found that the components 

of the kernel must be strictly concave (i.e., must have a continuous second derivative) at their 

maxima. The following example will illustrate why this is necessary. Suppose we have a signal 

with components at 200 and 220 Hz, as shown in Figure 3-3 (Object 3-1). This signal is 

perceived as a loudness-varying tone with a pitch of 210 Hz, phenomena known as beating. 

However, the triangular kernel produces the same score for each candidate between 200 and 220 

Hz. This is easy to see by slightly stretching or compressing the kernel such that its first positive 

peak is within that range. Such stretching or compression would cause an increment on the 

weight of one of the components and a decrement of the same amount on the other, keeping the 

score constant.  

Therefore, the triangle was discarded and concatenations of truncated squarings, 

Gaussians, and cosines were explored. The squaring function was truncated at its fixed point, and  
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Figure 3-4.  Kernels formed from concatenations of truncated squarings, Gaussians, and cosines. 

 

the Gaussian and the cosine functions were truncated at their inflection points. The Gaussian was 

truncated at the inflection points to ensure that the concatenation of positive and negative 

Gaussians have a continuous second derivative. The same can be said about the cosine, but 

furthermore, the concatenation of positive and negative cosine lobes produces a cosine, which 

has all order derivatives.  

Concatenations of these three functions, stretched or compressed to form the desired 

pattern of maxima at multiples of the candidate pitch, are illustrated in Figure 3-4. Although 

informal tests showed no significant differences in pitch estimation performance among the 

three, the cosine was preferred because of its simplicity. Notice also that this kernel is the one 

used by the AC and CEP pitch estimators (see Chapter 2). 

3.3 Warping of the Spectrum 

As mentioned in Chapter 2, the use of the logarithm of the spectrum in an integral 

transform is inconvenient because there may be regions of the spectrum with no energy, which  
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Figure 3-5.  Warping of the spectrum. 

 

would prevent the evaluation of the integral, since the logarithm of zero is minus infinity. But 

even if there is some small energy in those regions, the large absolute value of the logarithm 

could make the effect of these low energy regions on the integral larger than the effect of the 

regions with the most energy, which is certainly inconvenient. 

To avoid this situation, the use of the logarithm of the spectrum was discarded and other 

commonly used functions were explored: square, identity, and square-root. Figure 3-5 shows 

how these functions warp the spectrum of the vowel /u/ used in Chapter 2. As mentioned earlier, 

this spectrum has two particularities: it has a missing fundamental, and it has a salient second 
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harmonic. The missing fundamental is evident in panel B, which shows that the logarithm of the 

spectrum in the region of 190 Hz is minus infinity. The salient second harmonic at 380 Hz shows 

up clearly in the other three panels, but especially in panel C, where the spectrum has been 

squared. Panel D shows the square-root of the spectrum, which neither overemphasizes the 

missing fundamental (as the logarithm does) nor the salient second harmonic (as the square 

does).  

We believe the square-root warping of the spectrum is more convenient for three reasons. 

First, it matches better the response of the auditory system to amplitude, which is close to a 

power function with an exponent in the range 0.4-0.6 (see Chapter 2); second, it allows for a 

weighting of the harmonics proportional to their amplitude, as we will show in the next section; 

and third, it produces better pitch estimates, as found tests presented later. 

3.4 Weighting of the Harmonics 

To avoid the subharmonics problem presented in Chapter 2, a decaying weighting factor was 

applied to the harmonics. The types of decays explored were exponential and harmonic. For 

exponential decays, a weight of r k−1 was applied to the k-th harmonic (k = 1, 2, …, n, and 

r = 0.9, 0.7, 0.5) through the multiplication of the kernel by the envelope r f ′/f -1, as shown in 

Figure 3-6. For harmonic decays, a weight of 1/k p was applied to the k-th harmonic 

(k = 1, 2, …, n, and p = 1/2, 1, 2) through the multiplication of the kernel by the envelope 

( f / f ′ ) p, as shown in Figure 3-6. In informal tests, the best results were obtained using harmonic 

decays with p = 1/2, which matches the decay of the square-root of the average spectrum of 

vowels (see Chapter 2). In other words, better pitch estimates were obtained when computing the 

inner product (IP) of the square-root of the input spectrum and the square-root of the expected 

spectrum, than when computing the IP’s over the raw spectra. 
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Figure 3-6.  Weighting of the harmonics. 

 

One explanation for this is that when the input spectrum matches its corresponding 

template (i.e., the expected spectrum for that pitch), the use of the square-root of the spectra in 

the IP gives to each harmonic a weight proportional to its amplitude. For example, if the input 

spectrum has the expected shape for a vowel, i.e., the amplitude of the harmonics decay as 1, 1/2, 

1/3, etc., then their square root decays as 1, 1/√2, 1/√3, etc. Since the terms in the sum of the IP 

are the squares of these values (i.e., 1, 1/2, 1/3, etc.), then the relative contribution of each 

harmonic is proportional to its amplitude. Conversely, if we compute the IP over the raw spectra, 

the terms of the sum will be 1, 1/4, 1/9, etc., which are not proportional to the amplitude of the 

components, but to their square. This would make the contribution of the strongest harmonics too 

large and the contribution of the weakest too small. The situation would be even worse if we 

would compute the IP over the energy of the spectrum (i.e., its square). The expected energy of 

the harmonics for a vowel follows the pattern 1, 1/4, 1/16, etc., and computing the IP of the 
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energy of the harmonics with itself produces the terms 1, 1/16, 1/256, etc, which gives too much 

weight to the first harmonic and almost no weight to the other harmonics. 

In the ideal case in which there is a perfect match between the input and the template, any 

of the previous types of warping would produce the same result: a normalized inner product 

(NIP) equal to 1. However, the likelihood of a perfect match is low, and the warping may play a 

big role in the determination of the best match, as we found in informal tests, which show that 

the use of the square-root of the spectrum produces better pitch estimates. 

3.5 Number of Harmonics 

An important issue is the number of harmonics to be used to analyze the pitch. HPS, SHS, 

SHR, and HS use a fixed finite number of harmonics, and CEP and AC use all the available 

harmonics (i.e., as many as the sampling frequency allows). In informal tests the best results 

were obtained when using as many harmonics as available, although it was found that going 

beyond 3.3 kHz for speech and 5 kHz for musical instruments did not improve the results 

significantly. Thus, to reduce computational cost it is reasonable to set these limits.  

3.6 Warping of the Frequency Scale 

As mentioned in Section 3.4, if the input matches perfectly any of the templates, their NIP 

will be equal to 1, regardless of the type of warping used on the spectrum. The same applies to 

the frequency scale. However, since a perfect match will rarely occur, a warping of the frequency 

scale may play a role in determining the best match.  

For the purposes of computing the integral of a function, we can think of a warping of the 

scale as the process of sampling the function more finely in some regions than others, effectively 

giving more emphasis to the more finely sampled regions. In our case, since we are computing 

an inner product to estimate pitch, it makes sense to sample the spectrum more finely in the 

region that contributes the most to the determination of pitch. It seems reasonable to assume that 
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this region is the one with the most harmonic energy. In the case of speech, and assuming that 

the amplitude of the harmonics decays inversely proportional to frequency, it seems reasonable 

to sample the spectrum more finely in the neighborhood of the fundamental and decrease the 

granularity as we move up in frequency, following the expected 1/f pattern for the amplitude of 

the harmonics. A decrease in granularity should also be performed below the fundamental 

because no harmonic energy is expected below it. However, the determination of the frequency 

at which this decrease should begin is non-trivial, since we do not know a-priori the fundamental 

frequency of the incoming sound (that is precisely what we want to determine). 

As we did for the selection of the warping of the amplitude of the spectrum, we appeal to 

the auditory system and borrow the frequency scale it seems to use: the ERB scale (see 

Chapter 1). Therefore, to compute the similarity between the input spectrum and the template, 

we sample both of them uniformly in the ERB scale, whose formula is given in Equation 1-8. 

This scale has several of the characteristics we desire (see Figure 1-9): it has a logarithmic 

behavior as f increases, tends toward a constant as f decreases, and the frequency at which the 

transition occurs (229 Hz) is close to the mean fundamental frequency of speech, at least for 

females (Bagshaw, 1994; Wang and Lin, 2004; Schwartz and Purves, 2004). It does not produce 

a decrease of granularity as f approaches zero, but at least does not increase without bound either, 

as a pure logarithmic scale does. 

The convenience of the use of the ERB scale for pitch estimation over the Hertz and 

logarithmic scales was confirmed in informal tests, since better results were obtained when using 

the ERB scale. Two other common psychoacoustic scales, the Mel and Bark scales, were also 

explored, but they produced worse results than the ERB scale. 
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3.7 Window Type and Size 

Along this chapter we have been mentioning our wish to obtain a perfect match (i.e., NIP 

equal to 1) between the input spectrum and the template corresponding to the pitch of the input. 

This section deals with the feasibility of achieving such goal.  

First of all, since the input is non-negative but the template has negative regions, a perfect 

match is impossible. One solution would be to set the negative part of the template to zero, but 

this would leave us without the useful property that the negative weights have: the production of 

low scores for noisy signals (see Section 2.3). Instead, the solution we adopt is to preserve the 

negative weights, but ignore them when computing the norm of the template. In other words, we 

normalize the kernel using only the norm of its positive part 

))(,0max()( fKfK =+ . (3-6) 

Hereafter, we will refer to this normalization as K+-normalization.  

To obtain a K+-normalized inner product (K+-NIP) close to 1, we must direct our efforts to 

make the shape of the spectral peaks match the shape of the positive cosine lobe used as base 

element of the template, and also to force the spectrum to have a value of zero in the negative 

part of the cosine. Since the shape of the spectral peaks is the same for all peaks, it is enough to 

concentrate our efforts on one of them, and for simplicity we will do it for the peak at zero 

frequency. 

The shape of the spectral peaks is determined by the type of window used to examine the 

signal. The most straightforward window is the rectangular window, which literally acts like a 

window: it allows seeing the signal inside the window but not outside it. More formally, the 

rectangular window multiplies the signal by a rectangular function of the form 
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Figure 3-7.  Fourier transform of rectangular window. 
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where T is the window size. 

If a rectangular window is used to extract a segment of a sinusoid of frequency f Hz to 

compute its Fourier transform, the support of this transform will not be concentrated at a single 

point but will be smeared in the neighborhood of f. This effect is shown in Figure 3-7 for f = 0, in 

other words, the figure shows the Fourier transform of ΠT (t). This transform can be written as 

sinc(Tf′ ), where the sinc function is defined as 

πφ
πφφ )sin()(sinc = . (3-8) 

This function consists of a main lobe centered at zero and small side lobes that extend towards 

both sides of zero. For any other value of f, its Fourier transform is just a shifted version of this 

function, centered at f.  



 

59 

 
 

Figure 3-8.  Cosine lobe and square-root of the spectrum of rectangular window. 

 

Since the height of the side lobes is small compared to the height of the main lobe, the 

most obvious approach to try to maximize the match between the input and the template is to 

match the width of the main lobe, 2/T, to the width of the cosine lobe, f /2, and solve for the free 

variable T. This produces an “optimal” window size, hereafter denoted T*, equal to T = 4/f. 

Figure 3-8 shows the square-root of the spectrum of a rectangular window of size T = T*
 = 4/f and 

a cosine with period f (i.e., the template used to recognize a pitch of f Hz). The K+-NIP of the 

main lobe of the spectrum and the cosine positive lobe (i.e., from -f/4 to f/4) sampled at 128 

equidistant points is 0.9925, which seems satisfactorily high. However, the K+-NIP computed 

over the whole period of the cosine (i.e., from –f/2 to f/2) sampled at 128 equidistant points is 

only 0.5236, which is not very high. This low K+-NIP is caused by the relatively large side lobes, 

which reach a height of almost 0.5.  
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A window with much smaller side lobes is the Hann window. The shorter side lobes are 

achieved by attenuating the time-domain window down towards zero at the edges3. The formula 

for this window is  

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+=

T
t

T
thT

π2cos11)( , (3-9) 

where T is the window size (i.e., the size of its support). This window is simply one period of a 

raised cosine centered at zero, as illustrated in Figure 3-9.  

The Fourier transform of a Hann window of size T is 

)1(sinc
2
1)1(sinc

2
1)(sinc)( ++−+= TfTfTffHT , (3-10) 

a sum of three sinc functions, as illustrated in Figure 3-10. The width of the main lobe of this 

transform is 4/T, twice as large as the main lobe of the spectrum of the rectangular window.  

 

 
 

Figure 3-9.  Hann window. 

                                                 
3 This time-frequency relation may not be obvious at first sight, but it can be shown using Fourier analysis. 
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Figure 3-10.  Fourier transform of the Hann window. The FT of the Hann window consists of a 
sum of three sinc functions. 

 

Equalizing this width to the width of the cosine lobe, f/2, and solving for T, we obtain an optimal 

window size of T* = 8/f.  

 

 
 

Figure 3-11.  Cosine lobe and square-root of the spectrum of Hann window. 
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Figure 3-11 shows the square-root of the spectrum of a Hann window of size T = T* = 8/f 

and a cosine with period f. The similarity between the main lobe and the positive lobe of the 

cosine is remarkable. Using Equations 3-8 and 3-10 it can be shown that they match at 5 points: 

0, +/- f/8, and +/- f/4, with values cos(0) = 1, cos(π/4) = 1/√2, and cos(π/2) = 0, respectively. The 

K+-NIP of the main lobe of the spectrum and the positive part of the cosine sampled at 128 

equidistant points is 0.9996, and the K+-NIP computed over the whole period of the cosine 

sampled at 256 equidistant points is 0.8896, much larger than the one obtained with the 

rectangular window.  

The same approach can be used to obtain the optimal window size for other window types. 

For the most common window types used in signal processing, it can be shown that the width of 

the main lobe is 2k/T, where the parameter k depends on the window type (see Oppenheim, 

Schafer, and Buck, 1999) and is tabulated in Table 3-1. For these windows, the optimal window  

 

Table 3-1.  Common windows used in signal processing* 
  K+-NIP 
Window type k Positive lobe Whole period 
Bartlett  2 0.9984 0.7959
Bartlett-Hann 2 0.9995 0.8820
Blackman 3 0.9899 0.9570
Blackman-Harris 4 0.9738 0.9689
Bohman 3 0.9926 0.9474
Flat top 5 0.9896 0.9726
Gauss 3.14 0.9633 0.8744
Hamming 2 0.9993 0.9265
Hann 2 0.9996 0.8896
Nuttall 4 0.9718 0.9682
Parzen 4 0.9627 0.9257
Rectangular 1 0.9925 0.5236
Triangular 2 0.9980 0.8820
* The K+-NIP values were computed using 128 equidistant samples for the positive lobe and 256 equidistant 
samples for the whole period. 
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size to analyze a signal with pitch f Hz can be obtained by equalizing 2k/T to the width of the 

cosine lobe, f/2, to produce T*
 = T = 4k/f. 

Table 3-1 also shows the K+-NIPs between the square-root of the spectrum and the cosine 

computed over the positive lobe of the cosine (from -f/4 to f/4) and over the whole period of the 

cosine (from -f/2 to f/2). The window that produces the largest K+-NIP over the whole period is 

the flat-top window. However, its size is so large compared to other windows that the increase in 

K+-NIP is probably not worth the increase in computational cost; similar results are obtained 

with the Blackman-Harris window, which is 4/5 its size. If computational cost is a serious issue, 

a good compromise is offered by the Hamming window, which requires half the size of the 

Blackman-Harris window, and produces a K+-NIP of about 0.93. This K+-NIP is larger than the 

one produced by the Hann window, with no increased computational cost (k=2 in both cases). 

However, since the difference in performance between them is not large, we prefer the 

analytically simpler Hann window.  

3.8 SWIPE 

Putting all the previous sections together, the SWIPE estimate of the pitch at time t can be 

formulated as 
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ε is frequency in ERBs, η (⋅) converts frequency from ERBs into Hertz, ERBs(⋅) converts 

frequency from Hertz into ERBs, K+(⋅) is the positive part of K(⋅) {i.e., max[0, K(⋅)]}, fmax is the 

maximum frequency to be used (typically the Nyquist frequency, although 5 kHz is enough for 

most applications), n( f ) = ⎣ fmax / f −3/4⎦ , and w4k/f (t) is one of the window functions in 

Table 3-1, with size 4k/f. The kernel corresponding to a candidate with frequency 190 Hz is 

shown in Figure 3-12. Panel A shows the kernel in the Hertz scale and Panel B in the ERB scale, 

the scale used to compute the integral. 

Although the initial approach of measuring a smooth average peak to valley distance has 

been used everywhere in this chapter, we can make a more precise description of the algorithm. 

 

 
 

Figure 3-12.  SWIPE kernel. A) The SWIPE kernel consists of a cosine that decays as 1/f, with a 
truncated DC lobe and halved first and last negative lobes. B) SWIPE kernel in the 
ERB scale. 
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It can be described as the computation of the similarity between the square-root of the spectrum 

of the signal and the square-root of the spectrum of a sawtooth waveform, using a pitch-

dependant optimal window size. This description gave rise to the name Sawtooth-Waveform 

Inspired Pitch Estimator (SWIPE).  

3.9 SWIPE′ 

So far in this chapter we have concentrated our efforts on maximizing the similarity 

between the input and the desired template, but we have not done anything explicitly to reduce 

the similarity between the input and the other templates, which will be the goal of this section. 

The first fact we want to mention is that most of the mistakes that pitch estimators make, 

including SWIPE, are not random: they consist of estimations of the pitch as multiples or 

submultiples of the pitch. Therefore, a good source of error to attack is the score (pitch strength) 

of these candidates.  

A good feature to reduce supraharmonic errors is to use negative weights between 

harmonics. When analyzing a pitch candidate, if there is energy between any pair of consecutive 

harmonics of the candidate, this suggests that the pitch, if any, is a lower candidate. This idea is 

implemented by the negative weights, which reduce the score of the candidate if there is any 

energy between its harmonics. This feature is used by algorithms like SHR, AC, CEP, and 

SWIPE. 

The effect of negative weights on supraharmonics of the pitch is illustrated in 

Figure 3-13A. It shows the spectrum of a signal with fundamental at 100 Hz and all its 

harmonics at the same amplitude (vertical lines). (Only harmonics up to 1 kHz are shown, but the 

signal contains harmonics up to 5 kHz.) The components are shown as lines to facilitate 

visualization, but in general they will be wider, with a width that depends on the window size.  

 



 

66 

 
 

Figure 3-13.  Most common pitch estimation errors. A) Harmonic signal with 100 Hz 
fundamental frequency and all the harmonics at the same amplitude, and 200 Hz 
kernel with positive (continuous lines) and negative (dashed lines) cosine lobes. B) 
Same signal and 50 Hz kernel. C) Scores using only positive cosine lobes (exhibits 
peaks at sub and supraharmonics). D) Scores using both positive and negative cosine 
lobes (exhibits peaks at subharmonics). E) Scores using both positive and negative 
cosine lobes at the first and prime harmonics (exhibits a major peaks only at the 
fundamental) 

 

Panel A also shows the positive cosine lobes (continuous curves) used to recognize a pitch of 

200 Hz and the negative cosine lobes that reside in between (dashed curves). The positive cosine 

lobes at the harmonics of 200 Hz produce a positive contribution towards the score of the 200 Hz 

candidate, but the negative cosine lobes at the odd multiples of 100 Hz cancel out this 

contribution. Panel C shows the score for each pitch candidate using as kernel only the positive 
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cosine lobes, whereas Panel D shows the scores using both the positive and the negative cosine 

lobes. The effect on the 200 Hz peak is definite: it has disappeared. The same effect is obtained 

for higher order multiples of 100 Hz (not shown in the figure). 

To reduce subharmonic errors, two techniques were presented in Chapter 2: the use of a 

decaying weighting factor for the harmonics, and the use of a bias to penalize the selection of 

low frequency candidates. The former is used by SHS and SWIPE, and the latter by AC. 

Although these techniques have an effect in reducing the score of subharmonics, significant 

peaks are nevertheless present at submultiples of the pitch, as shown in Figure 3-13D.  

To further reduce the height of the peaks at subharmonics of the pitch we propose to 

remove from the kernel the lobes located at non-prime harmonics, except the lobe at the first 

harmonic. Figure 3-13B helps to show the intuition behind this idea. This figure shows the same 

spectrum as in Figure 3-13A and the kernel corresponding to the 50 Hz candidate. This kernel 

has positive lobes at each multiple of 50 Hz and therefore at each multiple of 100 Hz, producing 

a high score for the 50 Hz candidate, as shown in Panel D. Notice that this candidate gets all of 

its credit from its 2nd, 4th, 6th, etc., harmonics, i.e., 100 Hz, 200 Hz, 300 Hz, etc., frequencies that 

suggest a fundamental frequency (and pitch) of 100 Hz. The same situation occurs with the 

candidate at 33 Hz (kernel not shown), but in this case its credit comes from its 3rd, 6th, 9th, etc., 

harmonics.  

If we use only the first and prime lobes of the kernel, the candidates at subharmonics of 

100 Hz would get credit only from their harmonic at 100 Hz, but not from any other. In general, 

it can be shown that with this approach, no candidate below 100 Hz can get credit from more 

than one of the harmonics of 100 Hz. In other words, if there is a match between one of the 

prime harmonics of this candidate and a harmonic of 100 Hz, no other prime harmonic of the 
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candidate can match another harmonic of 100 Hz, and therefore the score of all the candidates 

below 100 Hz has to be low compared to the score of the 100 Hz candidate. This effect is evident 

in Figure 3-13E, which shows the scores of the pitch candidates when using only their first and 

prime harmonics. Certainly, there are peaks below 100 Hz, but they are relatively small 

compared to the peak at 100 Hz. Contrast this with Panels C and D, where the score of 50 Hz is 

relatively high, and therefore the risk of selecting this candidate is high. 

An extra step needs to be done to avoid bias in the scores. Remember from the beginning 

of this chapter that the central idea of SWIPE was to compute the average peak-to valley distance 

at harmonic locations in the spectrum. When computing this average for a single peak, the 

weight of the peak was twice as large as the weight of its valleys, as expressed in Equation 3-1. 

Since the global average is the average of this equation over all the peaks, and since each valley 

is associated to two peaks too, the weight of the valleys, except the first and the last ones, was 

the same as the weight of the peaks, as expressed in Equation 3-2. However, if we use only the 

first and prime harmonics, the weight of the valleys will not be necessarily -1, but will depend on 

whether the valleys are between the first or prime harmonics. The only valleys with a weight 

of -1 will be the valley between the first and second harmonics, and the valley between the 

second and third harmonics; all the other valleys will have a weight of -1/2, before applying the 

decaying weighting factor, of course. 

This variation of SWIPE in which only the first and prime harmonics are used to estimate 

the pitch will be denominated SWIPE′ (read SWIPE prime). Its kernel is defined as  
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where P is the set of prime numbers, and  
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Figure 3-14.  SWIPE′ kernel. Similar to the SWIPE kernel but includes only the first and prime 
harmonics. 
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Notice that the SWIPE kernel can also be written as in Equation 3-14, by including all the 

harmonics in the sum. The SWIPE′ kernel corresponding to a pitch candidate of 190 Hz (5.6 

ERBs) is shown in Figure 3-14. The numbers on top of the peaks show the harmonic number 

they correspond to. 

3.9.1 Pitch Strength of a Sawtooth Waveform 

Since the template used by SWIPE′ has peaks only at the first and prime harmonics, a 

perfect match between the template and the spectrum of a sawtooth waveform is impossible 

(unless fmax is so small relative to the pitch that the template contains no more than three  
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Figure 3-15.  Pitch strength of sawtooth waveform. A) 625 Hz. B) 312 Hz. C) 156 Hz. 
D) 78.1 Hz. 

 

harmonics). Therefore, it would be interesting to analyze the K+-NIP between the spectrum and 

the template as a function of the number of harmonics. Figure 3-15 shows the pitch strength (K+-

NIP) obtained using SWIPE and SWIPE′ for different pitches and different number of 

harmonics. The pitches shown are 625, 312, 156, and 78.1 Hz. They were chosen because their 

optimal window sizes are powers of two for the sampling rates used: 2.5, 5, 10, 20, and 40 kHz. 

In each case, fmax was set to the Nyquist frequency.  

The pitch strength estimates produced by SWIPE are larger than the ones produced by 

SWIPE′, except when the number of harmonics is less than four, in which case both algorithms 

use all the harmonics. The pitch strength estimates produced by SWIPE in Figure 3-15 have a 
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mean of 0.93 and a variance of 5.1×10−5. This mean is significantly larger than the K+-NIP 

reported in Table 3-1 for the Hann window. The reason of the mismatch is that the granularity 

used to produce the data in Table 3-1 and the data in Figure 3-15 is different. The  K+-NIP values 

in Table 3-1 are based on a sampling of 128 points per spectral lobe, while the data in Figure 3-

15 is based on a sampling of 10 points per ERB, which depending on the pitch and the harmonic 

being sampled, may correspond to a range of about 0 to 40 points per spectral lobe. 

On the other hand, the mean of the pitch strength estimates produced by SWIPE′ is 0.87 

and the variance is 1.0×10−3. The smaller mean is expected since the template of SWIPE′ 

includes only the first and prime harmonics, while a sawtooth waveform has energy at each of its 

harmonics. The larger variance is also expected since the prime numbers become sparser as they 

become larger, causing a reduction in the similarity of the template and the spectrum of the 

sawtooth waveform as the number of harmonics increases.  

It would be useful to have a lower bound for the pitch strength estimates produced by 

SWIPE′, but an analytical formulation for it is intractable. However, the data in Figure 3-15, 

which is representative of a wide range of pitches and number of harmonics, suggests that the 

pitch strength produced by SWIPE′ for a sawtooth waveform does not go below 0.8. 

3.10 Reducing Computational Cost 

3.10.1 Reducing the Number of Fourier Transforms 

The computation of Fourier transforms is one of the most computationally expensive 

operations of SWIPE and SWIPE′. Therefore, to reduce computational cost it is important to 

reduce the number of Fourier transforms. There are two strategies to achieve this: to reduce the 

window overlap and to share Fourier transforms among several candidates.  
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3.10.1.1 Reducing window overlap 

The most common windows used in signal processing are the ones that are attenuated 

towards zero at their edges (e.g., Hann and Hamming windows). A disadvantage of this 

attenuation is that it is possible to overlook short events if these events are located at the edges of 

the windows. To avoid this situation, it is common to use overlapping windows, which increases 

the coverage of the signal, at the cost of an increase in computation. However, after a certain 

point, overlapping windows start to produce redundancy in the analysis, without adding any 

significant benefit. The goal of this section is to propose a schema obtain a good balance 

between signal coverage and computational cost. 

As mentioned in Section 1.1.4, depending on frequency, a minimum of two to four cycles 

are necessary to perceive the pitch of a pure tone. Based on the similarity of the data used to 

arrive to this conclusion and data obtained using musical instruments, it is reasonable to assume 

that these results are applicable to more general waveforms, in particular, to sawtooth 

waveforms. To avoid the interaction between the number of cycles and pitch, for purposes of the 

algorithm, we set the minimum number of cycles necessary to determine pitch to four, the 

maximum among the minimum number of cycles required over all frequencies.  

Since SWIPE and SWIPE′ are designed to produce maximum pitch strength for a sawtooth 

waveform4 and zero pitch strength for a flat spectrum5, a natural choice to decide whether a 

sound has pitch is to use as threshold half the pitch strength of a sawtooth waveform. (In Section 

3.9.1 it was found that the pitch strength of a sawtooth waveform is about 0.93 for SWIPE and 

between 0.83 and 0.93 for SWIPE′.) To make these algorithms produce maximum pitch strength, 

                                                 
4 In fact, SWIPE′ produces maximum pitch strength for sawtooth waveforms with the non-prime harmonics 
removed (except the first one), but we believe this type of signal is unlikely to occur in nature. 

5 The pitch strength of a flat spectrum is in fact negative because of the decaying kernel envelope. 
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a perfect match between the kernel and the spectrum of the signal is necessary, which requires 

that the window contains eight cycles of the sawtooth waveform, when using a Hann window. If 

the signal contains exactly eight cycles (i.e., if it is zero outside the window) and is shifted 

slightly with respect to the window, the pitch strength decreases, and it reaches a limit of zero 

when the signal gets completely out of the window. Although hard to show analytically, it is easy 

to show numerically that that the relation between the shift and pitch strength is linear. 

Therefore, if the window contains four or more cycles of the sawtooth waveform, the pitch 

strength is at least half the maximum attainable pitch strength (i.e., the one achieved when the 

window is full of the sawtooth waveform), and if the window contains less than four cycles of 

the sawtooth waveform, the pitch strength is less than half the maximum attainable pitch 

strength.  

 

 
 

Figure 3-16. Windows overlapping. 

Object 3-2.  Four cycles of a 100 Hz sawtooth waveform (WAV file, 2 KB) 
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Therefore, if we determine the existence of pitch based on a pitch strength threshold equal 

to half the maximum attainable pitch strength, to determine as pitched a signal consisting of four 

cycles of a sawtooth waveform, we need to ensure that there exists at least one window whose 

coverage includes the whole signal. It is straightforward to show that to achieve this goal, we 

need to distribute the windows such that their separation in no larger than four cycles of the pitch 

period of the signal. In other words, the windows must overlap by at least 50%.  

This situation is illustrated in Figure 3-16, which shows a signal consisting of four cycles 

of a sawtooth waveform (listen to Object 3-2) and two Hann windows centered at the beginning 

and the end of the signal. The windows are separated at a distance of four cycles, and the support 

of each of them overlaps with the whole signal, making it possible for each window to reach the 

pitch strength threshold. If the signal is slightly shifted in any direction, one of the windows will 

cover less than four periods, but the other will cover the four periods. 

This would not be true if the separation of the windows is larger than four cycles. If the 

support of one of the windows overlaps completely with the signal but the separation of the 

windows is larger than four cycles, the other window will not cover the signal completely, and 

therefore a small shift of the signal towards the latter window would not necessarily put the 

whole signal inside the window, making it impossible for any of the windows to produce a pitch 

strength larger than the threshold. 

3.12.1.2 Using only power-of-two window sizes 

There is a problem with the optimal window size (O-WS) proposed in Section 3.7: each 

pitch candidate has its own, which means that a different STFT must be computed for each 

candidate. If we separate the candidates at a distance of 1/8 semitone over a range of 5 octaves 

(appropriate for music, for example), we will need to compute 8*12*5 = 480 STFTs for each 
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pitch estimate. Not only that, for some WSs it may be inefficient to use an FFT (recall that the 

FFT is more efficient for windows sizes that are powers of two). 

To alleviate this problem, we propose to substitute the O-WS with the power-of-two (P2) 

WS that produces the maximum K+-NIP between the square-root of the main lobe of the 

spectrum and the cosine kernel. To find such a WS, it is convenient to have a closed-form 

formula for the K+-NIP of these functions, but this involves integrating the product of a cosine 

and the square-root of the sum of three sinc functions, which is analytically intractable.  

As an alternative, we approximate the square-root of the spectral lobe with an idealized 

spectral lobe (ISL) consisting of the function it approximates: a positive cosine lobe. Figure 3-17 

shows a K+-normalized cosine whose positive part has a width of f/2 (i.e., the cosine template 

used by an f Hz pitch candidate), and two normalized ISLs whose widths are half and twice the 

width of the positive part of the cosine. Since the cosine and the ISLs are symmetric around zero, 

the K+-NIP can be computed using only the positive frequencies. Hence, the K+-NIP 

 

 
 

Figure 3-17.  Idealized spectral lobes. 
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of the central positive lobe of a cosine with period rf (the ISL) and a cosine with period f (the 

template) can be computed as 
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It is convenient to transform the input of this function to a base-2 logarithmic scale, 

λ = log2(r), and then redefine the function as 

[ ] [ ] .
21

2/)12(sin
21

2/)12(sin2)(
2/1

⎭
⎬
⎫

⎩
⎨
⎧

−
−

+
+
+

=Π
−−+

λ

λ

λ

λλ ππ
π

λ  (3-17) 

Figure 3-18A shows Π(λ) for λ between -1 and 1 (i.e., r = 2λ between 1/2 and 2). As λ departs 

from zero, Π(λ) departs from 1, as expected. However, the distribution is not symmetric: a 

decrease in λ has a larger effect on Π(λ) than an increase in λ. This make sense since a decrease 

in λ corresponds to a widening of the ISL, which puts part of it in the region where the cosine 

template is negative (see wider ISL in Figure 3-1), producing a large decrease in Π(λ). On the 

other hand, narrowing the ISL keeps it in the positive region of the cosine template, producing a 

smaller decrease in Π(λ).  
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Figure 3-18.  K+-normalized inner product between template and idealized spectral lobes. 

 

Figure 3-18A can be helpful in finding the P2-WS that produces the largest K+-NIP 

between the ISL and the template. If the O-WS for the template is T* seconds and the sampling 

rate is fs, then the O-WS in samples is N* = T fs, which correspond to λ = 0 in the figure. Smaller 

λ’s correspond to smaller WSs, and larger λ’s correspond to larger WSs. In general, the WS in 

number of samples, denoted N, and λ, are related through the equation N = 2λN*.  

It is straightforward to show that the two λ’s that correspond to the two closest P2-WSs to 

the optimal must be between -1 and 1, and not only that, their difference must be 1. Figure 3-18B 

shows the difference between Π(λ) and Π(λ−1) as a function of λ, for λ between 0 and 1. From 

the figure we can infer that, for λ’s between 0 and 0.56, we should use the larger P2-WS, and for 

λ between 0.56 and 1, we should use the smaller P2-WS. However, Figure 3-18B shows also that 

there is not much loss in the K+-NIP by choosing 0.5 as threshold rather than 0.56. Therefore, to 

simplify the algorithm, we decided to set the threshold at 0.5. In other words, to determine the  
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Figure 3-19.  Individual and combined pitch strength curves. 

 

P2-WS to use for a pitch candidate, we transform the O-WS and the P2-WSs to a logarithmic 

scale, and choose the P2-WS closest to the optimal. 

Unfortunately, this approach produces discontinuities in the pitch strength (PS) curves, as 

illustrated in Figure 3-19A. The PS values marked with a plus sign were produced using a WS 

larger than the WS than the ones marked with a circle. To emphasize the effect, the pitch of the 

signal (220 Hz) was chosen to match the point at which the change of WS occurs. Since the PS 

values produced by the larger window in the neighborhood of the pitch are larger than the ones 

produced by the smaller window, the pitch could be biased toward a lower value.  

Although an effort was made to find an appropriate value for the threshold, it was based on 

an idealized spectrum, which does not have the side lobes found in real spectra. This problem 

can be alleviated by using a threshold larger than 0.56, determined through trial and error, but we 
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found a better solution: to compute the PS as a linear combination of the PS values produced by 

the two closest P2-WSs, where the coefficients of the combination are proportional to the log-

distance between the P2-WSs and the O-WS. 

Concretely, to determine the P2-WSs used to compute the PS of a candidate with 

frequency f Hz, the O-WS is written as a power of two, N*
 = 2L+λ, where L is an integer and 

0 ≤ λ < 1. Then, the PS values S0( f ) and S1( f ) are computed using windows of size 2L and 2L+1, 

respectively. Finally, these PSs are combined into a single one to produce the final PS  

)()()1()( 10 fSfSfS λλ +−= . (3-18) 

Figure 3-19B shows how this combination of PS curves smoothes the discontinuity found in 

Figure 3-19A. 

It would be interesting to know how much is lost in PS by using the formula proposed in 

Equation 3-18, when the O-WS is not a power of two. This lost can be approximated by finding  

 

 
 

Figure 3-20.  Pitch strength loss when using suboptimal window sizes. 
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the minimum of the linear combination (1-λ) Π(λ) + λ Π(λ-1) for 0 < λ < 1, which is plotted in 

Figure 3-20. It can be seen that it has a minimum of 0.93 at around λ = 0.4. Therefore, the 

maximum loss when computing PS using the two closest P2-WSs is 7%. Since the minimum PS 

of a sawtooth waveform when using an O-WS is about 0.92 for SWIPE and 0.83 for SWIPE′ 

(see Figure 3-15), the minimum pitch strength of a sawtooth waveform when using the two 

closest P2-WSs is about 0.86 for SWIPE and 0.77 for SWIPE′. 

Besides using a convenient window size for the FFT computation, the approximation of 

O-WSs using P2-WSs has another advantage that is probably more important: the same FFT can 

be shared by several pitch candidates, more precisely, by all the candidates within an octave of 

the optimal pitch for that FFT. Going back to the example that started this section, the 

replacement of the O-WS with the closest P2-WSs reduces the number of FFTs required to 

estimate the pitch from 480 to just 5: a huge save in computation. 

Using this approach, and translating the algorithm to a discrete-time domain (necessary to 

compute an FFT), we can write the SWIPE′ estimate of the pitch at the discrete-time index τ  as 

),()(),())(1(maxarg][ 1)()( fSffSfp fLfL
f

τλτλτ ++−= , (3-19) 

where 
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∆ε is the ERB scale step size (0.1 gives good enough resolution), I (Φ,Ξ,φ) is an interpolating 

function that uses the functional relations Ξk
 = F(Φk) to predict the value of F(φ ), and XN[τ,ϕ] 

(ϕ = 0, 1,…, N−1) is the discrete Fourier transform (computed via FFT) of the discrete signal 

x[τ ′], multiplied by the size-N windowing function wN[τ ′], centered at τ. The other variables, 

constants, and functions are defined as before (see Section 3.8). A Matlab implementation of this 

algorithm is given in Appendix A. 

3.10.2 Reducing the Number of Spectral Integral Transforms 

The pitch resolution of SWIPE and SWIPE′ depends on the granularity of the pitch 

candidates. Therefore, to achieve high pitch resolution, a large number of pitch candidates must 

be used, and since the pitch strength of each candidate is determined by computing a K+-NIP 

between its kernel and the spectrum, the computational cost of the algorithm would increase 

enormously. To avoid this situation, we propose to compute K+-NIPs only for certain candidates, 

and then use interpolation to estimate the pitch strength of the other candidates.  

As noted by de Cheveigné (2002), the AC of a signal is the Fourier transform of its power 

spectrum, and therefore the AC is a sum of cosines that can be approximated around zero by 
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using a Taylor series expansion with even powers. If the signal is periodic, its AC is also 

periodic, and therefore the shape of the AC around the pitch period is the same as the shape 

around zero, and therefore it can also be approximated by the same Taylor series, centered at the 

pitch period. If the width of the spectral lobes is narrow and the energy of the high frequency 

components is small, the terms of order 4 in the series vanish as the independent variable 

approaches the pitch period, and therefore the series can be approximated using a parabola.  

Since SWIPE perform an inner product between the spectrum and a kernel consisting of 

cosine lobes, a similar argument can be applied to the pitch strength curves produce by SWIPE. 

However, the quality of the fit of a parabola is not guaranteed for two reasons: first, the width of 

the spectral lobes produced by SWIPE are not narrow, in fact, they are as wide as the positive 

lobes of the cosine; and second, the use of the square-root of the spectrum rather than its energy 

makes the contribution of the high frequency components large, violating the requirement of low 

contribution of high frequency components. Nevertheless, parabolic interpolation produces a 

good fit to the pitch strength curve in the neighborhood of the SWIPE peaks, as we will proceed 

to show. 

Let’s derive an approximation to the pitch strength curve σ (t) produced by SWIPE for a 

sawtooth waveform with fundamental frequency f0
 = 1/T0 Hz in the neighborhood of the pitch 

period T0. To simplify the equations, let’s define the scaling transformations ω = 2πf and 

τ = 2πt/T0. To make the calculations tractable, let’s use idealized spectral lobes (i.e. cosine lobes) 

and let’s ignore the normalization factors and the change of width of the spectral lobe with 

change of window size caused by a change of pitch candidate. Let’s also replace the continuous 

decaying envelope of the kernel with a decaying step function that gives a weight of 1/√k to the 

k-th harmonic. With all this simplifications, the pitch strength of a candidate with scaled pitch 
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period τ in the neighborhood of 2π (i.e., when the non-scaled pitch period t is in the 

neighborhood of T0) can be approximated as 
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Since we are interested in approximating this function in the neighborhood of 2π, we can 

equivalently shift the function 2π units to the left by defining σ′k (τ ) = σk (τ +2π ), and then 

approximate σ′k (τ ) in the neighborhood of zero. Since sin(x) / x = 1 − x2/3! + x4/5! − O(x6) in the 

neighborhood of zero, it is useful to express σ′k (τ ) as 
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which has the Taylor series expansion  
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in the neighborhood of zero. Finally, the approximation of the pitch strength curve in the shifted-

time domain is 
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Figure 3-21.  Coefficients of the pitch strength interpolation polynomial. 
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Figure 3-21 shows the relative value of the coefficients of the expansion as a function of the 

number of harmonics in the signal. As the number of harmonics increases, the relative weight of 

the order-4 coefficient increases. However, as τ approaches zero, its fourth power becomes so 

small that its overall contribution to the sum is small compared to the contribution of the order-2 

term.  

This effect is clear in Figure 3-22, which shows σ′(τ ) for a sawtooth waveform with 15 

harmonics using polynomials of order 2 and order 4 in the range +/− 0.045, which corresponds to 

+/− 1/8 semitones. The curve has been scaled to have a maximum of 1. The large circles 

correspond to candidates separated by 1/8 semitones, which is the interval used in our 

implementation of SWIPE and SWIPE′ for the distance between pitch candidates for which the 

pitch strength is computed directly. The other markers correspond to candidates separated by 

1/64 semitones, which is the resolution used to fine tune the pitch strength curve based on the 

pitch strength of the candidates for which the pitch strength is computed directly. As observed in 

 

 
 

Figure 3-22.  Interpolated pitch strength. 
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the figure, for such small values of τ, the pitch strength values obtained with an order 2 

polynomial (squares) are indistinguishable from the ones obtained with an order 4 polynomial 

(diamonds). Hence, a parabola is good enough to estimate the pitch strength between candidates 

separated at distances as small as 1/8 semitones.  

3.11 Summary 

This chapter described the SWIPE algorithm and its variation SWIPE′. The initial 

approach of the algorithm was the search for the frequency that maximizes the average peak-to-

valley distance at harmonic locations. Several modifications to this idea were applied to improve 

its performance: the locations of the harmonics were blurred, the spectral amplitude and the 

frequency scale were warped, an appropriate window type and size were chosen, and 

simplifications to reduce computational cost were introduced. After these modifications, SWIPE 

estimates the pitch as the fundamental frequency of the sawtooth waveform whose spectrum best 

matches the spectrum of the input signal. Its variation, SWIPE′, uses only the first and prime 

harmonics of the signal. 
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CHAPTER 4 
EVALUATION 

To asses the relevance of SWIPE and SWIPE′, they were compared against other 

algorithms using three speech databases and a musical instruments database. This chapter 

presents a brief description of these algorithms, databases, and the evaluation process. A more 

detailed description is given in Appendix B. 

4.1 Algorithms 

The algorithms with which SWIPE and SWIPE′ were compared were the following: 

• AC-P: This algorithm (Boersma, 1993) computes the autocorrelation of the signal and 
divides it by the autocorrelation of the window used to analyze the signal. It uses post-
processing to reduce discontinuities in the pitch trace. It is available with the Praat System 
at ‚http://www.fon.hum.uva.nl/praatÚ. The name of the function is ac. 

• AC-S: This algorithm uses the autocorrelation of the cubed signal. It is available with the 
Speech Filing System at ‚http://www.phon.ucl.ac.uk/resource/sfsÚ. The name of the 
function is fxac.  

• ANAL: This algorithm (Secrest and Doddington, 1983) uses autocorrelation to estimate 
the pitch, and dynamic programming to remove discontinuities in the pitch trace. It is 
available with the Speech Filing System at ‚http://www.phon.ucl.ac.uk/resource/sfsÚ. The 
name of the function is fxanal. 

• CATE: This algorithm uses a quasi autocorrelation function of the speech excitation signal 
to estimate the pitch.  We implemented it based on its original description (Di Martino, 
1999). The dynamic programming component used to remove discontinuities in the pitch 
trace was not implemented. 

• CC: This algorithm uses cross-correlation to estimate the pitch and post-processing to 
remove discontinuities in the pitch trace. It is available with the Praat System at 
‚http://www.fon.hum.uva.nl/praatÚ. The name of the function is cc. 

• CEP: This algorithm (Noll, 1967) uses the cepstrum of the signal and is available with the 
Speech Filing System at ‚http://www.phon.ucl.ac.uk/resource/sfsÚ. The name of the 
function is fxcep. 

• ESRPD: This algorithm (Bagshaw, 1993; Medan, 1991) uses a normalized 
cross-correlation to estimate the pitch, and post-processing to remove discontinuities  
in the pitch trace. It is available with the Festival Speech Filing System at 
‚http://www.cstr.ed.ac.uk/projects/festivalÚ. The name of the function is pda. 
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• RAPT: This algorithm (Secrest and Doddington, 1983) uses a normalized cross- 
correlation to estimate the pitch, and dynamic programming to remove discontinuities 
in the pitch trace. It is available with the Speech Filing System at 
‚http://www.phon.ucl.ac.uk/resource/sfsÚ. The name of the function is fxrapt. 

• SHS: This algorithm (Hermes, 1988) uses subharmonic summation. It is available with the 
Praat System at ‚http://www.fon.hum.uva.nl/praatÚ. The name of the function is shs. 

• SHR: This algorithm (Sun, 2000) uses the subharmonic-to-harmonic ratio. It is available at 
Matlab Central ‚http://www.mathworks.com/matlabcentralÚ under the title “Pitch 
Determination Algorithm”. The name of the function is shrp. 

• TEMPO: This algorithm (Kawahara et al., 1999) uses the instantaneous frequency of the 
outputs of a filterbank. It is available with the STRAIGHT System at its author web page 
‚http://www.wakayama-u.ac.jp/~kawaharaÚ. The name of the function is exstraightsource. 

• YIN: This algorithm (de Cheveigné and Kawahara, 2002) uses a modified version of the 
average squared difference function. It is available from its author web page at 
‚http://www.ircam.fr/pcm/cheveign/sw/yin.zipÚ. The name of the function is yin. 

4.2 Databases 

The databases used to test the algorithms were the following: 

• DVD: Disordered Voice Database. This database contains 657 samples of sustained 
vowels produced by persons with disordered voice. It can be bought from Kay Pentax 
‚http://www.kayelemetrics.comÚ.  

• KPD: Keele Pitch Database. This speech database was collected by Plante et. al (1995) at 
Keele University with the purpose of evaluating pitch estimation algorithms. It contains 
about 8 minutes of speech spoken by five males and five females. Laryngograph data was 
recorded simultaneously with speech, and was used to produce estimates of the 
fundamental frequency. It is publicly available at ‚ftp://ftp.cs.keele.ac.uk/pub/pitchÚ. 

• MIS: Musical Instruments Samples. This database contains more than 150 minutes of 
sound produced by 20 different musical instruments. It was collected at the University of 
Iowa Electronic Music Studios, directed by Lawrence Fritts, and is publicly available at 
‚http://theremin.music.uiowa.eduÚ. 

• PBD: Paul Bagshaw’s Database for evaluating pitch determination algorithms. This 
database contains about 8 minutes of speech spoken by one male and one female. 
Laryngograph data was recorded simultaneously with speech, and was used to produce 
estimates of the fundamental frequency. It was collected by Paul Bagshaw at the 
University of Edinburg (Bagshaw et. al 1993; Bagshaw 1994), and is publicly available at 
‚http://www.cstr.ed.ac.uk/research/projects/fdaÚ. 
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4.3 Methodology 

The algorithms were asked to produce a pitch estimate every millisecond. The search range 

was set to 40-800 Hz for speech and 30-1666 Hz for musical instruments. The algorithms were 

given the freedom to decide if the sound was pitched or not. However, to compute our statistics, 

we considered only the time instants at which all the algorithms agreed that the sound was 

pitched.  

Special care was taken to account for time misalignments. Specifically, the pitch estimates 

were associated to the time corresponding to the center of their respective analysis windows, and 

when the ground truth pitch varied over time (i.e., for PBD and KPD), the estimated pitch time 

series were shifted within a range of +/-100 ms to find the best alignment with the ground truth. 

The performance measure used to compare the algorithms was the gross error rate (GER). 

A gross error occurs when the estimated pitch is off from the reference pitch by more than 20%. 

At first glance this margin of error seems too large, but considering that most of the errors pitch 

estimation algorithms produce are octave errors (i.e., halving or doubling the pitch), this is a 

reasonable metric. On the other hand, this tolerance gives room for dealing with misalignments. 

The GER measure has been used previously to test PEAs by other researchers (Bagshaw, 1993; 

Di Martino, 1999; de Cheveigne and Kawahara, 2002). 

4.4 Results 

Table 4-1 shows the GERs for each of the algorithms over each of the speech databases. 

Both the rows and the columns are sorted by average GER: the best algorithms are at the top, and 

the more difficult databases are at the right. The best algorithm overall is SWIPE′, followed by 

SHS and SWIPE. Although on average SHS performs better than SWIPE, the only database in 

which SHS beats SWIPE is in the disordered voice database, which indicates that SWIPE 

performs better than SHS on normal speech.  
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Table 4-1.  Gross error rates for speech* 
 Gross error (%) 
Algorithm PBD KPD DVD Average 
SWIPE′ 0.13 0.83 0.63 0.53
SHS 0.15 1.00 1.10 0.75
SWIPE 0.15 0.87 1.70 0.91
RAPT 0.75 1.00 2.40 1.40
TEMPO 0.32 1.90 2.00 1.40
YIN 0.33 1.40 4.50 2.10
SHR 0.69 1.50 5.10 3.50
ESRPD 1.40 3.90 4.60 5.00
CEP 6.10 4.20 14.00 5.90
AC-P 0.73 2.90 16.00 6.70
CATE 2.60 10.00 7.20 6.60
CC 0.48 3.60 5.00 2.40
ANAL 0.83 2.00 35.00 13.00
AC-S 8.80 7.00 40.00 19.00
Average 1.70 3.00 9.90 4.90
* Values computed using two significant digits. 

 

Table 4-2.  Proportion of overestimation errors relative to total gross errors* 
 Proportion of overestimations 
Algorithm DVD PBD KPD Average 
CC 0.0 0.0 0.1 0.0
SHS 0.0 0.0 0.3 0.1
RAPT 0.0 0.1 0.5 0.2
SHR 0.0 0.4 0.3 0.2
AC 0.0 0.4 0.2 0.2
AC 0.0 0.2 0.3 0.2
ANAL 0.0 0.5 0.4 0.3
CEP 0.4 0.5 0.4 0.4
SWIPE′ 0.0 0.6 0.7 0.4
SWIPE 0.1 0.6 0.7 0.4
YIN 0.1 0.9 0.5 0.5
TEMPO 0.1 0.8 0.9 0.6
CATE 0.5 0.5 0.8 0.6
ESRPD 0.5 0.7 0.9 0.7
Average 0.1 0.4 0.5 0.3
* Values computed using one significant digit. 

 

Table 4-2 shows the proportion of GEs caused by overestimations of the pitch with respect 

to the total number of GEs. The proportion of GEs caused by underestimation of the pitch is just  
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Table 4-3.  Gross error rates by gender* 
 Gross error (%) 
Algorithm Male Female Average 
SWIPE′ 0.36 2.40 1.4
SHS 0.55 2.50 1.5
SWIPE 0.49 2.70 1.6
RAPT 0.42 2.90 1.7
TEMPO 0.67 3.10 1.9
SHR 0.61 3.60 2.1
YIN 1.10 3.20 2.2
AC-P 2.10 3.60 2.9
CEP 1.80 4.20 3.0
CC 2.40 4.50 3.5
ESRPD 3.10 3.90 3.5
ANAL 1.30 5.90 3.6
AC-S 3.20 10.00 6.6
CATE 11.00 4.20 7.6
Average 2.10 4.00 3.1
* Values computed using two significant digits. 

 

one minus the values shown in the table. Algorithms at the top have a tendency to underestimate 

the pitch while algorithms at the bottom have a tendency to overestimate it. Most algorithms tend 

to underestimate the pitch in the disordered voice database while the errors are more balanced in 

the normal speech databases.  

 Table 4-3 shows the pitch estimation performance as a function of gender for the two 

databases for which we had access to this information: PVD and KPD. The error rates are on 

average larger for female speech than for male speech.  

Table 4-4 shows the GERs for the musical instruments database. Some of the algorithms 

were not evaluated on this database because they did not provide a mechanism to set the search 

range, and the range they covered was smaller that the pitch range spanned by the database. The 

two algorithms that performed the best were SWIPE′ and SWIPE.   
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Table 4-4.  Gross error rates for musical instruments* 
 Gross error (%) 
Algorithm Underestimates Overestimates Total 
SWIPE′ 1.00 0.10 1.10
SWIPE 1.30 0.02 1.30
SHS 0.88 1.00 1.90
TEMPO 0.29 1.70 2.00
YIN 1.60 0.83 2.40
AC-P 3.20 0.00 3.20
CC 3.60 0.00 3.60
ESRPD 5.30 1.50 6.80
SHR 15.00 5.30 20.00
Average 3.60 1.20 4.70
* Values computed using two significant digits. 

 

Table 4-5.  Gross error rates by instrument family* 
 Gross error (%) 

Algorithm Brass 
Bowed 
Strings Woodwinds Piano 

Plucked 
Strings Average 

SWIPE' 0.01 0.19 0.14 2.20 8.80 2.30
SWIPE 0.00 0.22 0.23 0.02 11.00 2.30
TEMPO 0.00 2.60 1.40 7.30 4.00 3.10
YIN 0.03 1.10 1.50 0.36 14.00 3.40
SHS 0.02 1.50 0.72 12.00 8.10 4.50
AC-P 0.03 0.56 0.80 0.36 26.00 5.60
CC 0.07 0.83 1.00 0.36 28.00 6.00
ESRPD 4.00 6.90 7.10 6.00 11.00 7.00
SHR 22.00 25.00 38.00 26.00 15.00 25.00
Average 2.90 4.30 5.60 6.10 14.00 6.60
* Values computed using two significant digits. Brass: French horn, bass/tenor trombones, trumpet, and tuba. 
Bowed strings: double bass, cello, viola, and violin. Woodwinds: flute, bass/alto flutes, bass/Bb/Eb clarinets, 
alto/soprano saxophones. Plucked strings: double bass and violin. 

 

Table 4-5 shows the GERs by instrument family. The two best algorithms are SWIPE′ and 

SWIPE. SWIPE′ tends to perform better than SWIPE except for the piano, for which SWIPE 

produces almost no error. On the other hand, SWIPE′ performance on piano is relatively bad 

compared to correlation based algorithms. The family for which fewer errors were obtained was 

the brass family; many algorithms achieved almost perfect performance for this family. The  
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Table 4-6.  Gross error rates for musical instruments by octave* 
 Gross error (%) 

Algorithm 

46.2 Hz 
+/- 1/2 

oct. 

92.5 Hz 
+/- 1/2 

oct. 

185 Hz 
+/- 1/2 

oct. 

370 Hz 
+/- 1/2 

oct. 

740 Hz 
+/- 1/2 

oct. 

1480 Hz 
+/- 1/2 

oct. Average 
SWIPE' 1.20 1.00 2.30 0.89 0.13 0.29 0.97
SWIPE 0.08 1.20 3.00 1.00 0.25 0.38 0.99
YIN 3.20 0.95 5.30 1.80 0.69 0.96 2.20
AC-P 0.24 2.00 7.80 2.50 0.71 0.30 2.30
SHS 7.80 2.60 3.20 1.20 0.23 0.14 2.50
CC 0.26 2.60 8.20 2.70 0.93 0.40 2.50
TEMPO 15.00 2.80 2.00 1.10 0.52 0.31 3.60
ESRPD 7.90 2.60 4.80 4.20 12.00 32.00 11.00
SHR 37.00 0.60 1.80 27.00 70.00 81.00 36.00
Average 8.10 1.80 4.30 4.70 9.50 13.00 6.90
* Values computed using two significant digits. 

 

family for which more errors were produced was the strings family playing pizzicato, i.e., by 

plucking the strings. Indeed, pizzicato sounds were the ones for which the performers produced 

more errors and the ones that were hardest for us to label (see Appendix B). 

Table 4-6 shows the GERs as a function of octave. The best performance on average was 

achieved by SWIPE′ and SWIPE. The results of the algorithms with an average GER less than  
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Figure 4-1.  Gross error rates for musical instruments as a function of pitch. 
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Table 4-7.  Gross error rates for musical instruments by dynamic* 
 Gross error (%) 
Algorithm pp mf ff Average 
SWIPE' 1.30 1.20 0.92 1.10
SWIPE 1.40 1.40 1.20 1.30
SHS 1.50 2.30 2.00 1.90
TEMPO 2.00 1.90 2.00 2.00
YIN 2.20 2.50 2.40 2.40
AC-P 3.30 3.20 3.30 3.30
CC 3.60 3.30 3.80 3.60
ESRPD 5.70 7.10 7.60 6.80
SHR 27.00 29.00 29.00 28.00
Average 5.30 5.80 5.80 5.60
* Values computed using two significant digits.  

 

10% is reproduced in Figure 4-1. All algorithms have approximately the same tendency, except 

at the lowest octave, where a larger variance in the GERs can be observed.  

Table 4-7 shows the GERs as a function of dynamic (i.e., loudness). In general, there is no 

significant variation of GERs with changes in loudness, although SWIPE′ has a tendency to 

reduce the GER as loudness increases [i.e., as the dynamic moves from pianissimo (pp) to 

fortissimo (ff ) ]. 

As a final test, we wanted to validate the choices we made in Chapter 3, i.e., shape of the 

kernel, warping of the spectrum, weighting of the harmonics, warping of the frequency scale, and 

selection of window type and size. For this purpose, we evaluated SWIPE′ replacing every one 

of its features with a more standard feature, i.e., smooth vs. pulsed kernels, square-root vs. raw 

spectrum, decaying vs. flat kernel envelope, ERB vs. Hertz frequency scale, and pitch-optimized 

vs. fixed window size. We varied each of these variables independently and obtained the results 

shown in Table 4-8. Although some of the variations made SWIPE′ improve in some of the 

databases, overall SWIPE′ worked better with the features we proposed in Chapter 3. 
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Table 4-8.  Gross error rates for variations of SWIPE′* 
 Gross error (%) 
Variation PBD KPD DVD MIS Average 
Original 0.13 0.83 0.63 1.10 0.67
Flat envelope 0.16 1.00 1.40 0.60 0.79
Hertz scale1 0.23 1.70 1.40 0.37 0.93
Pulsed kernel 0.21 0.84 3.00 2.60 1.70
Raw spectrum2 0.25 2.10 1.60 4.90 2.20
Fixed WS3 0.15 0.77 1.70 9.10 2.90
* Values computed using two significant digits. 1 FFTs were computed using optimal window sizes and the 
spectrum was inter/extrapolated to frequency bins separated at 5 Hz.2 The use of the raw spectrum rather than the 
square root of the spectrum implies the use of a kernel whose envelope decays as 1/f rather than 1/√f, to match the 
spectral envelope of a sawtooth waveform.3 The power-of-two window size whose optimal pitch was closest to the 
geometric mean pitch of the database was used in each case. A window of size 1024 samples was used for the 
speech databases and a window of size of 256 samples was used for the musical instruments database. 

 

4.5 Discussion 

SWIPE′ showed the best performance in all categories. SWIPE was the second best ranked 

for musical instruments and normal speech but not for disordered speech, for which SHS 

performed better (see Table 4-1). One possible reason is that it is common for disordered voices 

to have energy at multiples of subharmonics of the pitch, and therefore algorithms that apply 

negative weights to the spectral regions between harmonics (e.g., SWIPE, SWIPE′, and all 

autocorrelation based algorithms) are prone to produce low scores for the pitch. Although 

SWIPE′ is among this group, its use of only the first and prime harmonics, reduces substantially 

the score subharmonics of the pitch, producing most of the time a larger score for the pitch than 

for its subharmonics. 

The rankings of the algorithms are relatively stable in all the tables except for SHR, which 

showed a good performance for speech but not for musical instruments. We believe this is 

caused by the wide pitch range spanned by the musical instruments. This is suggested by the 

results in Table 4-6, which show that SHR performs well in the octaves around 92.5 Hz and 185 
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Hz, which corresponds to the pitch region of speech, but performs very bad as the pitch moves 

from this region. 

Figure 4-1 shows that the relative trend on performance with pitch for musical instruments 

is about the same for all the algorithms except in the lowest region, where a large variance in 

performance was observed. However, this variance may be caused by a significant reduction in 

the numbers of samples in this region (about 4% of the data). The figure also shows an overall 

increase in GER in the octave around 185 Hz. We believe this is caused by the presence of a set 

of difficult sounds in the database with pitches in that region, since it is hard to believe that there 

is an inherent difficulty of the algorithms to recognize pitch in that region. 
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CHAPTER 5 
CONCLUSION 

The SWIPE pitch estimator has been developed. SWIPE estimates the pitch as the 

fundamental frequency of the sawtooth waveform whose spectrum best matches the spectrum of 

the input signal. The schematic description of the algorithm is the following: 

1. For each pitch candidate f within a pitch range fmin-fmax, compute its pitch strength as follows: 

a. Compute the square-root of the spectrum of the signal. 

b. Normalize the square-root of the spectrum and apply an integral transform using a 
normalized cosine kernel whose envelope decays as 1/√f. 

2. Estimate the pitch as the candidate with highest strength. 

An implicit objective of the algorithm was to find the frequency for which the average 

peak-to-valley distance at its harmonics is maximized. To achieve this, the kernel was set to zero 

below the first negative lobe and above the last negative lobe, and to avoid bias, the magnitude 

of these two lobes was halved.  

To make the contribution of each harmonic of the sawtooth waveform proportional to its 

amplitude and not to the square of its amplitude, the square-root of the spectrum was taken 

before applying the integral transform.  

To make the kernel match the normalized square-root spectrum of the sawtooth waveform, 

a 1/√f  envelope was applied to the kernel. The kernel was normalized using only its positive 

part. 

To maximize the similarity between the kernel and the square-root of the input spectrum, 

each pitch candidate required its own window size, which in general is not a power of two, and 

therefore not ideal to compute an FFT. To reduce computational cost, the two closest power-of-

two window sizes were used, and their results are combined to produce a single pitch strength 

value. This had the extra advantage of allowing an FFT to be shared by many pitch candidates. 
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Another technique used to reduce computational cost was to compute a coarse pitch strength 

curve and then fine tune it by using parabolic interpolation. A last technique used to reduce 

computational cost was to reduce the amount of window overlap while allowing the pitch of a 

signal as short as four cycles to be recognized. 

The ERB frequency scale was used to compute the spectral integral transform since the 

density of this scale decreases almost proportionally to frequency, which avoids wasting 

computation in regions where there little spectral energy is expected.  

SWIPE′, a variation of SWIPE, uses only the first and prime harmonics of the signal, 

producing a large reduction in subharmonic errors by reducing significantly the scores of 

subharmonics of the pitch.  

Except for the obvious architectural decisions that must be taken when creating an 

algorithm (e.g., selection of the kernel), there are no free parameters in SWIPE and SWIPE′, at 

least in terms of “magic numbers”.  

SWIPE and SWIPE′ were tested using speech and musical instruments databases and their 

performance was compared against twelve other algorithms which have been cited in the 

literature and for which free implementations exist. SWIPE′ was shown to outperform all the 

algorithms on all the databases. SWIPE was ranked second in the normal speech and musical 

instruments databases, and was ranked third in the disordered speech database.  
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APPENDIX A 
MATLAB IMPLEMENTATION OF SWIPE′ 

This is a Matlab implementation of SWIPE′. To convert it into SWIPE just replace  

[ 1 primes(n) ] in the for loop of the function pitchStrengthOneCandidate with [ 1:n ]. 

function [p,t,s] = swipep(x,fs,plim,dt,dlog2p,dERBs,sTHR) 
% SWIPEP Pitch estimation using SWIPE'. 
% P = SWIPEP(X,Fs,[PMIN PMAX],DT,DLOG2P,DERBS,STHR) estimates the pitch of  
% the vector signal X with sampling frequency Fs (in Hertz) every DT 
% seconds. The pitch is estimated by sampling the spectrum in the ERB scale 
% using a step of size DERBS ERBs. The pitch is searched within the range  
% [PMIN PMAX] (in Hertz) sampled every DLOG2P units in a base-2 logarithmic 
% scale of Hertz. The pitch is fine tuned by using parabolic interpolation  
% with a resolution of 1/64 of semitone (approx. 1.6 cents). Pitches with a 
% strength lower than STHR are treated as undefined. 
%     
% [P,T,S] = SWIPEP(X,Fs,[PMIN PMAX],DT,DLOG2P,DERBS,STHR) returns the times 
% T at which the pitch was estimated and their corresponding pitch strength. 
% 
% P = SWIPEP(X,Fs) estimates the pitch using the default settings PMIN = 
% 30 Hz, PMAX = 5000 Hz, DT = 0.01 s, DLOG2P = 1/96 (96 steps per octave), 
% DERBS = 0.1 ERBs, and STHR = -Inf. 
% 
% P = SWIPEP(X,Fs,...[],...) uses the default setting for the parameter 
% replaced with the placeholder []. 
% 
%    EXAMPLE: Estimate the pitch of the signal X every 10 ms within the 
%    range 75-500 Hz using the default resolution (i.e., 96 steps per 
%    octave), sampling the spectrum every 1/20th of ERB, and discarding 
%    samples with pitch strength lower than 0.4. Plot the pitch trace. 
%     [x,Fs] = wavread(filename); 
%     [p,t,s] = swipep(x,Fs,[75 500],0.01,[],1/20,0.4); 
%     plot(1000*t,p) 
%     xlabel('Time (ms)') 
%     ylabel('Pitch (Hz)') 
if ~ exist( 'plim', 'var' ) || isempty(plim), plim = [30 5000]; end 
if ~ exist( 'dt', 'var' ) || isempty(dt), dt = 0.01; end 
if ~ exist( 'dlog2p', 'var' ) || isempty(dlog2p), dlog2p = 1/96; end 
if ~ exist( 'dERBs', 'var' ) || isempty(dERBs), dERBs = 0.1; end 
if ~ exist( 'sTHR', 'var' ) || isempty(sTHR), sTHR = -Inf; end 
t = [ 0: dt: length(x)/fs ]'; % Times 
dc = 4; % Hop size (in cycles) 
K = 2; % Parameter k for Hann window 
% Define pitch candidates 
log2pc = [ log2(plim(1)): dlog2p: log2(plim(end)) ]'; 
pc = 2 .^ log2pc; 
S = zeros( length(pc), length(t) ); % Pitch strength matrix 
% Determine P2-WSs 
logWs = round( log2( 4*K * fs ./ plim ) );  
ws = 2.^[ logWs(1): -1: logWs(2) ]; % P2-WSs 
pO = 4*K * fs ./ ws; % Optimal pitches for P2-WSs 
% Determine window sizes used by each pitch candidate 
d = 1 + log2pc - log2( 4*K*fs./ws(1) ); 
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% Create ERBs spaced frequencies (in Hertz) 
fERBs = erbs2hz([ hz2erbs(pc(1)/4): dERBs: hz2erbs(fs/2) ]'); 
for i = 1 : length(ws) 
    dn = round( dc * fs / pO(i) ); % Hop size (in samples) 
    % Zero pad signal 
    xzp = [ zeros( ws(i)/2, 1 ); x(:); zeros( dn + ws(i)/2, 1 ) ]; 
    % Compute spectrum 
    w = hanning( ws(i) ); % Hann window  
    o = max( 0, round( ws(i) - dn ) ); % Window overlap 
    [ X, f, ti ] = specgram( xzp, ws(i), fs, w, o ); 
    % Interpolate at equidistant ERBs steps 
    M = max( 0, interp1( f, abs(X), fERBs, 'spline', 0) ); % Magnitude 
    L = sqrt( M ); % Loudness 
    % Select candidates that use this window size 
    if i==length(ws); j=find(d-i>-1); k=find(d(j)-i<0); 
    elseif i==1; j=find(d-i<1); k=find(d(j)-i>0); 
    else j=find(abs(d-i)<1); k=1:length(j); 
    end     
    Si = pitchStrengthAllCandidates( fERBs, L, pc(j) ); 
    % Interpolate at desired times 
    if size(Si,2) > 1 
        Si = interp1( ti, Si', t, 'linear', NaN )'; 
    else 
        Si = repmat( NaN, length(Si), length(t) ); 
    end 
    lambda = d( j(k) ) - i; 
    mu = ones( size(j) ); 
    mu(k) = 1 - abs( lambda ); 
    S(j,:) = S(j,:) + repmat(mu,1,size(Si,2)) .* Si; 
end 
% Fine-tune the pitch using parabolic interpolation 
p = repmat( NaN, size(S,2), 1 ); 
s = repmat( NaN, size(S,2), 1 ); 
for j = 1 : size(S,2) 
    [ s(j), i ] = max( S(:,j) ); 
    if s(j) < sTHR, continue, end 
    if i==1, p(j)=pc(1); elseif i==length(pc), p(j)=pc(1); else 
        I = i-1 : i+1; 
        tc = 1 ./ pc(I); 
        ntc = ( tc/tc(2) - 1 ) * 2*pi; 
        c = polyfit( ntc, S(I,j), 2 ); 
        ftc = 1 ./ 2.^[ log2(pc(I(1))): 1/12/64: log2(pc(I(3))) ]; 
        nftc = ( ftc/tc(2) - 1 ) * 2*pi; 
        [s(j) k] = max( polyval( c, nftc ) ); 
        p(j) = 2 ^ ( log2(pc(I(1))) + (k-1)/12/64 ); 
    end 
end 
 
function S = pitchStrengthAllCandidates( f, L, pc ) 
% Normalize loudness 
warning off MATLAB:divideByZero 
L = L ./ repmat( sqrt( sum(L.*L) ), size(L,1), 1 ); 
warning on MATLAB:divideByZero 
% Create pitch salience matrix 
S = zeros( length(pc), size(L,2) );  
for j = 1 : length(pc) 
    S(j,:) = pitchStrengthOneCandidate( f, L, pc(j) ); 
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end 
 
function S = pitchStrengthOneCandidate( f, L, pc ) 
n = fix( f(end)/pc - 0.75 ); % Number of harmonics 
k = zeros( size(f) ); % Kernel 
q = f / pc; % Normalize frequency w.r.t. candidate 
for i = [ 1 primes(n) ] 
    a = abs( q - i ); 
    % Peak's weigth 
    p = a < .25;  
    k(p) = cos( 2*pi * q(p) ); 
    % Valleys' weights 
    v = .25 < a & a < .75; 
    k(v) = k(v) + cos( 2*pi * q(v) ) / 2; 
end 
% Apply envelope 
k = k .* sqrt( 1./f  );  
% K+-normalize kernel 
k = k / norm( k(k>0) );  
% Compute pitch strength 
S = k' * L;  
 
function erbs = hz2erbs(hz) 
erbs = 21.4 * log10( 1 + hz/229 ); 
 
function hz = erbs2hz(erbs) 
hz = ( 10 .^ (erbs./21.4) - 1 ) * 229; 
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SWIPE' has been improved since the publication of this dissertation. To avoid the dissemination of outdated code, this implementation of SWIPE' has been removed from this copy of the dissertation. Check the author's Web page for more recent publications and a newer implementation of SWIPE' at http://cise.ufl.edu/~acamacho.
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APPENDIX B 
DETAILS OF THE EVALUATION 

B.1 Databases 

All the databases used in this work are free and publicly available on the Internet, except 

the disordered voice database. Besides speech recordings, the speech databases contain 

simultaneous recordings of laryngograph data, which facilitates the computation of the 

fundamental frequency. The authors of these databases used them to produce ground truth pitch 

values, which are also included in the databases. The disordered voice database includes 

fundamental frequency estimates, but as it will be explained later, a different ground truth data 

set was used. The musical instruments database contains the names of the notes in the names of 

the files.  

B.1.1 Paul Bagshaw’s Database 

Paul Bagshaw’s database (PBD) for evaluation of pitch determination algorithms 

(Bagshaw et. al 1993; Bagshaw 1994) was collected at the University of Edinburgh, and is 

available at ‚http://www.cstr.ed.ac.uk/research/projects/fdaÚ. The speech and laryngograph 

signals of this database were sampled at 20 kHz. The ground truth fundamental frequency was 

computed by estimating the location of the glottal pulses in the laryngograph data and taking the 

inverse of the distance between each pair of consecutive pulses. Each fundamental frequency 

estimate is associated to the time instant in the middle between the pair of pulses used to derive 

the estimate.  

B.1.2 Keele Pitch Database 

The Keele Pitch Database (KPD) (Plante et. al, 1995) was created at Keele University and 

is available at ‚ftp://ftp.cs.keele.ac.uk/pub/pitchÚ. The speech and laryngograph signals were 

sampled at 20 kHz. The fundamental frequency was estimated by using autocorrelation over a 
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26.5 ms window shifted at intervals of 10 ms. Windows where the pitch is unclear are marked 

with special codes.  

Both of these speech databases PBD and KPD have been reported to contain errors (de 

Cheveigne, 2002), especially at the end of sentences, where the energy of speech decays and 

malformed pulses may occur. We will explain later how we deal with this problem. 

B.1.3 Disordered Voice Database 

The disordered voice database (DVD) was collected by Kay Pentax 

‚http://www.kayelemetrics.comÚ. It includes 657 disordered voice samples of the sustained 

vowel “ah” sampled at 25 kH, and some few at 50 kHz. The database includes samples from 

patients with a wide variety of organic, neurological, traumatic, psychogenic, and other voice 

disorders.  

The database includes fundamental frequency estimates, but by definition, they do not 

necessarily match their pitch. Therefore we estimated the pitch by ourselves by listening to the 

samples through earphones, and matching the pitch to the closest note, using as reference a 

synthesizer playing sawtooth waveforms. Assuming that we chose one of the two closest notes 

every time, this procedure should introduce an error no larger than 6%, which is smaller than the 

20% necessary to produce a GE (see Chapter 4).  

There were some samples for which the pitch ranged over a perfect fourth or more (i.e., the 

higher pitch was more than 33% higher than the lower pitch). Since this range is large compared 

to the permissible 20%, these samples were excluded. Samples for which the range did not span 

more than a major third (i.e., the higher pitch was no more than 26% higher than the lower pitch) 

were preserved, and they were assigned the note corresponding to the median of the range. If the 

median was between two notes, it was assigned to any of them. This should introduce an error no 

larger than two semitones (12%), which is about half the maximum permissible error of 20%. 
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There were 30 samples for which we could not perceive with confidence a pitch, so they were 

excluded as well. 

Since the ground truth data was based on the perception of only one listener (the author), it 

could be argued that this data has low validity. To alleviate this, we excluded the samples for 

which the minimum error produced by any algorithm was larger than 50%. 

After excluding the non-pitch, variable pitch, and samples at which the algorithms 

disagreed with the ground truth, we ended up with 612 samples out of the original 657. 

Appendix C shows the ground truth used for each of these 612 samples. 

B.1.4 Musical Instruments Database 

The musical instruments samples database was collected at the University of Iowa, and is 

available at ‚http://theremin.music.uiowa.eduÚ. The recordings were made using CD quality 

sampling at a rate of 44,100 kHz, but we downsampled them to 10 kHz in order to reduce 

computational cost. No noticeable change of perceptual pitch was perceived by doing this, even 

for the highest pitch sounds. This database contains recordings of 20 instruments, for a total of 

more than 150 minutes and 4,000 notes. The notes are played in sequence using a chromatic 

scale with silences in between. Each file usually spans one octave and is labeled with the name 

of the initial and final notes, plus the name of the instrument, and other details (e.g., 

Violin.pizz.mf.sulG.C4B4.aiff).  

In order to test the algorithms, the files were split into separate files containing each of 

them a single note with no leading or trailing silence. This process was done in a semi-automatic 

way by using a power-based segmentation method, and then checking visually and auditively the 

quality of the segmentation.  

While doing this task it was discovered that some of the note labels were wrong. The 

intervals produced by the performers were sometimes larger than a semitone, and therefore the 
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names of the files did not correspond to the notes that were in fact played. This situation was 

common with string instruments, especially when playing in pizzicato.  

Therefore, after splitting the files, we listened to each of them, and manually corrected the 

wrong names by using as reference an electronic keyboard. This procedure sometimes 

introduced name conflicts (i.e., there were repeated notes played by the same instrument, same 

dynamic, etc.), and when this occurred, we removed the repeated notes trying to keep the closest 

note to the target. When the conflicting notes were equally close to the target, the “best quality” 

sound was preserved. This removal of files was done to avoid the overhead of having to add 

extra symbols to the file names to allow for repetitions, which would have complicated the 

generation of scripts to test the algorithms.  

Since this process of manually correcting the names of the notes was very tedious, 

especially for the pizzicato sounds, after fixing all the pizzicato bass and violin notes, the process 

was abandoned and the cello and viola pizzicato sounds were excluded from our evaluation. 

Arguably, except for the bass, pizzicato sounds are not very common in music, and therefore 

leaving the cello and viola pizzicato sounds out did not affect the representativeness of the 

sample significantly. 

B.2 Evaluation Using Speech 

Whenever possible, each of the algorithms was asked to give a pitch estimate every 

millisecond within the range 40-800 Hz, using the default settings of the algorithm (an exception 

was made for ESRPD: instead of using the default settings in the Festival implementation, the 

recommendations suggested by the author of the algorithm were followed). The range 40-800 

was used to make the results comparable to the results published by de Cheveigne (2002). 

However, a full comparison is not possible since some other variables were treated differently in 

that study.  
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The commands issued for each of the algorithms were the following6: 

• AC-P: To Pitch (ac)... 0.001 40 15 no 0.03 0.45 0.01 0.35 0.14 800 
• AC-S: fxac input_file 
• ANAL: fxanal input_file 
• CC: To Pitch (cc)... 0.001 40 15 no 0.03 0.45 0.01 0.35 0.14 800 
• CEP: fxcep input_file 
• ESRPD: pda input_file -o output_file -L -d 1 -shift 0.001 -length 0.0384 -fmax 800 -fmin 

40 -lpfilter 600 
• RAPT: fxrapt input_file 
• SHS: To Pitch (shs)... 0.001 40 15 1250 15 0.84 800 48 
• SHR: [ t, p ] =shrp( x, fs, [40 800], 40, 1, 0.4, 1250, 0, 0 ); 
• SWIPE: [ p, t ] = swipe( x, fs, [40 800], 0.001, 1/96, 0.1, -Inf ); 
• SWIPE′: [ p, t ] = swipep( x, fs, [40 800], 0.001, 1/96, 0.1, -Inf ); 
• TEMPO: f0raw = exstraightsource( x, fs ); 
• YIN: p.minf0 = 40; p.maxf0 = 800; p.hop = 20; p.sr = fs; r = yin( x, p ); 
 
where x is the input signal and fs is the sampling rate in Hertz. 

An important issue that had to be considered was the time associated to each pitch 

estimate. Since all algorithms use symmetric windows, a reasonable choice was to associate each 

estimate to the time at the center of the window. For CATE, ESRPD, and SHR, the user is 

allowed to determine the size of the window, so we followed the recommendation of their 

authors and we set the window sizes to 51.2, 38.4, and 40 ms, respectively. YIN uses a different 

window size for each pitch candidate, but the windows are always centered at the same time 

instant, and the largest window size is two periods of the largest expected pitch period. For the 

Praat’s algorithms AC-P, CC, and SHS, through trial and error we found that they use windows 

of size 3, 1, and 2 times the largest expected pitch period, respectively. For AC-S, ANAL, CEP, 

RAPT, and TEMPO, the user is not allowed to set up the window size, but the algorithms output 

the time instants associated to each pitch estimate, so we used these times hoping that they 

correspond to the centers of the analysis windows used to determine the pitch. 

                                                 
6 The command for CATE is not reported because we used our own implementation. 
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The times associated to the pitch ground truth series are explicitly given in the PBD 

database, but not in the KPD database. For KPD, each pitch value was associated to the center of 

the window. Therefore, since the ground truth pitch values were computed using 26.5 msec 

windows separated at a distance of 10 msec, the first pitch estimate was assigned a time of 13.25 

msec, and the time associated to each successive pitch estimate added 10 msec to the time of the 

previous estimate. For the DVD databases, each vowel was assumed to have a constant pitch, so 

the ground truth pitch time series was assumed to be constant. 

The purpose of the evaluation was to compare the pitch estimates of the algorithms, but not 

their ability to distinguish the existence of pitch. Therefore, we included in the evaluation only 

the regions of the signal at which all algorithms and the ground truth data agreed that pitch 

existed. To achieve this, we took the time instants of the ground truth values and the time 

instants produced by all the algorithms that estimated the pitch every millisecond (9 out of 13 

algorithms), rounded them to the closest multiple of 1 millisecond, and took the intersection. 

This intersection would form the set of times at which all the algorithms would be evaluated. The 

algorithms that produced pitch estimates at a rate lower than 1,000 per second were not 

considered for finding the intersection because that would reduce the time granularity of our 

evaluation, which was desired to be one millisecond.  

As suggested in the previous paragraph, some algorithms do not necessarily produce pitch 

estimates at times that are multiples of one millisecond, i.e., they may produce the estimates at 

the times t + ∆t ms, where t is an integer and |∆t| < 1. Thus, to evaluate them at multiples of one 

millisecond, the pitch values at the desired times were inter/extrapolated in a logarithmic scale. 

In other words, we took the logarithm of the estimated pitches, inter/extrapolated them to the 

desired times, and took the exponential of the inter/extrapolated pitches. Inter/extrapolation in 
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the logarithmic domain was preferred because we believe this is the natural scale for pitch. This 

is what allows us to recognize a song even if it is sung by a male or a female.  

An important issue that must be considered when using simultaneous recordings of the 

laryngograph and speech signals is that the latter are typically delayed with respect to the former. 

An attempt to correct this misalignment was reported by the authors of KPD, but the success was 

not warranted. No attempt of correction was reported for PBD. Since pitch in speech is time-

varying, such misalignment could increase the estimation error significantly. To alleviate this 

problem, each pitch time series produced by each algorithm was delayed or advanced, in steps of 

1 msec, and up to 100 msec, in order to find the best match with the ground truth data.  

B.3 Evaluation Using Musical Instruments 

Considering that many algorithms were designed for speech, the pitch range of the MIS 

database is probably too large for them to handle. To alleviate this, we excluded the samples that 

were outside the range 30-1666 Hz, which is nevertheless large, compared to the pitch range of 

speech. Since the range 30-1666 Hz was found to be too large for the Speech Filing System 

algorithms (AC-S, ANAL, CEP, and RAPT) these algorithms were not evaluated on the MIS 

database. The commands issued for each of the algorithms were the following: 

• AC-P: To Pitch (ac)... 0.001 30 15 no 0.03 0.45 0.01 0.35 0.14 1666 
• CC: To Pitch (cc)... 0.001 30 15 no 0.03 0.45 0.01 0.35 0.14 1666 
• ESRPD: pda input_file -o output_file -P -d 1 -shift 0.001 -length 0.0384 -fmax 1666 -fmin 

30 -n 0 -m 0 
• SHS: To Pitch (shs)... 0.001 30 15 5000 15 0.84 1666 48 
• SHR: [ t, p ] = shrp( x, fs, [30 1666], 40, 1, 0.4, 5000, 0, 0 ); 
• SWIPE: [ p, t ] = swipe( x, fs, [30 1666], 0.001, 1/96, 0.1, -Inf ); 
• SWIPE′: [ p, t ] = swipep( x, fs, [30 1666], 0.001, 1/96, 0.1, -Inf ); 
• YIN: p.minf0 = 30; p.maxf0 = 1666; p.hop = 10; p.sr = 10000; r = yin(x,p); 
 

Besides the widening of the pitch range, the only difference with respect to the commands 

used for the speech databases were for ESRPD and SHS. For both of them, the low-pass filtering 
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was removed in order to use as much information from the spectrum as possible. This was 

convenient because the sounds were already low-pass filtered at 5 kHz, and therefore the highest 

pitch sounds (around 1666 Hz) had no more than three harmonics in the spectrum. The second 

change was the use of the ESRPD peak-tracker (option -P) as an attempt to make the algorithm 

improve upon its results with speech.  

The evaluation process was very similar to the one followed for speech: the time instants 

of the ground truth and the pitch estimates were rounded to the closest millisecond, the 

intersection of all the times was taken, and the statistics were computed only at the times of this 

intersection. However, there was an issue that was necessary consider in this database. Some 

instruments played much longer notes than others. The range of durations goes from tenths of 

second for strings playing in pizzicato, to several seconds for some notes of the piano. If the 

overall error is computed without taking this into account, the results will be highly biased 

toward the performance produced with the instruments that play the largest notes.  

To account for this, the GER was computed independently for each sample, and then 

averaged over all the samples. However, this introduced an undesired effect: some samples had 

very few pitch estimates (only one estimate in some cases), and therefore this procedure would 

give them too much weight, which potentially would introduce noise in our results. Therefore, 

we discarded the samples for which the time instants at which the algorithms were evaluated 

were less than half the duration of the sample (in milliseconds). This discarded 164 samples, 

resulting in a total of 3459 samples, which was nevertheless a significant amount of data to 

quantify the performance of the algorithms. 
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APPENDIX C 
GROUND TRUTH PITCH FOR THE DISORDERED VOICE DATABASE 

Table C-1.  Ground truth pitch values for the disordered voice database 
AAK02 220.0 AAS16 123.5 ABB09 246.9 ABG04 116.5 ACG13 207.7 ACG20 164.8 
ACH16 185.0 ADM14 138.6 ADP02 155.6 ADP11 116.5 AEA03 220.0 AFR17 246.9 
AHK02 110.0 AHS20 196.0 AJF12 110.0 AJM05 138.6 AJM29 123.5 AJP25 233.1 
ALB18 123.5 ALW27 174.6 ALW28 220.0 AMB22 146.8 AMC14 92.5 AMC16 146.8 
AMC23 196.0 AMD07 130.8 AMJ23 123.5 AMK25 77.8 AMP12 220.0 AMT11 246.9 
AMV23 185.0 ANA15 155.6 ANA20 155.6 ANB28 196.0 AOS21 110.0 ASK21 116.5 
ASR20 92.5 ASR23 130.8 AWE04 155.6 AXD11 174.6 AXD19 196.0 AXL04 196.0 
AXL22 196.0 AXS08 155.6 AXT11 185.0 AXT13 196.0 BAH13 98.0 BAS19 293.7 
BAT19 185.0 BBR24 164.8 BCM08 233.1 BEF05 185.0 BGS05 246.9 BJH05 174.6 
BJK16 174.6 BJK29 103.8 BKB13 87.3 BLB03 110.0 BMK05 246.9 BMM09 233.1 
BPF03 116.5 BRT18 311.1 BSD30 130.8 BSG13 174.6 BXD17 138.6 CAC10 185.0 
CAH02 196.0 CAK25 196.0 CAL12 92.5 CAL28 261.6 CAR10 196.0 CBD17 164.8 
CBD19 174.6 CBD21 207.7 CBR29 174.6 CCM15 110.0 CDW03 146.8 CEN21 92.5 
CER16 185.0 CER30 174.6 CFW04 155.6 CJB27 116.5 CJP10 98.0 CLE29 116.5 
CLS31 185.0 CMA06 123.5 CMA22 103.8 CMR01 185.0 CMR06 110.0 CMR26 174.6 
CMS10 196.0 CMS25 185.0 CNP07 196.0 CNR01 185.0 CPK19 155.6 CPK21 174.6 
CPW28 220.0 CRM12 185.0 CSJ16 233.1 CSY01 110.0 CTB30 146.8 CTY03 130.8 
CXL08 174.6 CXM07 130.8 CXM14 220.0 CXM18 146.8 CXP02 207.7 CXR13 146.8 
CXT08 155.6 DAC26 155.6 DAG01 185.0 DAM08 174.6 DAP17 130.8 DAS10 146.8 
DAS24 146.8 DAS30 87.3 DAS40 77.8 DBA02 220.0 DBF18 155.6 DBG14 103.8 
DFB09 233.1 DFS23 293.7 DFS24 293.7 DGL30 207.7 DGO03 110.0 DHD08 123.5 
DJF23 146.8 DJM14 130.8 DJM28 185.0 DJP04 110.0 DLB25 261.6 DLL25 174.6 
DLT09 207.7 DLW04 130.8 DMC03 185.0 DMF11 293.7 DMG07 146.8 DMG24 196.0 
DMG27 155.6 DMP04 123.5 DMR27 233.1 DMS01 146.8 DOA27 92.5 DRC15 196.0 
DRG19 116.5 DSC25 277.2 DSW14 138.6 DVD19 164.8 DWK04 130.8 DXS20 123.5 
EAB27 164.8 EAL06 207.7 EAS11 110.0 EAS15 138.6 EAW21 207.7 EBJ03 146.8 
EDG19 196.0 EEB24 164.8 EEC04 196.0 EED07 554.4 EFC08 130.8 EGK30 196.0 
EGT03 138.6 EGW23 220.0 EJB01 92.5 EJM04 123.5 ELL04 116.5 EMD08 82.4 
EML18 370.0 EMP27 174.6 EOW04 164.8 EPW04 164.8 EPW07 123.5 ERS07 185.0 
ESL28 207.7 ESM05 138.6 ESP04 138.6 ESS05 174.6 ESS24 220.0 EWW05 174.6 
EXE06 146.8 EXH21 185.0 EXI04 110.0 EXI05 116.5 EXS07 207.7 EXW12 164.8 
FAH01 164.8 FGR15 130.8 FJL23 116.5 FLL27 207.7 FLW13 207.7 FMC08 196.0 
FMM21 207.7 FMM29 207.7 FMQ20 155.6 FMR17 116.5 FRH18 146.8 FSP13 155.6 
FXC12 110.0 FXE24 196.0 FXI23 103.8 GCU31 123.5 GEA24 130.8 GEK02 138.6 
GJW09 174.6 GLB01 77.8 GLB22 98.0 GMM06 196.0 GMM07 207.7 GMS03 110.0 
GMS05 261.6 GMW18 146.8 GRS20 110.0 GSB11 164.8 GSL04 116.5 GTN21 130.8 
GXL21 196.0 GXT10 155.6 GXX13 164.8 HBS12 196.0 HED26 123.5 HJH07 130.8 
HLC16 110.0 HLK01 116.5 HLK15 130.8 HLM24 138.6 HMG03 185.0 HML26 207.7 
HWR04 164.8 HXB20 196.0 HXI29 82.4 HXL58 116.5 HXR23 116.5 IGD08 196.0 
IGD16 174.6 JAB08 130.8 JAB30 164.8 JAF15 146.8 JAJ10 207.7 JAJ22 155.6 
JAJ31 155.6 JAL05 174.6 JAM01 207.7 9-Jan 130.8 JAP02 138.6 JAP17 174.6 
JAP25 174.6 JBP14 98.0 JBR26 110.0 JBS17 82.4 JBW14 130.8 JCC08 164.8 
JCC10 207.7 JCH13 110.0 JCH21 116.5 JCL12 174.6 JCL20 146.8 JCR01 233.1 
JDM04 110.0 JEG29 246.9 JES29 123.5 JFC28 82.4 JFG08 138.6 JFG26 138.6 
JFM24 174.6 JFN11 110.0 JFN21 116.5 JHW29 146.8 JIJ30 146.8 JJD06 174.6 
JJD11 185.0 JJD29 138.6 JJI03 110.0 JJM28 220.0 JLC08 185.0 JLD24 233.1 
JLH03 174.6 JLM18 207.7 JLM27 123.5 JLS11 130.8 JLS18 138.6 JMC18 138.6 
JME23 164.8 JMH22 155.6 JMJ04 207.7 JMZ16 196.0 JOP07 130.8 JPB07 98.0 
JPB17 164.8 JPB30 98.0 JPM25 110.0 JPP27 207.7 JRF30 123.5 JRP20 110.0 
JSG18 207.7 JTM05 87.3 JTS02 103.8 JWE23 185.0 JWK27 98.0 JWM15 116.5 
JXB16 110.0 JXB26 116.5 JXC21 220.0 JXD01 138.6 JXD08 138.6 JXD30 123.5 
JXF11 246.9 JXF29 103.8 JXG05 138.6 JXM30 146.8 JXS09 110.0 JXS14 146.8 
JXS23 98.0 JXS39 146.8 JXZ11 123.5 KAB03 185.0 KAC07 246.9 KAO09 261.6 
KAS09 233.1 KAS14 220.0 KCG23 246.9 KCG25 220.0 KDB23 220.0 KEP27 87.3 



 

111 

Table C-1.  Continued 
KEW22 220.0 KGM22 220.0 KJB19 164.8 KJI23 138.6 KJI24 130.8 KJL11 116.5 
KJM08 130.8 KJS28 207.7 KJW07 103.8 KLC06 207.7 KLD26 164.8 KMC19 207.7 
KMC22 207.7 KMC27 207.7 KMS29 155.6 KMW05 311.1 KPS25 103.8 KTJ26 220.0 
KWD22 185.0 KXA21 164.8 KXB17 246.9 KXH19 246.9 LAC02 164.8 LAD13 130.8 
LAI04 174.6 LAP05 116.5 LAR05 116.5 LBA24 220.0 LCW30 196.0 LDJ11 82.4 
LGK25 110.0 LGM01 185.0 LHL08 207.7 LJH06 207.7 LJM24 196.0 LJS31 220.0 
LLM22 277.2 LMB18 116.5 LMM04 185.0 LMM17 196.0 LMP12 196.0 LNC11 98.0 
LPN14 146.8 LRD21 116.5 LRM03 293.7 LSB18 174.6 LVD28 261.6 LWR18 220.0 
LXC01 207.7 LXC11 207.7 LXC28 207.7 LXD22 207.7 LXG17 116.5 LXR15 103.8 
LXS05 196.0 MAB06 196.0 MAB11 146.8 MAC03 185.0 MAM08 207.7 MAM21 220.0 
MAT26 261.6 MAT28 233.1 MBM05 155.6 MBM21 196.0 MBM25 185.0 MCA07 164.8 
MCB20 174.6 MCW14 277.2 MCW21 196.0 MEC06 196.0 MEC28 174.6 MEH26 196.0 
MEW15 246.9 MFC20 123.5 MGM28 220.0 MGV01 103.8 MHL19 138.6 MID08 174.6 
MJL02 130.8 MJM04 207.7 MJZ18 196.0 MKL31 123.5 MLB16 196.0 MLC08 233.1 
MLC23 174.6 MLF13 196.0 MLG10 233.1 MMD01 233.1 MMD15 233.1 MMG27 246.9 
MMM12 246.9 MMR01 138.6 MMS29 130.8 MNH04 207.7 MNH14 261.6 MPB23 103.8 
MPC21 207.7 MPF25 110.0 MPH12 220.0 MPS09 246.9 MPS21 233.1 MPS23 311.1 
MPS26 220.0 MRB11 98.0 MRB25 98.0 MRB30 92.5 MRC20 174.6 MRM16 155.6 
MRR22 174.6 MSM20 77.8 MWD28 110.0 MXC10 233.1 MXN24 233.1 MXS06 246.9 
MXS10 233.1 MYW04 220.0 MYW14 207.7 NAC21 98.0 NAP26 92.5 NFG08 207.7 
NGA16 116.5 NJS06 207.7 NLC08 185.0 NMB28 185.0 NMC22 233.1 NMF04 164.8 
NML15 196.0 NMR29 123.5 NMV07 207.7 NXM18 185.0 NXR08 185.0 OAB28 69.3 
ORS18 98.0 OWH04 233.1 OWP02 246.9 PAM01 92.5 PAT10 110.0 PCL24 110.0 
PDO11 110.0 PEE09 185.0 PFM03 103.8 PGB16 110.0 PJM12 98.0 PLW14 207.7 
PMC26 92.5 PMD25 130.8 PMF03 233.1 PSA21 155.6 PTO18 98.0 PTO22 98.0 
PTS01 130.8 RAB08 185.0 RAB22 196.0 RAE12 110.0 RAM30 261.6 RAN30 261.6 
RBC09 155.6 RBD03 155.6 RCC11 233.1 REC19 233.1 REW16 110.0 RFC19 233.1 
RFC28 116.5 RFH18 155.6 RFH19 130.8 RGE19 82.4 RHG07 220.0 RHP12 196.0 
RJC24 98.0 RJF14 164.8 RJF22 174.6 RJL28 92.5 RJR15 110.0 RJR29 116.5 
RJZ16 185.0 RLM21 123.5 RMB07 98.0 RMC07 155.6 RMC18 196.0 RMF14 196.0 
RML13 233.1 RMM13 246.9 RPC14 174.6 RPJ15 116.5 RPQ20 103.8 RSM20 130.8 
RTH15 87.3 RTL17 87.3 RWC23 98.0 RWF06 146.8 RWR14 110.0 RWR16 116.5 
RXG29 98.0 RXM15 110.0 RXP02 138.6 RXS13 130.8 SAC10 103.8 SAE01 164.8 
SAM25 138.6 SAR14 207.7 SAV18 277.2 SBF11 207.7 SBF24 207.7 SCC15 138.6 
SCH15 207.7 SEC02 196.0 SEF10 98.0 SEG18 130.8 SEH26 174.6 SEH28 246.9 
SEK06 164.8 SEM27 116.5 SFD17 116.5 SFD23 87.3 SFM22 92.5 SGN18 138.6 
SHC07 164.8 SHD17 220.0 SHT20 138.6 SJD28 123.5 SLC23 220.0 SLG05 196.0 
SLM27 87.3 SMD22 207.7 SMK04 370.0 SMK23 146.8 SMW17 77.8 SPM26 92.5 
SRB31 174.6 SRR24 130.8 SWB14 123.5 SWS04 155.6 SXC02 146.8 SXG23 174.6 
SXH10 185.0 SXM27 196.0 SXS16 220.0 SXZ01 87.3 TAB21 174.6 TAC22 207.7 
TAR18 155.6 TCD26 138.6 TES03 220.0 TLP13 233.1 TLS08 185.0 TMK04 261.6 
TNC14 207.7 TPM04 155.6 TPP11 220.0 TPP24 185.0 TPS16 116.5 TRF06 116.5 
TRF21 98.0 TRS28 185.0 VFM11 220.0 VJV02 130.8 VJV09 110.0 VMB18 174.6 
VMS04 277.2 VMS05 246.9 VRS01 164.8 WBR12 277.2 WCB24 174.6 WDK04 110.0 
WDK13 220.0 WDK17 130.8 WDK47 146.8 WFC07 116.5 WJB06 233.1 WJB12 110.0 
WJF15 174.6 WJP20 123.5 WPB30 123.5 WPK11 110.0 WSB06 110.0 WST20 87.3 
WTG07 130.8 WXE04 123.5 WXH02 103.8 WXS21 110.0 LME07 659.3 EAM05 146.8 
JEC18 196.0 TMD12 349.2 SMA08 220.0 SHD04 349.2 KXH30 174.6 VAW07 174.6 
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