
2

1

4

3

6

5

7

@CSTeachingTips CSTeachingTips.org facebook.com/csteachingtips

to help students debug code by acting it out.
Read code aloud

to build students’ confidence for future learning.
Emphasize Scratch is REAL coding

to help students reason about sequencing.
Add sound blocks to code

to make creating new variables more intuitive.
Use implicit then explicit variables

to use blocks that execute sequentially.
Use “& wait” blocks

to help students distinguish easily confused blocks.
Contrast set and change blocks

to let them apply abstraction to working code.
Let students write “bad” code

CSTeachingTips.org/Tips-for-Teaching-Scratch

Scratch
Tips for

Scratch is
similar to other
programming
languages.

Now that
your code works,
could you use a
repeat to make

it simpler?

Try setting
or changing
the volume
variable.

Set ignores
the old value.

Change modifies
the old value.

Remember to
use the broadcast
and wait block.

Read the
code aloud and
pretend to be

the cat!

Add different
play note blocks
to see how your

code works.

 Emphasize Scratch is REAL coding

Students often think that Scratch is a computer game and don’t realize that Scratch is a tool
to learn computer programming. We often want students to both learn these computer-
programming skills and develop their confidence that they could learn more. To achieve this,
it is important to emphasize that Scratch is a programming language and not a game!

 Read code aloud

A common strategy in debugging for kids and adults is to read through and trace on paper
what the code would do. To support this it is important to require students to have paper
and a pencil out when they are working. When working with sprites in Scratch, you can
have one student read the code and another one act out what the sprite would do either by
moving around the classroom or drawing on paper.

 Use implicit then explicit variables

Creating new variables in Scratch (i.e. explicit variables) can be a conceptual leap for
students. To help ease this transition, help students see that they’re frequently using implicit
variables such as coordinates, direction, size, volume, instrument, tempo, pen size, and pen
color. Help students see that they are using variables when using these implicit variables!

 Add sound blocks to code

Students often use an if block when they mean to use a forever-if block. Help students
recognize this by saying “if you put a play-note block in the if, how many times would you
hear it?” This style of prompt can be a great hint for students and you can use play-note
and say blocks to help visualize program execution. Some programming languages use
“print-statements” as a similar strategy.

 Contrast set and change blocks

Students often use a set block when they want a change block and vice versa. I use the
phrase “Set ignores the variable’s old value. Change modifies the variable’s old value.” When
students make the mistake of using the wrong block, I’ll ask “do you want to set the
variable or change it?” and/or ask them “what’s the difference between set and change?”

 Use “& wait” blocks

Students can get confused when they use multiple play-sound blocks in a row because if
you don’t use the play-sound-until-done blocks the sounds start one after another before
the previous sound can finish playing. Students can also get confused when broadcasting
messages because there are broadcast blocks and broadcast-and-wait blocks. I recommend
students use “until done” or “and wait” so that their blocks of code execute sequentially.

 Let students write “bad” code

Even after students have learned repeat I find that they’ll solve problems by copying and
pasting code rather than using repeat. I find students are most efficient solving the problem
if they get the code working without repeat before I suggest, “could you use repeat to make
this code simpler?” My hypothesis is that as students are learning more abstract tools like
repeat, it can be helpful to be able to see the working code without the more abstract tool.

7

6

5

4

2

1

3

	Scratch_Front_v1
	Scratch_Back_v2

