
2

1

4

3

6

5

7

@CSTeachingTips CSTeachingTips.org facebook.com/csteachingtips

to demonstrate debugging skills.
Find and fix a bug in code

to demonstrate code tracing ability.
Predict the output of code

to code without syntax errors.
Arrange code segments

to practice abstracting from lines of code.
Explain, compare, or critique code

to show off the breadth of their skills.
Create a portfolio

to demonstrate understanding of an algorithm.
Solve the problem by hand

to demonstrate programming fluency.
Write or modify code

CSTeachingTips.org/Tips-for-Assessing-Programming

Assessment
Tips for

Draw a
diagram as you

trace through the
lines of code!

Let’s practice
all of the skills
at the same

time!

Describe the
code to someone
who has never

seen code.

Before coding,
test your

understanding of
the algorithm.

Show your
friends and family

all that you’ve
learned!

Programming
involves a lot of
debugging! Let’s

practice!

Focus on your
code’s logic by

rearranging
these lines!

 Predict the output of code
Ask students what code will output when provided specific inputs. You can also reverse this
and ask students to provide inputs that will produce specific outputs. Ask students to
compare the output of code in different programs to help students see the differences
between similar concepts or commands. Help students understand that being able to predict
the behavior of commands in a programming language is an important prerequisite to being
able to write code. For all of these you can use them as formative assessment in class.

 Find and fix a bug in code
Ask students to identify a bug in code. You can model good debugging practices by showing
various inputs that produce correct and incorrect output. You can ask students to fix a bug
that you demonstrate with tests or ask them to find a bug. For example, you can ask
students to write a test case that will demonstrate the bug.

 Explain, compare, or critique code
Ask students to write sentences to describe code in a way that a friend that isn’t in the class
would understand. This provides students the opportunity to demonstrate that they can
abstract from individual lines of code. You can make the task a little easier by telling
students to summarize the responsibility or behavior of particular parts of the code. As an
easier to grade alternative, you can ask students to rename variables in the code.

 Arrange code segments
Give students a set of lines of code and ask students to order them to produce a program
with specific behavior. These problems are typically called “Parson’s Problems” and allow
students to reason about the logic of the code without having to worry about syntax. You
can make this more difficult by including extraneous lines of code that students don’t need
to solve the problem.

 Solve the problem by hand
Before students try to write code that solves a problem, make sure that they can solve the
problem by hand. This can involve writing test cases that show that they can predict the
expected behavior. You can also have students describe or draw the output of an algorithm.

 Create a portfolio
It is difficult to write assessments that capture the breadth of the skills students have
learned. Have students create a portfolio that shows off their work throughout the class.
This can also be motivating for students to be able to see and share what they learned in
the class! You can also give students a rubric for the skills they need to demonstrate within
a project or their portfolio.

 Write or modify code
It probably goes without saying that to assess students’ ability to write code, you could ask
them to write code. Additionally, consider providing students code that they need to modify
to change the behavior of the code. This can provide students practice reading code and
identifying the important features that determine each behavior.

7 	

6 	

5 	

4 	

2 	

1 	

3 	

