HARRIS GATEWAY TO LEARNING AND INNOVATION INAUGURATED IN THE COMPUTER SCIENCE AND ENGINEERING BUILDING

Harris Corporation recently gave $3 million to create an endowed research fund called the Research Excellence Fund in Computer Science and Engineering. In recognition of this gift, the department has named space on the 3rd floor, now known as the Harris Gateway to Learning and Innovation. The Harris Gateway seeks to address three major challenges that are faced by the CISE Department. According to the Harris Corporation Gateway proposal that led to this gift, first, it seeks to arrest the decline in student enrollment by investing in cutting-edge research and creating an environment that encourages collaboration. Second, it will help retain and recruit top talent within the faculty by providing early support for promising young faculty. Finally, it will enable collaboration between Harris Corporation and the University of Florida at even greater heights, and strengthen the Harris Corporation brand among CISE students, faculty and the greater Gator community. In addition, we anticipate future collaboration with visiting faculty from Harris. In recognition of this generous gift, the entrance and main lobby of the CISE Department has been renovated. The distinct entrance, name and ambience has created an updated look and use of the space, and has been designed as a space for “intellectual collision” – a natural and comfortable space for the 1100 students, 40 faculty and the many guests who mingle after labs or class. All major on-campus Department sponsored events, including hosting for faculty candidates and the prospective students and their families will be held in the Harris Gateway.

SONG, KAHCVECI, AND RANKA WIN BEST STUDENT PAPER AWARD AT ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND COMPUTATIONAL BIOLOGY

UF CISE Ph.D. student Bin Song and her co-supervisors Professor Tamer Kahveci and Professor Sanjay Ranka received the Best Student Paper Award for their research paper titled “Enzymatic target identification with dynamic states” at the ACM International Conference On Bioinformatics and Computational Biology (ACM-BCB), held at the Niagara Falls, NY on August 2nd – 4th, 2010. In their paper, they developed a novel approach for predicting the most desirable enzyme knockouts in a given metabolic network. Metabolic networks consist of a complex network of reactions that transform chemical compounds. The reactions are catalyzed by biomolecules, called enzymes. By knocking out a set of enzymes, it is possible to change the production rate of some of the compounds in the metabolism. This problem has many critical applications, many of them in biotechnology such as biomedicine and bioenergy. For instance it is possible to modify the metabolic networks of bacteria that generate ethanol in their metabolism and increase the ethanol production rate significantly.

The fundamental contribution of this paper to metabolic engineering is that it models the metabolism in
When a metabolism is altered, its state — in other words, the set of fluxes of all of its reactions — changes dynamically until it reaches a steady state. This paper considers the entire trajectory of fluxes, called the dynamic state, in order to decide the best set of enzyme knockouts. To solve this problem, the paper addresses two key issues. First, it answers the question of how to compare whether two dynamic states are similar. The second issue arises from the nature of the dynamic state. Finding the dynamic state after knocking out a set of enzymes can be computationally very expensive depending on the remaining network. Furthermore, this needs to be repeated for many possible enzyme knockouts. The paper develops smart algorithms to avoid this computation whenever possible or to cut down its cost when it cannot be entirely eliminated. The resulting algorithm generates hundreds of enzyme knockout predictions at an impressive speed ranging from several seconds to hours. It takes anywhere from days to months to perform small number of enzyme knockouts in wet lab. As Tamer Kahveci says “Considering the entire dynamic state is crucial in making successful enzyme knockouts. What happens between the initial and the final state of the metabolism may be a matter of life or death for the organism.”
UF PROGRAMMING TEAM CONTINUES ITS TRADITION OF SUCCESS

Led by team captain Joe “Hua” Thuemler and vice-captain Willie Maddox and coached by Dave Small, the UF programming team is once again making a name for itself in the major collegiate competitions.

IEEEEXTREME 4.0: UF WINS FIRST PLACE IN THE WESTERN HEMISPHERE/14TH IN THE WORLD

In the IEEE Xtreeme 4.0 competition, a 24-hour programming marathon, team GitWizards (consisting of Joe Thuemler, Mauricio Bell’Albero, and Preston Mueller) were first in the entire Western Hemisphere and 14th place in the world. At this time only the top 25 finishers have been announced, but we expect that a couple other UF teams will also place in the top 100 (755 teams from universities around the world participated in the event).

ACM/ICPC SOUTHEAST USA 2010 REGIONALS: UF WINS SECOND PLACE.

At the ACM International Collegiate Programming Contest (ICPC) Southeast Regional Contest, UF had three teams in the top 20, with Irrelephant UF (Joe Thuemler, Mauricio Bell’Albero, and Jason Fisher) taking second place and tying UM for the most problems solved [interestingly, UM, placed 16th in the IEEE Xtreeme]. We are hopeful that that UF will once again be invited to compete in the World Finals.

The ACM/ICPC is the oldest and most prestigious of all the contests in which we compete. It’s conducted in two phases: first are the regional contests, from which one hundred top teams are selected to advance to the second phase: World Finals. The Southeast USA Regional (SER) competition pitted 76 teams from Florida, Georgia, Alabama, South Carolina, and Mississippi—we fielded four teams: Camelflage UF, Giroffles UF, Hawkward UF, and Irrelephant UF.

The four teams and their coach, Dave Small, traveled to Melbourne, FL the evening before the competition. The next morning, after a big breakfast, the teams headed to the FIT campus. Following a practice round and lunch, the teams settled in for a grueling five hour problem-solving marathon.

Each team, which consists of three students, is provided a workspace with a single computer, pens, paper and a set of ten programming challenges. In addition to allocating the problems amongst the members and effectively sharing time on their computer, to be successful, a team must also quickly size up the problem set and attack the problems in an order that will minimize solution times. While teams are ranked by how many problems they solve, ties are broken in favor of the team who spent the least amount of time developing their solutions.

Whenever a team submits a correct solution, a balloon—whose color indicates the problem solved—is brought to their work area. The sight of an opponent’s growing balloon bouquet can serve to inspire a renewed sense of competition or utterly demoralize—it can also provide a clue as to which problems are more easily solved, as teams typically tackle the hardest problems last. One hour before the end of the contest, the balloons stop coming—to ensure that there is an air of suspense as to who shall be declared the victor—until the post banquet awards ceremony.

Though only the winner of the SER contest is guaranteed an invitation to World Finals (to be held mid-Spring in Sharm El Sheik, Egypt) we believe it is likely team *Irrelephant UF* will also be selected to compete and have already begun to prepare.
The world wide web has changed our lives by making knowledge more easily accessible to us. You can find out about virtually anything—from Gator football scores to the history of Mahler symphonies. The connection between you and the web is usually thought of as clicking a mouse and viewing pages in a web browser. You may well think of the web in terms of how you experience web content, but what does the future hold for the web, with its reams of information, data, and knowledge? Are we to forever constrain our human connection to the web by performing the digital equivalent of flipping through pages of a book?

One possibility for the future web is to more fully explore how humans connect to the deep repositories of knowledge that define the web. To a large extent, this transformation is already occurring on devices that use the web, but rarely employ web browsers in that exploration. I refer to the latest tablet and smartphone offerings such as the iPad and iPhone. Even though smartphones and tablets do contain web browsers, the connection of the human to web servers is made more transparent with apps. Consider when you point your camera phone at a historical building, and you get back information, perhaps through a synthetic voice. In this experience, many web interactions are present but instead of experiencing them on a simulated printed page, you interact within the real world and the web knowledge is experienced in its most useful and convenient form.

The research in my group stretches from smartphone applications to virtual environments that support alternative methods of interacting with web accessible information assets. The Second China project (image at the beginning of the article) seamlessly connects elements from a flat, text and image-based collection of Chinese culture to a 3D experiential environment constructed using both the Second Life and OpenSim software frameworks. The goal behind this fairly large project was twofold: (i) to build interconnected web/virtual environment web structures for the purpose of cross-cultural educa-
tion and training, and (2) to perform a human subject experiment designed to test hypotheses about the role of immersion and interaction on presence, and the role of presence on recall and cultural sensitivity. The first phase was complete two years ago, and the processing of human subjects was just completed, with results expected soon. Do users remember more when they experience knowledge vs. watching it in video form? Is cultural sensitivity enhanced in virtual worlds compared with web page delivery? We’ll know answers to these questions shortly, and these answers will be disseminated in articles and on our Second China web site (www.secondchina.com). The project in all of its phases is thoroughly interdisciplinary and has involved several colleges (Liberal Arts and Science, Pharmacy, Journalism, and Engineering).

Fig. 1 shows selected snapshots of the virtual environment where avatars log in and experience the world. The space contains 47 “bots” who are virtual humans, and who react in specific ways to deliver cultural information. For example, in the tea house, one bot greets the visitor and another introduces the visitor to famous people who have visited there.

![Fig. 1](image)

A selection of snapshots from the Second China immersive environment. top left: the gazebo where all visitors start their journeys, top right: a bot in the tea house, bottom left: four bots practicing tai chi in the park, bottom right: the government square.

The main areas of our research for this project are: (1) to formulate a formal state-based modeling method for virtual human interaction, (2) to explore the bi-directionality between virtual environments and flat multimedia knowledge, and (3) to study the effects of virtual environments on presence, memory, and cultural sensitivity through a human subject (N=160) experiment by controlling interaction, immersion, level of 3D environment expertise, and gender.

One of our primary lessons learned with our work involves fundamental questions about the web. Too often, we think of the web as the formula web = browser. However, the ongoing development of a semantic web reminds us that the web is really about building and interrelating knowledge. But what we are also finding, and what you may have found with your own use of tools such as LinkedIn and Facebook, is that the web is not a disembodied network. We can connect to it in different ways, from viewing the web as a printed document to exploring the world with smartphones, tablets, and game-like 3D environments.
STUDENT TRAVEL AWARDS

* Denotes College of Engineering Travel Award
The Fall 2010 Career Development Workshop (CDW) went off without a hitch on September 20, 2010. The success of the CDW was noted by several of the company representatives on their comment cards. As one representative wrote, the CDW was a “very well run event.”

Another comment could not be truer: “…good student participation, friendly volunteers.” Both the ASCIE and ACM presidents shared valuable information for how to organize the actual workshop layout. The volunteers from both organizations were tremendous help during the CDW to the recruiters and the CISE staff. As one representative wrote the CISE staff and student volunteers took good care of the recruiters at the event.

We also received other encouraging comments about the quality of the students and the number of student who attended the CDW. Roughly 340 students attended.

This year 41 representatives from nine companies attended the CDW. In attendance were Amazon, American Express, Harris Corporation, Infinite Energy, Lockheed Martin, Ultimate Software, University of Central Florida’s Interactive Entertainment Academy and Walt Disney Parks and Resorts. An exciting addition to the Fall 2010 CDW was Microsoft.

KAERI TAYLOR
Office Assistant

Keri Taylor has been with the CISE staff since August 2008 as an office assistant. She is the Department’s primary payroll expert. She is responsible for hiring, time approval, payroll transactions, graduate student appointments and other human resource duties. Keri has a bachelor’s and master’s degree from UF and is co-publisher of the magazine, “North Florida School Days.” Her outside interests include watching spectator sports (especially the Gators and Tampa Bay Buccaneers), riding motorcycles and playing with her Chocolate Labs. Before Keri came to CISE she was a Financial Aid Adviser at Santa Fe College. Her financial knowledge and background has helped her streamline the payroll process at CISE, keeping track of over 200 employees.

JUSTINE HIPSKY
Sr. Secretary for the Department Chair

Justine Hipsky joined the CISE staff in September 2010 as the Chair’s secretary. She helps organize the Career Development Workshop, Industrial Advisory Board meetings, faculty evaluations, and has also taken over the duties of reception and maintenance of the front office. Justine graduated in December ’09 with a B.A. in Political Science. And when she’s not in the office, she volunteers for the Guardian ad Litem program & the non-profit organization, Bridges Across Borders. Justine enjoys cooking with friends and family, photography, going to the dog park and hiking.
ALUMNI NEWS

Are you a CISE alumnus? Have you made the news lately? Awards, start-ups, significant appointments? If you would like your news to be considered for publication in a future CISE newsletter, please email it to us at newsletter@cise.ufl.edu. Be sure to provide us with your name, your most recent degree from CISE and the year in which you received it. We would like to hear from you!

DEPARTMENT OF COMPUTER & INFORMATION SCIENCE & ENGINEERING
E301 CSE Building
P.O. Box 116120
Gainesville, FL 32611-6120

EDITOR
Dr. Seema Bandyopadhyay

ASSISTANT EDITOR
Anna Hernandez

YES! I WANT TO SUPPORT CISE

Amount (please circle):
$1,000 $500 $250 $100 $50 Other $ ______

Please choose a payment method:
Credit Card:
Type: VISA MasterCard Discover
Number: ______________________________
Exp. Date: _________ / _________

Check: Please make checks payable to The University of Florida Foundation and note that your gift is for the CISE Department

Name

Address

City State Zip

Phone Email

Please return to:
University of Florida Foundation
PO Box 14425
Gainesville, FL 32604

Don’t forget your company’s matching gift form!