
 
 
 
 
 
 
 
 
 
 
 
 
 
Improving the Reversible Programming Language R and its 

Supporting Tools 
 
 
 

Christopher R. Clark 
cclark@cise.ufl.edu 

 
 

CIS 4914 Senior Project 
 
 

Advisor: 
Dr. Michael P. Frank 

mpf@cise.ufl.edu 
 
 

December 3, 2001 
 
 
 
 
 
 
 
 
 
 
 
 
 



Abstract 
 
This project involved improving the functionality and performance of a reversible programming 
environment developed previously by a team at MIT.  Enhancements were made to the R re-
versible programming language, the R compiler, and the Pendulum reversible processor architec-
ture simulator.  Support for advanced condition testing, character strings, and data output format-
ting was added to R.  The compiler was made easier to use and faster.  Finally, the emulator was 
updated to support the new language features.  The results of this project serve as a step in the 
evolution of the R programming tools.  Suggestions for future work are presented. 
  
1 Introduction 
 
1.1 Background 
 
Reversible computing means using only computational operations that can be exactly reversed, 
or undone.  Reversibility can be applied to any or all levels of a computer system—circuits, ar-
chitectures, programming languages, and algorithms.  This project deals with a reversible pro-
gramming language and a reversible processor architecture.  At these levels, reversibility pro-
vides support for exploring interesting reversible algorithms. 
 
1.2 Related Work 
 
The foundation for this project is the reversible programming language R and the Pendulum re-
versible processor architecture, which were both originally developed at MIT by Dr. Frank, 
Carlin Vieri, and others.  Dr. Frank also developed a compiler for R that targets the Pendulum 
architecture.  Matt DeBergalis (MIT) developed a simulator for Pendulum assembly language 
programs, known as PendVM. 
 
1.3 Motivation 
 
The R language and compiler were developed as a proof-of-concept and to simplify writing pro-
grams for the Pendulum architecture.  However, the functionality of R and the efficiency of the 
compiler were less than ideal.  Improving these two areas is the main emphasis of this project.  
PendVM will also be modified to support the new functionality of R.  The improved versions of 
R, the R compiler, and PendVM will provide future programmers with more capabilities and 
more productivity. 
 
 
2 Research 
 
2.1 Studying Existing Implementation 
 
The first task of the project was to gain understand the current state of the R language, the R 
compiler, and the Pendulum virtual machine.  This involved reading the relevant chapters of Dr. 

 2



Frank’s manuscript [1], which include the specifications of the language and the compiler.  After 
reading this material, I studied the source code for the compiler, which is written in Common 
Lisp.  I wrote several simple R programs and compiled them using the R compiler in debug 
mode, which displays the output after each step in the iterative compilation process.  By studying 
this output, I was able to understand the internal workings of the compiler.  Next, I studied the 
source code of the Pendulum emulator, PendVM, which is written in C.  I ran some sample pro-
grams to learn the emulator’s interface. 
 
2.2 Gathering Desired Features 
 
The next phase of the project was to compile a list of desired features and determine which fea-
tures to implement.  I created an initial list though observations made while studying the existing 
documentation and source code.  I also asked other members of the Reversible and Quantum 
Computing Group who use the R tools to contribute feature requests to the list.  Finally, I pre-
sented the list to Dr. Frank, who provided some additional feature ideas and made some sugges-
tions on the implementation of others.  I prioritized the list based on each feature’s benefit (use-
fulness) and cost (time to implement) and chose the top few to implement in this project. 
 
2.3 Literature 
 
Most of the literature used for this project consisted of reference material used while modifying 
the source code for the compiler.  Dr. Frank’s manuscript [1] was used extensively for its details 
on Pendulum, R, and the R compiler.  Some Lisp references I used frequently were Common 
Lisp, the Language [2] and the Common Lisp HyperSpec [3].  I also read an overview of Lisp 
programming in The Art of Lisp Programming [4]. 
 
 
3 Design and Implementation 
 
For the rest of this document, I will refer to the versions of the R specification, R compiler, and 
PendVM emulator that existed prior to this project as the original versions.  I will refer to the 
modified versions that resulted from this project as the new or enhanced versions. 
 
3.1 Compiler Output 
 
The original compiler printed all output to the console.  This required the user to redirect the out-
put to a file and then manually edit the file to remove extraneous information and add a header 
line in order to run the program in PendVM.  This is tedious and time-consuming.  With the new 
compiler, the output is still written to the console, but the final assembly code is also automati-
cally written to a file.  The Pendulum assembly language (PAL) code file has the same name as 
the input file but with a .pal extension.  This file contains the necessary header so that the file can 
be executed by PendVM without modification. 
 
 
 

 3



3.2 Conditional Execution Construct 
 
The conditional execution statement (if statement) available in the original version of R was very 
primitive.  The condition could only be a single relational comparison between two expressions.  
In addition, it did not support an else clause.  In this project, the conditional execution construct 
was enhanced to support combining multiple comparisons using Boolean operators and an op-
tional else clause.  The enhanced conditional execution statement in R has the following syntax: 
 
 (if condition 
  if-statement1  if-statement2  …  if-statementn 
 else 
  else-statement1  else-statement2  …  else-statementn 

) 
 
The condition expression can be a Boolean combination of relational comparisons.  The sup-
ported Boolean operators are AND (&&), OR (| |), and NOT (!).  The supported relational opera-
tors are =, !=, <, >, <=, >=.  Parentheses must be included such that each operator has exactly 
one parenthetical expression on each side (except for NOT, which must have exactly one expres-
sion on its right).  The entire expression must also be surrounded by parentheses.  The following 
is a valid example: 

 
( ( (x < y) && (y != (z+1)) ) || (! z) ) 

 
3.3 Character Strings 
 
In the original version of the R language and compiler, the only supported data type was 32-bit 
signed integers.  This limited the types of useful programs that could be written and made pro-
gram output difficult to decipher.  The programming potential was greatly increased by the addi-
tion of a character-based data type.  The enhanced versions of R and the compiler now support 
the use of character strings in programs. 
 
3.3.1 R Constructs 
 
R now allows the programmer to define character strings as static memory variables.  Since 
copying a string into a non-empty string variable cannot be done reversibly without generating 
garbage data, currently all string variables must be defined statically at compile-time.  However, 
it is reversible to copy a string into an empty string variable by simply adding the value of the 
string to the empty string.  This can be reversed by subtracting the value of the string.  Conceiva-
bly, this could be used to read input from the user or from a file.  As there are no input constructs 
in R, this functionality is not currently supported.  However, the string declaration construct does 
allow the programmer to reserve an empty block of memory that could eventually be used for 
storing such input data. 
 
 
 

 4



A string variable can be declared using the defstring construct and the following syntax: 
 
 (defstring name “string” <length>) 
 
The length is an optional parameter.  If it is omitted, the compiler uses the length of string.  If it 
is included and less than the length of string, then string will be truncated to length.  If length is 
greater than the length of string, empty space will be allocated after the end of string.  If string 
is empty (“ ”) then an empty string of length will be created.  
 
3.3.2 Compilation 
 
The compiler generates a list containing the 8-bit ASCII code of each character in the string and 
adds a null character (zero) at the end.  It then packs each sequence of four characters into a 32-
bit word with the first character in the low-order bit position.  A list of these words is used to 
create a static array declaration, which is compiled to store the words in consecutive memory lo-
cations.  Figure 1 illustrates this process. 
 

String declaration: (defstring h “hello”) 
Character value list (hexadecimal): (48 65 6C 6C 6F 0) 
Packed word list (hexadecimal): (6C6C6548 0000006F) 
Array declaration: (defarray h #x6C6C6548 #x0000006F) 
PAL memory allocation (decimal): H: DATA 1819043176  

 DATA 111 
Figure 1: String compilation process 

 
3.4 Data Output 
 
Previously, the output functionality of R consisted of two functions: printword and println.  
The printword function output a variable in signed integer representation and println simply 
output a newline representation. 
 
3.4.1 New R Functions 
 
A new output function called print is a general-purpose output function.  It can be used to output 
the contents of a register, a static memory variable, a dynamic memory variable, a static string 
variable, or a literal string.  It also supports options for specifying parameters of the output repre-
sentation.  The println function was enhanced to accept all the same data types and options as 
print.  When println is used without any arguments, it outputs just a newline representation as in 
the original version.  The printword function is still available for compatibility with existing 
programs. 
 
The print and println functions will output any type of data and allow the programmer to spec-
ify options to convey to the run-time environment how the data should be displayed.  For integer 
variables the display options consist of signed two’s complement, unsigned two’s complement, 

 5



decimal, and hexadecimal formats.  The R program and its output in Figure 2 below demonstrate 
the use of the output functions. 
 

(defword x 16) 
(defstring h "hello") 
(defstring w " world") 
 
(defmain main 
  (print h) (println w) 
  (print "Base 10: ") (printword x) (println) 
  (print "Base 16: ") (println x  :base 16) 
) 

 
 
 
 
 
hello world 
Base 10: 16 
Base 16: 10 
 

Figure 2: R output functions 
 
3.4.2 Output Convention 
 
When compiling an output statement, the compiler automatically determines the data type of the 
item being output.  To allow the run-time environment to determine how an output word should 
be represented, the compiler outputs a header word before each output data item.  The header 
indicates the data type of the subsequent word and how it should be displayed.  A newline is rep-
resented as a header word only. 
 
PendVM was modified to support this new output convention.  When the first output statement is 
encountered, it is interpreted as a header word.  If it is the newline header, PendVM prints a 
newline to the display and the next output is interpreted as a header word.  If it is another header 
type, the header is saved and the next output word is printed based on the type and options in-
cluded in the saved header word. 
 
3.5 Pendulum Assembly Code Optimizations 
 
Currently, the compiler compiles each R instruction individually from source code form all the 
way to Pendulum assembly code form. Therefore, it cannot perform any optimizations across 
instructions.  For example, an intermediate value that is used by two consecutive instructions will 
be computed twice.  Additionally, to ensure reversibility, the computed value must be uncom-
puted after each use, leading to the following general sequence of events: 
 

1. Computation of intermediate value 
2. First use of intermediate value 
3. Uncomputation of intermediate value 
4. Computation of intermediate value 
5. Second use of intermediate value 
6. Uncomputation of intermediate value 

 
Obviously, this is terribly inefficient, especially since the computations of items 3 and 4 exactly 
cancel each other out.  This means that the entire sequence of instructions comprising the first 
uncomputation and the second computation perform no useful work.  To reduce these types of 

 6



inefficiencies, the new compiler now performs an optimization scan of the assembly code after 
the normal compilation process is completed.  The compiler is able to recognize and eliminate 
unnecessary uncomputation and re-computation of values.  The R fragment and its compiled 
PAL code (before optimization) in Figure 3 show the type of optimization performed by the 
post-compilation scan.  All of the PAL instructions in bold print are removed by the optimizer.  
In this specific case, the instruction count is reduced by 33 percent in the optimized version. 
 

(if (x) then 
  (print 1) 
else 
  (print 0) 
) 
 

                ADDI $3 X  
                EXCH $4 $3  
                ADD $2 $4  
                EXCH $4 $3  
                ADDI $3 -X  
_IFTOP:         BEQ $2 $0 _IFBOT  
                OUTPUT $3  
                ADDI $3 1  
                OUTPUT $3  
                ADDI $3 -1  
_IFBOT:         BEQ $2 $0 _IFTOP  
                ADDI $3 X  
                EXCH $4 $3  
                SUB $2 $4  
                EXCH $4 $3  
                ADDI $3 -X  
                ADDI $3 X  
                EXCH $4 $3  
                ADD $2 $4  
                EXCH $4 $3  
                ADDI $3 -X  
_ELSETOP:       BNE $2 $0 _ELSEBOT  
                OUTPUT $3  
                OUTPUT $3  
_ELSEBOT:       BNE $2 $0 _ELSETOP  
                ADDI $3 X  
                EXCH $4 $3  
                SUB $2 $4  
                EXCH $4 $3  
                ADDI $3 -X 

Figure 3: Compiler optimization 
 
 
4 Results 
 
4.1 Verification 
 
To ensure that the new compiler produced correct output, some sample programs were compiled 
using both compilers, and the output of each was compared.  The Schrödinger wave equation 
simulation and multiplication algorithm, which were know to produce correct results with the 
original compiler were used for this test.  For these programs, the PAL code produced by the 
original compiler and the PAL code produced by the new compile (before optimization) were 
identical.  This verifies that none of the original functionality of the compiler was corrupted dur-
ing the modification process. 

 7



4.2 Compile Time 
 
One of the complaints from users of the R compiler was that the compilation process took too 
long.  To improve performance, some tweaks were made to the main loop of the compiler that 
transforms the R source code into PAL code.  To test the relative performance of the original and 
new compilers, the time to compile two sample R programs was measured for each compiler.  In 
addition, the new compiler was compiled to a LISP binary executable and included in this test.  
The average of three trials was used for each combination of program and compiler.  All tests 
were run on a system with an Intel Pentium 3-733 and 512MB RAM using CLISP 2.27.  Figure 4 
contains the results. 
 

0 5 10 15 20 25 30

Original

New

New (compiled)

seconds

sch3 mult
 

Figure 4: Compilation time comparison of the original and new compilers.  The time is the CPU time spent execut-
ing the main loop of the compiler.  The I/O time for reading the input file and writing the output is not included in 
this figure. 
 
The new compiler is an average of 34 percent faster than the original compiler for the test pro-
grams.  The compiled new compiler is an average of 94 percent faster than the interpreted ver-
sion.  The compiled compiler is able to compile both programs in about one-half of a second.  
This compiler should be quick enough to compile a complex program in a reasonable amount of 
time. 
 
4.3 Code Efficiency 
 
The types of post-compilation optimizations discussed in section 3.5 are only effective in certain 
limited situations.  As shown in the example in there, when the if-else construct is used, a sig-

 8



nificant number of instructions can be eliminated.  However, for the Schrödinger wave equation 
simulation, the optimizer only reduces the instruction count by two percent, and no reduction is 
made for the multiplication program.  It is apparent that optimization may be more effective if 
done at an earlier stage in the compilation process. 
 
 
5 Conclusion 
 
I found this project to be a useful learning experience.  I had only written a couple LISP pro-
grams previously, so, needless to say, I learned a lot about LISP while working on the compiler.  
I also learned to appreciate some things about developing a large program in general, such as the 
value of well-placed comments in the source code and modular design.  I had never written a 
compiler before, so it was interesting to work on modifying one.  I also learned about reversible 
computing theory and practical aspects for implementing reversible operations.  I hope current 
and future users of R and its supporting tools find the enhancements of this project beneficial. 
 
 
6 Future Work 
 
6.1 Floating Point 
 
One notable feature missing from R is the support of non-integer data and floating-point opera-
tions.  Since the current Pendulum architecture does not contain floating-point hardware, float-
ing-point arithmetic operations would have to be done in software.  One possible approach to 
developing a floating-point library for R would be to translate a library from an open-source C 
implementation. 
 
6.2 Evolution of R 
 
If R is to become widely used, some changes should probably be made.  Most programmers 
would find the current syntax unfamiliar, so it may be better to adopt a syntax more like C or 
Java.  Support for function calls with return values, structures, and dynamic memory allocation 
are some other important missing features. 
 
 
7 Acknowledgements 
 
I would like to thank Dr. Frank for his willingness to support me on this project and for his assis-
tance in completing the project.  The detailed comments he included in the source code of the 
compiler were also greatly appreciated!  I would also like to acknowledge Dr. Schmalz for his 
general support of the Senior Project class and for providing helpful tips throughout the semes-
ter. 
 
 

 9



8 References 
 
[1] Frank, Michael P.  “Reversibility for Efficient Computing”, unpublished ms. (1999) 
 
[2] Steele, Guy L.  Common Lisp, the Language, Second Edition, Woburn, MA: Digital Press 

(1990) 
 
[3] Pitman, Kent, ed.  “Common Lisp HyperSpec”, 

http://www.lisp.org/HyperSpec/FrontMatter, The Association of Lisp Users (as of 3 Dec 
2001) 

 
[4] Jones, Robin, Clive Maynard, and Ian Stewart. The Art of Lisp Programming, London: 

Springer-Verlag (1990). 
 
 
9 Biography 
 
I am graduating from the University of Florida in December 2001 with a degree in Computer 
Engineering.  After graduation, I plan to pursue a master’s degree in Computer Engineering.  
During the past six summers, I have worked at Eglin Air Force Base on various computer-related 
projects including web design, database design, and automatic target recognition using image 
processing and artificial intelligence techniques.  I have also done some general computer con-
sulting for various small businesses and individuals performing tasks such as system building, 
troubleshooting, and network setup.  I hope to eventually start my own business doing work in 
some computer-related area. 

 10


	Christopher R. Clark
	Abstract
	1Introduction
	2Research
	3Design and Implementation
	4Results
	5Conclusion
	6Future Work
	7Acknowledgements
	8References
	9Biography


