
OCEAN: The Open Computation Exchange and
Arbitration Network, A Market Approach to Meta

computing
Pradeep Padala, Cyrus Harrison, Nicholas Pelfort,

Erwin Jansen, Michael P Frank and Chaitanya Chokkareddy
Computer & Information Science & Engineering

University of Florida
Gainesville, Florida 32611–6120

Email: {ppadala,cdh,npelfort,ejansen,mpf,cchokkar}@cise.ufl.edu

Abstract— Rapid advancements in processor and networking
technologies have led to the evolution of cluster and grid
computing frameworks. These high-performance computing en-
vironments exploit geographically distributed, diverse resources
with the goal of providing efficient computing solutions to all
kinds of parallel and distributed applications. OCEAN (Open
Computation Exchange and Arbitration Network) provides a
scalable market-based infrastructure to such meta-computing
frameworks. OCEAN aims to build a marketplace where re-
sources like CPU time, associated memory usage and network
bandwidth are the traded commodities. This paper explains the
technical challenges faced in the design of OCEAN and discusses
our proposed solution. To facilitate finding suitable resources for
buyers, we developed efficient matching and evolution protocols
for the peer-to-peer matching network. The architecture and
various components of OCEAN are described in detail. We
implemented OCEAN on Java and .NET platforms and describe
results from our preliminary experiments.

Index Terms— Distributed computing, Market-oriented com-
puting, Meta computing, Grid computing, Peer-to-peer, Resource
Management.

I. INTRODUCTION

At no other time in human history have so many people
had access to powerful computing resources. Proliferation of
workstation-class processors and growth of high-speed net-
works has made Internet computing pervasive worldwide. And
yet, it has been observed by numerous sources [1][2][3][4][5],
many of these resources lie idle for long periods of time.
Legions of computers online are not involved in any compute-
intensive tasks, but only tasks like word processing and brows-
ing the Internet, which consume very little computing power.
The total computing power in many organizations may often
be severely under-utilized, especially outside of peak business
hours. Conversely, there are many individuals and organiza-
tions that have intense computations to perform, but only have
access to limited and restricted resources that are available
to execute them. Scientific applications in domains like High
Energy Physics, Bioinformatics, Medical Image Processing

In Proceedings of the ISPDC’03 (International Symposium on Parallel and
Distributed Computing)

and Earth Observations often require massive amounts of
computation and storage (sometimes of the order of petabytes).

This overwhelming disparity in resource utilization in-
duced the development of cluster[6] and grid computing[7]
paradigms. The key to these high-performance computational
frameworks is effective management and exploitation of all
available computing resources. These infrastructures, often
known as meta-computing systems[8], transparently integrate
geographically distributed resources to provide coordinated
resource sharing. The concept of resource sharing is not simply
restricted to file sharing, but rather direct access to computers,
software, data, and other resources that belong to multiple
institutions and organizations. Hence the need arises for col-
laborative problem solving and resource-brokering strategies.
The computing world can potentially be revolutionized if
systems can transparently buy, sell, and use remote computing
resources via the Internet. The vision is to greatly increase
the overall efficiency of the world’s utilization of computing
resources, thereby leading to increased productivity.

Achieving this goal is non-trivial due to factors such as
resource heterogeneity, cooperation with heterogeneous plat-
forms, distributed ownership with different administrative poli-
cies and priorities, wide geographic distribution, and varying
conditions like traffic, reliability, availability. Different pro-
gramming and communication standards, network mechanisms
and their associated compatibility issues, present another set
of problems. However, these obstacles can be overcome if the
concept of resource sharing can be extended to economically
beneficial strategies.

OCEAN (Open Computation Exchange and Auctioning
Network) provides software infrastructure to support auto-
mated commercial buying and selling of dynamic distributed
computing resources over the Internet. OCEAN aims to build
a marketplace where resources like CPU time, associated
memory usage and network bandwidth are the traded com-
modities. The major components of such a market are the
users, the computational resources associated with them, and
the underlying market mechanisms that facilitate the trade.

The goals of OCEAN are twofold: (1) Anyone who has

underutilized computational resources should be able to easily
deploy OCEAN servers which can run other people’s comput-
ing tasks for profit, and (2) Any user, with a credit card number
(or other means of automated payment), should be easily able
to buy resources for his distributed or parallel applications.

In this paper, we explore the technical challenges involved
in providing a market-oriented distributed computing infras-
tructure. First, we provide a motivating example of usage
of OCEAN. Then, we review existing distributed comput-
ing projects, their mechanisms and how they compare with
OCEAN. Next, we describe the architecture of OCEAN. We
conclude with details of implementation and experimental
results.

II. A MOTIVATING EXAMPLE

In this section, we see an example usage of OCEAN for
distributed computing. The key players in OCEAN market are
sellers and buyers. The buyers typically have a computation
that needs to be performed, while the sellers have access to
idle resources that can execute the computation in question.
OCEAN’s job is to find a match for buyer’s sources and
provide a list of competing sellers to the buyer. The buyer
can then negotiate with various sellers and command OCEAN
to execute his computation on the seller machine. Let’s see a
scenario of how this works.

• A scientist(the buyer), who wants to conduct a High
Energy Physics experiment, is willing to pay $30 for ten
pentium 1GHz processor machines with Globus installed
for one day.

• Various organizations or users wishing to sell their
resources instruct OCEAN to create a seller resource
document and wait for incoming requests.

• The buyer uses an OCEAN GUI to create an XML
document describing his requirements and submits the
request to OCEAN.

• OCEAN’s matching network sends the document over
the network using efficient protocols (described later) and
returns the results to the waiting buyer node.

• The buyer can now choose to auto-negotiate using
OCEAN’s negotiation protocols or manually select po-
tential seller(s).

• A contract is made with the seller and the buyer requests
OCEAN to execute her scientific application. OCEAN
spawns required jobs on the remote site and keeps track
of them.

• The buyer can monitor the job using OCEAN’s GUI. Af-
ter the computation is completed the results are returned
to the buyer.

• OCEAN bills the buyer and credits the seller through a
financial transaction to the Central Accounting Server,
which maintains financial information.

Note that, the users of the system do not have to be human;
in many instances, a “user” is actually a programmed agent
acting on behalf of a human user. Figure 1 shows a high level
diagram of OCEAN usage.

III. PREVIOUS WORK

Distributed computing has been an active field of research
for over two decades. Systems like Amoeba[9] and Sprite[10]
had great impact on distributed programming paradigm. Re-
cently, there has been tremendous research activity in grid
computing. The Grid[7], as it is known, enables the sharing,
selection, and aggregation of a wide variety of geographically
distributed resources including supercomputers, storage sys-
tems, data sources and specialized devices owned by different
organizations administered with different policies.

In the last few years, a number of exciting projects like
Globus[11], Legion[12] and UNICORE[13] have developed
the software infrastructure and protocols needed for grid com-
puting. Various distributed computing issues have been solved
using these tools and libraries. These tools have been very suc-
cessful in providing high-performance distributed computing
for scientific projects like GriPhyN[14](Grid Physics Network)
and iVDgL[15] (International Virtual Data Grid Laboratory).
But, These projects fall short of providing a framework for
trading (buying and selling) of resources.

On the other hand, economic models have been applied
to computing in various ways. In 1968, Sutherland demon-
strated how auction methods can be used to allocate time
to users on the PDP-1 Computer in the Aiken Computation
Laboratory at Harvard University[16]. But Sutherland’s work
failed to address the problem in distributed systems. Drexler
and Miller approached this problem in their paper[17], where
they describe auction mechanisms for allocating distributed
resources. This paper made two important contributions to
computational market. It provided market based mechanisms
to allocate distributed resources and addressed the problem of
stability of pricing in computational market.

More recently, many projects like Spawn[18], Popcorn[4],
Enhanced MOSIX[19], JaWS[20], Xenoservers[21], Mojo Na-
tion [22] and Mariposa [23] have explored market based ap-
proaches. Unfortunately, many of them are limited to solving
problems for specific domains and are monolithic in nature.
These projects are also not inter-operable with current grid
technologies. Writing applications for some platforms (e.g.
Spawn and Popcorn), require a new programming interface.
Consequently, developing applications or converting existing
applications is more difficult.

Nimrod/G[24] is similar to OCEAN in employing market
approaches to grid computing. But it is limited to resource
management and doesn’t provide a complete infrastructure
that can be easily deployed on a user desktop. Efficient,
customizable matching protocols for resource matching are
missing too.

IV. REQUIREMENTS & DESIGN

The following are the broad requirements that drove the
design of OCEAN.
• Self-evolving, Scalable Matching Network: The core of

our approach consists of a matching network that pro-
vides mechanisms for quickly matching the resources. It

- 5 -

Figure 1. OCEAN Software Architecture. OCEAN will
interoperate with other Grid systems, such as the Globus open-
source Grid toolkit, the GriPhyN (Grid Physics Network)
project, and the Global Grid Forum’s emerging Open Grid
Services Architecture. OCEAN will be a value-added service
within the context of the growing installed base of such grid
technologies. We are also developing our own, very easy
suite of Grid tools for Java and C# users who might rather not
install the mainstream Grid tools, most of which are for legacy
C++/Fortran/Unix environments. Java and C# providers
benefit from the enhanced security of a “sandboxed”
execution environment. OCEAN’s facility for market-based
resource trading is implemented in a Web-Services model,
using the XML and SOAP open standards being supported by
the major industry players. Applications that use, monitor, or
sell resources using OCEAN can be built on top of the Grid
and Market facilities.

C.4. Comparison Matrix of Related
Projects

There are a large number of past and present academic projects and commercial ventures that leverage one or more
of the distributed (cluster and/or grid), market-based, and peer-to-peer computing concepts. The below listing does
not even include most of the application-specific projects, such as many special-purpose distributed computing
applications, and various P2P-oriented file-sharing, file searching, and collaborative communication ventures. Some
additional narrative comparing OCEAN to some of the most important of the past & present Grid and market-based
projects was given in the FY2001 edition of this proposal [21]. However, absolutely none of the current projects, so
far as we have been able to determine to date, actually combines all of these important capabilities in a single,
complete, application-independent, market-based, wide-area-capable grid system, including especially the crucial
qualities of extremely low barriers-to-entry and high ease of use for resource providers, application developers and
end users, as well as support for multiple important language/runtime platforms, both the traditional legacy
environments (such as Unix/C++/Fortran) and key state-of-the-art, emerging environments (Java 2 Enterprise

Self-Optimizing
Peer-to-Peer

Matching Service
(via Internet)

Individual
idle server

Under-powered
mobile consumer

High-performance /
scientific power-user

Underutilized
semi-obsolete

cluster

Central
Accounting

Server

Centralized OCEAN Services

Search
Requests

Resource Providers

Certificate
Authority

Registration,
Authentication,

Payment Processing

Automated sales contract negotiation,
Code migration, Communication with job

Registration,
Authentication,
Payment ProcessingResource Users

Figure 2. OCEAN Network Diagram. The left and right boxes illustrate some different types of resource users and providers, respectively, but
nothing prevents a given machine from serving in both roles at different times, or even simultaneously. OCEAN works as follows. All nodes
initially register with the central OCEAN services, to (1) obtain a digital certificate for later use in creating verifiable digital signatures, e.g., on
sales agreement contracts, (2) set up any accounts on the OCEAN Central Accounting Server (CAS) needed to facilitate later payments, and (3)
initialize the node’s participation in the peer-to-peer network (cloud). When resources are needed, the buyer sends a search request to the self-
optimizing, peer-to-peer matching service, consisting of other nearby OCEAN nodes. The peers use certain patentable machine learning
techniques we have developed to quickly and intelligently route search queries to the provider nodes most likely to be able to fulfill them. A
provider with matching available resources gets the query, and starts a sales contract negotiation directly with the buyer’s machine. A successful
negotiation yields a sales agreement contract that is digitally signed by both parties. Payments are then processed according to terms specified in
the contract, possibly utilizing services of the Central Accounting Server, depending on the specified payment mechanism. The client job code
for remote execution is transferred and installed using a negotiated method (e.g., GridFTP or Java classloaders) and executed on the provider
machine, as per the contract terms. The buyer agent that initiated the transfer gets a handle to the remote process, which can be used for process
control & communication. The application code responds to messages from its parent and sibling processes and/or pushes intermediate or final
results of the computation back to the user’s machine as needed, using pre-specified protocols (e.g., MPI [1]).

Grid environments
(Globus, OGSA, OCEAN grid)

Code Migration / Remote Execution

Authentication /
Access Control

Inter-Process
Communication

Specific language environments / runtime platforms
(e.g. Java VM, .NET CLR, C++/Fortran on Unix)

OCEAN Market (web services)

Resource/
Request

Matching

Transaction
Contract

Negotiation

Payment
Processing,
Accounting

Resource
Acquisition

Resource Sale
& Parceling

OCEAN-Aware
Distributed &/or

Mobile-Agent
Applications

OCEAN
Market & Site

Monitoring
Applications

OCEAN
Resource
Selling &

Resale Apps

OCEAN Applications

Fig. 1. High Level Overview of OCEAN

should be self-evolving and scalable. We have chosen a
Peer-to-Peer matching network with efficient evolution
and matching protocols.

• Resource description framework: A flexible and powerful
resource description framework for describing various
resources is required. The framework should provide
APIs for writing these descriptions easily. We have a
simple and flexible framework for describing resources
in XML.

• Portable, Open Protocols and APIs: For widespread
adoption of OCEAN for resource sharing, a portable and
open implementation is required. The APIs should be
flexible and powerful enough to exploit various features
of OCEAN.

• Interoperability with existing grid technologies: Grid mid-
dleware like Globus and Legion are powerful and solve
various issues in distributed computing. OCEAN can
inter-operate with the grid using the existing tools and
technologies for functions like data transfer, communica-
tion and security. Note that, OCEAN provides a complete
system that can work as an independent system with out
any grid middleware.

• Security: The buying and selling require a secure frame-
work for billing and crediting the users. Mechanisms
for encrypting messages sent over OCEAN framework
are required. We have developed an XML signature
mechanism for this purpose.

• Easy Deployment: Since OCEAN will be used by naive
users as well as by sophisticated users like scientists, it
is essential that deploying an OCEAN node be easy.

V. ARCHITECTURE

The OCEAN is composed of OCEAN nodes. Each node
can act as a buyer or seller or both. The primary components
of OCEAN can be divided into two parts: Market components

and Transport components. The market components, matching,
negotiation and accounting provide the market framework for
resource sharing. The transport components included mobility,
security and communication. These components provide fea-
tures for transporting messages and jobs securely. Note that,
OCEAN is interoperable with existing grid infrastructure like
Globus. OCEAN provides a market-oriented framework that
can be used to enhance the services provided by various grid
middleware. Figure 2 shows the ocean architecture.

The applications make use of OCEAN market services,
which in turn use transport services. The transport services
are implemented using existing run time platforms and specific
language environments.

A. Interaction Among Components

For a potential buyer, the Matching layer of the Ocean Node
serves to locate and rate resources available on the network.
It does so by sending search requests out and then collecting
search hits it receives. It then organizes these hits based on
their possible utility and gives the best ones to the Negotiation
Layer.

The Negotiation layer starts a contracting process with the
desired host or hosts for the buyer. Negotiation either produces
a contract or fails. If a contract is produced, then the Mobility
Layer is notified of the task and it can migrate to and spawns
the job. If the contract is not produced the Negotiation layer
asks the Matching layer for more possible sellers.

Upon completion of the task, transferring of funds is carried
out by the Negotiation layer and the central accounting server.
Figure 3 shows the interaction of various components.

In the following sections, we see each component in detail.

B. Matching

The matching network is the core of OCEAN providing
a framework for buying and selling of resources. Matching

MobilityCommunication

Security

OCEAN transport components

GSI

Globus transport components

globus_io GridFTP

Matching Negotiation

Accounting

OCEAN market components

Specific Language Environments / Run time platforms
(e.g. Java VM, .Net, Linux, Windows

OCEAN Applications

Fig. 2. OCEAN Architecture

Matching�

Negotiation�

Mobility�

Ocean Node

Matching Network
P2P

Match�Candidate�

Match�Candidate�

Desired�Match�Candidate�

Search�Request�

Search�Hits�

Negotiation�

Funds�Transfer�

Job�Execution�

Central�Accounting�
Server�

Accounting�

Fig. 3. Interaction among OCEAN components

component is responsible for maintaining the matching net-
work. The network is a self-evolving and scalable peer-to-peer
network. The matching component includes
• A Resource Request/Description Language.
• Resource matching and searching algorithms
• PLUM (Peer List Update Manager) for tracking the list

of peers
• Network evolution and optimization algorithms
1) Resource Request/Description Language: We have de-

fined an XML-based constraint language for matching the
needs of resource users to the offerings of resource providers.
The language is very general and can be easily extended
to describe any type of resource requirements, including
constraints on the CPU, memory, disk, network bandwidth,
auxiliary hardware, software runtime environment, auxiliary li-
braries/databases, as well as various constraints on the accept-
able sales agreement details, such as price details (currency,
units), schedule for usage of resources, limits on use, method
of payment (play money, OCEAN account transfer, intra-
organizational journal transfer, OFX, PayPal, e-Gold, digital
cash, credit card), means of payment (direct transfer, OCEAN-
mediated, escrow through OCEAN CAS) and schedule of
payments (up-front, on-delivery, post-hoc, periodic). Each
application using or providing resources can decide how many
constraints to specify up-front in a trade proposal for use in
the distributed P2P matching system.

To reduce the computational demand on the matching
system, the semantics of the constraint language is kept very
simple (specifying only a boolean combination of minimum
constraints that must be satisfied). More involved (Turing-
universal) custom matching criteria can be applied later by
the buyer and seller in the negotiation stage, if desired. The
matching process eventually leads to a one-on-one negotiation
between buyer and seller, at which point complex custom
strategies for deal optimization can be used.

We are exploring various ways of representing the complex
requirements of users. Figure 4 shows a request from buyer for
an access agreement that allows him to lease a certain package
of resources, consisting of

1) Exclusive access to a ≥2 GHz Intel Pentium4 or better
machine running RedHat (v.7.3 or greater) Linux and
with Globus from ≥3.0 and the linpack library pre-
installed

2) shared access to a Beowulf cluster of at least 10 ma-
chines, also running linux,

3) network storage of ≥10 GB, and
4) unlimited usage of a ≥ 100GBps Ethernet connecting

the machines and the network storage.
The buyer wants to access this system immediately in any
desired usage pattern, for a period not less than 2 hours, but
no more than 1 day, paying by the hour at a flat rate of not
more than US$1 per hour. Payment will be made via a direct
transfer from his OCEAN account to the seller’s account, but
the buyer wants to be able to wait at least 1 day between
completion of the resource usage and payment, presumably to

give a human user a chance to manually inspect and dispute
whether the resources were provided as agreed. Namespace
qualifiers and schema URNs are omitted for readability.

Note the use of inequality constraints on the numeric
values of various parameters. Such constraints, together with
boolean combinations (conjunction/disjunction) thereof, will
be automatically processed by the matching system at each
node, to determine whether any of the locally-available trade
proposals are compatible with the given proposal. For buy
trade proposals, any unspecified details are assumed to be
unconstrained, whereas for sell trade proposals, only the
explicitly specified details are assumed to be available.

2) Matching/Searching Protocols: The matching module
propagates the buyer’s trade proposal to a subset of its peers, in
a fashion intended to maximize the number of matches found,
while limiting the resources consumed in the matching system.
A successful match leads to communication of the matching
trade proposal back to the buyer, and possible initiation of
detailed negotiations between the buyer and seller.

Efficient protocols for message propagation in the matching
network are essential for quick matching. We have developed
a protocol called MarcoPolo (named after the swimming-pool
game) for matching. It is based on undirected peering rela-
tionships between nodes, which constitute mutual agreements
to directly process and/or forward network search requests
from each other. A node joins the network by querying an
initial peer, which, if its peer quota is full, pushes the new
node further out towards the network edges. A node can
conveniently retrieve a list of all nodes that are located within
n peering hops (see Figure 5), via a Marco (Who’s there?)
broadcast, to which all nodes within the given range reply
with a Polo (Hello I’m here) response.

A node can gradually optimize its location in the P2P
network by modifying its set of active peering arrangements,
so as to be located nearby (within few hops) of nodes that
have a record of past matching success. This is done using
the optimization algorithm discussed in the next section.

In this dynamic P2P network, each node is limited to
communication with a subset of the total nodes available.
Nodes communicate all requests with their direct peers, and
the requests are then propagated via these direct links to even
more nodes. Each hop exposes one’s requests to a new set of
peers. Due to the exponential growth of communication with
each hop, many nodes can be reached quickly.

To ensure that messages do not live forever, and to decrease
the overall communication load on each node, messages are
given a maximum number of hops (time-to-live), which they
can travel. Each time a message travels a link its time-to-live
is decremented. Messages continue until their time-to-live is
zero.

Every node’s request exposure is limited to a fixed subset
of the total peers on the network at any time. If the peer is
very discriminating, or if it is looking for a rare resource on
such a network, many desired matches may exist which are
out of its reach. Because of this, it is in the best interest of
a node to maximize the usefulness of this subset. This is the

Fig. 4. Example of a trade proposal

Hop�Count�3�

Hop�Count�2�

Hop�Count�1�

Contours:

Fig. 5. Hop Contours in MarcoPolo P2P Net

focus of the self evolving nodes.

A node only has direct control of the direct peers it connects

to. Choosing these peers wisely based on their utility helps
improve overall performance for a node. This utility includes

both a direct peer’s ability to provide a service and that peer’s
connections to other peers which can provide a service.

There are many possible ways to allow nodes to alter their
set of known peers to maximize the overall utility of their peer
set. We focused mainly on collecting historical statistical data,
and on using this to decide what do with the current peer set.

For a detailed account of MarcoPolo, see [25].
3) PLUM (Peer List Update Manager) for tracking the list

of peers: For the evolution of the matching network, every
node has to maintain information about other peers. The basic
requirements are as follows.

1) Having each node collect statistics on its peers in order
to evaluate their effectiveness at handling requests.

2) Forwarding requests first to those peers that are most
likely to be able to handle them successfully.

3) Reducing the number of hops that messages must tra-
verse between buyers and sellers by allowing nodes
to learn about the peers of peers that are particularly
effective at handling transactions.

4) Allowing statistics to decay over time so as to bias
them towards more recent data (so as to more rapidly
accommodate changes in performance).

5) An incentive system that rewards node operators for
tuning their nodes for maximum effectiveness in the
distributed algorithm.

The adaptive peer list having these characteristics is managed
by PLUM (Peer List Update Manager). It maintains the data
structures used by evolution protocols explained in the next
section. It also periodically probes the peers and collects
information about bandwidth, latency etc.

4) Evolution and Optimization Protocols: As we discussed
above, it is critical for the network to self-evolve and optimize
the set of peers for each node. We explored two evolution
algorithms, which are described below.

Wave Algorithm: The algorithm seeks to maximize the
effectiveness of direct peers by establishing a rating for each
direct peer. This rating is directly based on the historical
data of successful searches and the number of hits. This
algorithm is a limited implementation of complete evolution
algorithm(MPF) described in an earlier paper[26].

The rating is obtained from the following formula:

Rating = NumSuccess+SuccessBias
NumTrials+TrialBias

Over time the number of successes and attempts are decayed
by a fraction to insure that results are biased towards newer
data.

The evolution procedure is as follows
• Start each direct peer out with number of successes and

number of attempts at zero.
• Each search add one to the attempts counter and each

success add one to the successes counter.
• Over Time do the following:

– Decay the number of attempts and successes by a
small fraction every few seconds to ensure more
recent data it weighted more heavily.

– Every 200 or so decays:
∗ Make a decision to remove the worst performing

direct peer.
∗ Obtain the peer list of the best performing peer.

This algorithm has the advantage of being straight-forward
and so requires little book-keeping. On the other hand, full
MPF algorithm[26] may produce better results at the cost of
more time and complexity.

Undertow algorithm: This is another algorithm which
seeks to maximize the effectiveness of direct peers. It measures
how well each direct node is performing and the usefulness
of the path of peers it makes available. The number of peers
available through a direct peer at a certain ring is obtained
using a hop-targeted Marco Message and then search requests
are sent to this ring to determine their effectiveness. Figure 6
shows the first two rings in a possible network. Like previous
algorithm, this method obtains possible service providers in
the process, however it is a short time history approach.

The evolution procedure is as follows:

• Measure the effectiveness of direct peers by sending a
set of search messages to each and obtain their success
ratio.

• For each hop up to the time to live:
– Send out a hop targeted Marco via each direct peer

to the current hop. Record Polo responses to obtain
the number of nodes available though this peer.

– Send out a set of hop targeted Search messages via
each direct peer to the current hop.

– If an indirect peer drastically outperforms the direct
peer, attempt to make it a direct peer and drop the
current direct peer.

This algorithm also has the advantage of being simple and
requires little bookkeeping. On the other hand, It takes time
and active work to obtain the number of direct peers for each
ring, and it also initially limits your searches to only a subset
of the reachable peers.

C. Negotiation

When the matching component returns multiple results from
potential sellers, there is a need for negotiation. The Negotia-
tion component provides automated and manual mechanisms
for resource negotiation. The automation of negotiations is
not a new concept. Maes et al.[27] of MIT media lab put
negotiation at the center of the consumer buying behavior
(CBB) model for e-commerce. Rosenschein et al.[28] gives
many good examples of negotiation strategies. But, a standard
set of rules expressed in succinct form for resource negotiation
are lacking.

We have developed flexible XML based mechanisms that
allow users to dynamically setup rules for negotiation. Figure
7 shows an example of contract. We also implemented two
basic negotiation protocols: yes-no, and static bargain.

In the yes-no protocol, following are the sequence of events
that happen.

�

Hop�Ring�1�

Direct�Peers�

Hop�Ring�2�

Fig. 6. Undertow algorithm: The colored boxes represent the tree levels related to direct peers measured at each ring

<Contract>
<NegotiationProtocol>
YesNo

</NegotiationProtocol>
<NegotiationResult>
Accept

</NegotiationResult>
<ContractDetails>
<Buyer>buyer name</Buyer>
<Seller>seller name</Seller>
<NegotiationItems>
<Item1>

<Task>Task Name</Task>
<Time>5 minutes </Time>
<Price> $007 </Price>

</Item1>
</NegotiationItems>
<Date>01-12-02</Date>
<Signature>

Signature of the buyer
</Signature>
<Signature>

Signature of the seller
</Signature>

</ContractDetails>
</Contract>

(a) Buyer Contract

<Contract>
<NegotiationProtocol>
YesNo

</NegotiationProtocol>
<ContractDetails>
<Buyer>buyer name</Buyer>
<Seller>seller name</Seller>
<NegotiationItems>
<Item1>

<Task>Task Name</Task>
<Time>5 minutes </Time>
<Price> $007 </Price>

</Item1>
</NegotiationItems>
<Date>01-12-02</Date>
<Signature>

Signature of the buyer
</Signature>

</ContractDetails>
</Contract>

(b) Seller Contract

Fig. 7. Example Contracts (signatures are omitted for clarity)

<Rules>
<If>

<Element>PaymentType</Element>
<Operator>==</Operator> <Value>egold</Value>

<Then>
<ChangeElement>PaymentType</ChangeElement>
<ChangeValue>paypal</ChangeValue>

</Then>
</If>

</Rules>

Fig. 8. An example rule for StaticBargain protocol

1) After buyer receives matching resources, she sends her
offer as a contract in the contract specification language
to sellers.

2) The seller verifies the contract and checks to see if all
the elements in the contract match his specifications.

3) If everything is in order the seller updates the status of
the contract to “Accepted” and sends back the contract
to the buyer. If something is wrong, that is, if some
elements in the contract don’t match, then the seller
updates the status of the contract to “Rejected”. and
includes the rejected items in the contract along with
a reason why they were rejected and sends back the
updated contract to the buyer.

4) The buyer receives the updated contract and checks the
status of the contract. If the contract is “Accepted”.
then the buyer signs the contract and sends the signed
contract back to the seller. If the contract is “Rejected”,
the buyer either goes onto the next seller in the list or
tries to take care of the rejected items and sends back an
updated offer back to the same seller. The seller treats
this updated offer as a new offer.

5) If the seller receives a signed contract, it makes all the
necessary checks again and if everything is in order
counter signs the contract and sends it back to the buyer.
If anything is wrong the contract status is updated to
“Rejected” and sent back to the buyer.

6) When the buyer receives the counter-signed Contract it
takes the necessary steps to start the deal.

Negotiation uses XML signature mechanisms provided by
OCEAN’s security component for signing the contracts.

As you can see the yes-no protocol has two phases. The
trading partners come to agreement on the contract in the

first phase. The signing of the contracts constitutes the second
phase. This design was decided upon to provide the buyer with
more leverage. A buyer can simultaneously be negotiating in
the first phase with several sellers at the same time. Once she
gets back several offers the buyer can then choose a seller
according to her liking and seal the deal with that seller by
signing the contract.

In the static-bargain protocols, the following sequence of
events happen

1) After buyer receives matching resources, she sends her
offer as a contract in the contract specification language
to sellers.

2) The seller verifies the contract and checks to see if all
the elements in the contract match his specifications his
rules document. Every trader in OCEAN, who wishes to
use the StaticBargain protocol must specify some rules
in a rules document, which is also an XML document.
The rules in the rules document are used to decide what
to bargain for and how.

3) If everything is in order the seller updates the status of
the contract to “Accepted” and sends back the contract
to the buyer. If something is wrong, that is, if some
elements in the contract don’t match, then the seller
updates the status of the contract to “rejected”. and
includes the rejected items in the contract along with
a reason why they were rejected and sends back the
updated contract to the buyer.

4) The buyer receives the updated contract and checks the
status of the contract. If the contract is “Accepted”, the
buyer signs the contract and sends the signed contract
back to the seller. If the contract is “Negotiate”, the
buyer looks at the rejected items and it’s rules document
and decides to either go onto the next seller in the list or
try to take care of the rejected items and send back an
updated offer back to the same seller. The seller treats
this updated offer as a new offer.

5) If the seller receives a signed contract, it makes all the
necessary checks again and if everything is in order
counter signs the contract and sends it back to the buyer.
If anything is wrong the contract status is updated to
“Rejected” and sent back to the buyer.

6) When the buyer receives the counter signed contract it
takes the necessary steps to start the deal.

In the StaticBargain protocol a rules document, which is an
XML document, is used to make dynamic decisions during
negotiation. When the user selects StaticBargain protocol as
his negotiation protocol in the initial configuration screen, the
user will be presented with a sequence of screens where he
sets up his negotiation rules. Once the rules have been set
up the user makes his negotiation decisions based on the
rules document. The Java Expert System Shell, JESS [23],
is planned on being used as the interpreter for the rules. Once
OCEAN is started up the JESS rule engine also starts up. The
rule engine then looks at the rules document and builds facts
from the rules document.

When the negotiation takes place, the rule engine will make
decisions and takes actions based on the facts. The advantage
of using an expert system shell is that we can make the
system to learn from previous negotiations. An example rules
document is shown in figure 8.

This rule says: If the value of PaymentType in the received
contract is e-gold[29], then add PaymentType as a rejected
element and set the expected value of PaymentType to PayPal.

D. Central Accounting Server

The purpose of the central accounting server is to maintain
OCEAN user accounts in a secure location that is physically
controlled by the OCEAN administrators. It also provides
a connection point between the OCEAN network and real-
world financial networks. It may also publish consolidated
information about market activity and prices. In exchange
for operating the server, which provides a useful service, the
administrator of the OCEAN may collect a small fee on each
transaction that is conducted. In addition, it communicates
critical information to the accounting system at a local node,
to allow real-world payments to actually be processed and
archived. However, micro payments for individual OCEAN
contracts would be consolidated into larger amounts by the
central accounting system before submitting them to the real
financial networks, which have a relatively high overhead.

Currently, we have implemented the accounting server in
a centralized manner. This may cause scalability problems
as number of OCEAN users and nodes increases. We are
exploring mechanisms for developing a distributed accounting
server.

E. Transport Components

The communication, mobility and security components pro-
vide transport services for market components in OCEAN.
These modules can be replaced with similar services provided
by existing toolkits like Globus.

1) Communication: Communication component provides
basic synchronous and asynchronous communication primi-
tives. These basic primitives are wrapped in a service called
MailBox, which is used by higher level components. A com-
ponent or an OCEAN task willing to communicate registers
with a local MailBox and instructs it to either send messages
or wait for incoming messages. MailBox works in conjunction
with Naming (section V-E.2) for providing communication
end-points for OCEAN. MailBox also has facilities for plug-
ging in message filters. These filters are useful in reducing
communication overhead.

2) Naming: The Naming component is responsible for
name resolution in the OCEAN system network. The Com-
munication component relies heavily on this component. It
is undesirable for components to refer to OCEAN nodes
strictly by their IP addresses, since IP addresses can change
and be obscured by firewalls. Moreover, in grid frameworks
there is a need to locate not just computers in the network,
but also other entities such as computing tasks, data, and
other resources. Names of OCEAN resources are syntactically

ocean://<public host name or IP address>:<port number>/
<private host name or IP address>:<port number>/
.(any additional hosts on private sub-subnets)./
@<ocean module name>/<jobid>

Fig. 9. An Example OCEAN Name

defined as extensions to the URL/URI standard. Any resource
can be located using a path-naming scheme as shown in figure
V-C.

Each hostname or IP address, following the first, may
be a private hostname (or IP address on a private intranet)
of a machine reachable from the preceding host. Such a
naming scheme helps in reaching any target machine or entity,
whether or not it has a public, static IP address. Messages
are forwarded along the designated path until they reach the
eventual destination. This is equivalent to using IP as a link
layer protocol, and building a network-routing layer on top of
it, to get through the barriers separating different IP address
spaces.

3) Mobility - TSM (Task Spawning and Migration): We
have developed a light weight task spawning and migration
mechanism for OCEAN. The Task Spawning and Migration
(TSM) component is responsible for code mobility across
remote OCEAN node servers and monitoring task execution.
Depending on when a task is scheduled for execution, the
TSM subsystem spawns computing tasks on remote servers
and monitors their execution. This includes transfer of com-
putational tasks to allocated nodes, setting up of executables,
checking access policies and permissions, creating adequate
execution environments, initializing task execution, passing
arguments, and finally managing task termination.

OCEAN tasks, that form the parts of a user job, can be
migrated to a remote machine. The code (compressed file),
which is migrated, includes a task description, executable
classes that comprise the actual work that needs to be per-
formed and authentication information in the form of digital
signatures and certificates. In the current version, tasks that
are not serializable cannot be migrated.

4) Security: Security is one of the major issues discussed
during the design of OCEAN. It needs special attention in
any distributed system in general and automated computational
markets in particular. The Security component in OCEAN
works in conjunction with the Matching, Negotiation and
Accounting components. It comes into play every time a
message is sent out or an incoming message needs to be
validated. At present only the contracts are being signed and
validated. But in the future versions even the matching request,
and the negotiation transactions might be signed for greater
security.

We have developed an XML Signature Module (XSM) for
security of XML messages sent over OCEAN network. The
primary reason for using XML digital signatures in security
component for securing transactions, which otherwise can be
handled by SSL, is to ensure permanent non-repudiability
and impossibility of forgery. XML signatures ensure that

application layer attacks such as repudiation of authorship can
be prevented. A secondary reason for using XML signatures
is to enable the signing of selected elements of a contract.

The XSM consists of two protocols: Registration and Sign-
ing and Validation Protocols. The implementation of XSM is
carried out in accordance with the recommendations passed
the joint proceedings of a W3C and IETF working group. For
a detailed account of design process and security issues that
are identified and solved, see Sahib’s thesis[30]. The thesis
also presents an excellent literature survey of existing security
mechanisms in distributed systems.

VI. IMPLEMENTATION

We have implemented OCEAN both on Java and .Net
platforms. The idea is to show that OCEAN can be built
on varying platforms with equal ease. In both the imple-
mentations, our goal was to provide a basic framework, on
top of which, complex protocols can be developed. Each
component in OCEAN can be compiled and run as a single
entity. For example, the TSM component can be used by
normal applications for migrating jobs without the need of
other market components. We are working on exposing the
market services as web services.

In both the implementations, we have developed the basic
matching, negotiation and evolution protocols discussed in
section V. The communication, mobility and security modules
all provide the basic services expected of them. More work
needs to be done in migrating running jobs with stateful
information. The Accounting module is fairly complete and
provides a gateway to the financial world. We have used
dummy money for transactions and have also conducted some
experiments with e-gold[29].

Figure 10 shows snapshots of OCEAN. Note that these
figures are from the .Net implementation of OCEAN.

VII. EXPERIMENTAL RESULTS

We have done simulations using the OCEAN matching
network for measuring the performance of our protocols. We
created 60 nodes with varying mix of seeker(buyer)s and
provider(seller)s. For matching, we used a synthetic matching
ciretria shown in the figure 11(e). Each seeker searches for
a service with the probability distribution shown. The supply
and demand for resources in the network are varied as folows.

• 30% seeker to provider ratio - 30% of nodes in the
network are seekers

• 70% seeker to provider ratio - 70% of nodes in the
network are seekers

(a) Configuration (b) Search Screen

(c) CEM Search Builder (d) Peers

(e) All Received Messages

Fig. 10. OCEAN Snapshots

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Report Sample

S
ee

ke
r

H
its

/A
tt

em
pt

s
ra

tio

(a) Search Results for 30% Seekers

0

0.02

0.04

0.06

0.08

0.1

0.12

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Report Sample

S
ee

ke
r

H
its

/A
tt

em
pt

s
ra

tio

(b) Search Results for 70% Seekers

0.18

0.19

0.2

0.21

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Report Sample

P
ro

vi
de

r
R

ec
ei

ve
d/

M
at

ch
ed

 r
at

io

(c) Match Results for 30% Seekers

0.17

0.18

0.19

0.2

0.21

0.22

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Report Sample

P
ro

vi
de

r
R

ec
ei

ve
d/

M
at

ch
ed

 r
at

io

(d) Match Results for 70% Seekers

0

0.1

0.2

0.3

0.4

0.5

0.6

s1 s2 s3 s4 s5

Services

M
at

ch
in

g
P

ro
ba

bi
lit

y

(e) Matching Probablity Distribution

SimpleNet

Wave

Undertow

(f) Legend

Fig. 11. Experimental Results

All three protocols simplenet(network with marcopolo
matching with no evolution algorithms), wave and undertow
are tested with 50 samples. Results are shown in figure 11.

The figures 11(a) and 11(b) show search performance for
30% and 70% mix. Both wave and undertow performed better
for 30% mix. This is promising because the most likely mix
for OCEAN seems to be many providers and few seekers. On
the other hand, wave performed poorly for 70% mix due to
low success rate for attempts done by the seeker.

The figures 11(c) and 11(d) show match performance on
the provider side. As you can see, there is little change
in the performance for either 30% or 70% mix with or
without evolution protocols. We are exploring the idea of
provider evolution for improving match performance on the
provider side. We would like to caution that these results are
preliminary and conducting experiments with real machines.

VIII. FUTURE WORK

We briefly discuss concepts that we plan to explore in
future versions of the OCEAN. We have provided a basic
framework with simple and flexible protocols for exploring
market-oriented approaches for distributed computing. We
envision development of complex protocols on top of this
framework.

We are exploring a more versatile method of handling
resource requests via a match scheme. Match Schemes are
simple named protocols which allow reviewers of requests to
interpret the data as the searcher intended. Users can have
multiple Match Schemes installed and handle requests for all
simultaneously. Match Schemes provide both the ability to
build search requests for seekers and a method for comparison
of local resources and requested requirements for providers.

We are planning to explore and interesting concept called
“Peer ranking”. This is similar to rating systems available on
Ebay.com, Epinions.com and Resellerratings.com. Each peer
ranks the peers that participated in the trade depending on its
interaction with them. It is important to have a “collusion-
proof” mechanism for the ranking.

We are developing web services on top of OCEAN frame-
work. Currently, the CAS(Central Accounting Server) can be
accessed as a web service. We would like to standardize and
provide matching and negotiation web services.

Another important research approach is to develop OCEAN
market components using transport components provided by
projects like Globus. We already use GridFTP[31] for trans-
ferring input and output files. Efforts are also being made
to incorporate mobile-agent based subsystems like ADK[32]
from Tryllian in the OCEAN framework.

IX. CONCLUSIONS

We have described a framework for a market-based ap-
proach to distributed computing. We have identified the re-
quirements and technical challenges in such an approach.
A distributed scalable peer-to-peer matching network with
efficient matching and evolution protocols is proposed for find-
ing distributed resource quickly. The architecture and various
components that form the basis of OCEAN are described in
detail.

ACKNOWLEDGMENTS

The authors would like to thank past and present members
of OCEAN for their valuable contributions and comments.

REFERENCES

[1] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor : A hunter
of idle workstations,” in 8th International Conference on Distributed
Computing Systems. Washington, D.C., USA: IEEE Computer Society
Press, June 1988, pp. 104–111.

[2] B. Haynes, “Computing science: Collective wisdom,” American Scien-
tist, vol. 86, no. 2, pp. 118–122, Mar. 1998.

[3] A. Patrizio, “Discover distributed computing,” Byte.com Magazine, Sept.
1999.

[4] N. Nisan, S. London, O. Regev, and N. Camiel, “Globally distributed
computation over the internet – the POPCORN project,” in 18th Interna-
tional Conference on Distributed Computing Systems (18th ICDCS’98).
Amsterdam, The Netherlands: IEEE, May 1998.

[5] “distributed.net.” [Online]. Available: http://www.distributed.net/
[6] M. Baker and R. Buyya, “Cluster computing at a glance,” in High

Performance Cluster Computing, R. Buyya, Ed. Upper Saddle River,
NJ: Prentice Hall PTR, 1999, vol. 1, Architectures and Systems, pp.
3–47, chap. 1.

[7] I. Foster and C. Kesselman, Eds., The Grid: Blueprint for a Future
Computing Infrastructure. Morgan Kaufmann Publishers, 1999.

[8] M. Baker and G. Fox, “Metacomputing: Harnessing informal supercom-
puters,” in High Performance Cluster Computing, R. Buyya, Ed. Upper
Saddle River, NJ: Prentice Hall PTR, 1999, vol. 1, Architectures and
Systems, pp. 154–185, chap. 7.

[9] A. S. Tanenbaum and S. Mullender, “An overview of the Amoeba
distributed operating system,” Operating Systems Review, vol. 15, no. 3,
pp. 51–64, July 1981.

[10] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson, and B. B.
Welch, “The Sprite network operating system,” Computer, vol. 21, no. 2,
pp. 23–36, Feb. 1988.

[11] I. Foster and C. Kesselman, “Globus: A metacomputing infrastructure
toolkit,” The International Journal of Supercomputer Applications and
High Performance Computing, vol. 11, no. 2, pp. 115–128, 1997.

[12] A. S. Grimshaw, W. A. Wulf, and the Legion team, “The legion vision
of a worldwide virtual computer,” Communications of the ACM, vol. 40,
no. 1, pp. 39–45, Jan. 1997.

[13] V. Huber, “UNICORE: A Grid computing environment for distributed
and parallel computing,” Lecture Notes in Computer Science, vol. 2127,
pp. 258–266, 2001.

[14] P. Avery and I. Foster, “The griphyn project: Towards petascale virtual
data grids,” 2001. [Online]. Available: http://www.griphyn.org

[15] “ivdgl (international virtual data grid laboratory).” [Online]. Available:
http://www.ivdgl.org

[16] I. E. Sutherland, “A futures market in computer time,” Communications
of the ACM, vol. 11, no. 6, pp. 449–451, 1968.

[17] M. S. Miller and K. E. Drexler, “Markets and computation: Agoric open
systems,” in The Ecology of Computation, ser. Studies in Computer
Science and Artificial Intelligence, B. A. Huberman, Ed. Elsevier
Science Publishers, 1988, pp. 133–175.

[18] C. Waldspurger, T. Hogg, B. Huberman, J. Kephart, and S. Stornetta,
“Spawn: A distributed computational economy,” IEEE Transactions
Software Engineering, vol. 18, no. 2, Feb. 1992.

[19] Y. Amir, B. Awerbuch, A. Barak, R. S. Borgstrom, and A. Keren, “An
opportunity cost approach for job assignment in a scalable computing
cluster,” IEEE Transactions on Parallel and Distributed Systems, vol. 11,
no. 7, pp. 760–??, July 2000.

[20] S. Lalis and A. Karipidis, “An open market-based architecture for
distributed computing,” Lecture Notes in Computer Science, vol. 1800,
pp. 61–??, 2000.

[21] D. Reed, I. Pratt, S. Early, and P. Menage, “Xenoservers: Accountable
execution of untrusted programs,” in The Seventh Workshop on Hot
Topics in Operating Systems: [HotOS-VII]: 29–30 March 1999, Rio
Rico, Arizona, IEEE, Ed. 1109 Spring Street, Suite 300, Silver Spring,
MD 20910, USA: IEEE Computer Society Press, 1999, pp. 136–141.

[22] “Hivecache: Distributed enterprise online backups.” [Online]. Available:
http://www.mojonation.net/

[23] M. Stonebraker, P. M. Aoki, R. Devine, W. Litwin, and M. Olson,
“Mariposa: A new architecture for distributed data,” in Proceedings
of the 10th International Conference on Data Engineering, A. K.
Elmagarmid and E. Neuhold, Eds. Houston, TX: IEEE Computer
Society Press, Feb. 1994, pp. 54–67.

[24] R. Buyya, D. Abramson, and J. Giddy, “Nimrod/G: An architecture of a
resource management and scheduling system in a global computational
grid,” HPC Asia 2000, IEEE Press, Sept. 22 2000.

[25] C. Harrison, “Self evolving peer to peer networks for service discov-
ery design of marcopolo matching network for the open computation
exchange and arbitration network (ocean),” Apr. 2003.

[26] S. Govindaramanujam, C. Harrison, E. Jansen, S. K. Nallan,
S. Singh, and M. Frank, “Locating suitable resources
in ocean (poster paper),” Oct. 2002. [Online]. Available:
http://www.cise.ufl.edu/research/ocean/hipc02 poster.pdf

[27] P. Maes, R. H. Guttman, and A. G. Moukas, “Agents that buy and sell,”
Communications of the ACM, vol. 42, no. 3, pp. 81–91, Mar. 1999.

[28] J. S. Rosenschein and G. Zlotkin, Rules of Encounter: Designing
Conventions for Automated Negotiation among Computers. Cambridge,
Massachusetts: The MIT Press, 1994.

[29] “E-gold.” [Online]. Available: http://www.e-gold.com

http://www.distributed.net/
http://www.griphyn.org
http://www.ivdgl.org
http://www.mojonation.net/
http://www.cise.ufl.edu/research/ocean/hipc02_poster.pdf
http://www.e-gold.com

[30] S. S. Wadhwa, “Signing and validating contracts in ocean,”
Master’s thesis, University of Florida, Apr. 2003. [Online]. Available:
http://www.cise.ufl.edu/research/ocean/sahib/Wadhwa S.pdf

[31] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster,
C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke,
“Data management and transfer in high-performance computational grid
environments,” Parallel Computing, vol. 28, no. 5, pp. 749–771, May
2002.

[32] T. Inc., “Agent development toolkit(adk).” [Online]. Available:
http://www.tryllian.com

http://www.cise.ufl.edu/research/ocean/sahib/Wadhwa_S.pdf
http://www.tryllian.com

	Introduction
	A Motivating Example
	Previous work
	Requirements & Design
	Architecture
	Interaction Among Components
	Matching
	Resource Request/Description Language
	Matching/Searching Protocols
	PLUM (Peer List Update Manager) for tracking the list of peers
	Evolution and Optimization Protocols

	Negotiation
	Central Accounting Server
	Transport Components
	Communication
	Naming
	Mobility - TSM (Task Spawning and Migration)
	Security

	Implementation
	Experimental Results
	Future Work
	Conclusions
	References

