Human Computer Interaction and Three-Dimensional Computer Graphics
1. Overview
Three-dimensional (3D) computer graphics involves the generation of images of 3D objects within a scene. As opposed to 2D image processing and editing applications, such as Adobe Photoshop and Jasc’s Paintshop Pro, 3D computer graphics applications focus on creating output that have objects appear solid or 3D. The resulting images can be found in many everyday products, such as video games, movies, cell-phones, and theme park rides. This article will provide a brief overview of how 3D computer graphics are generated, and then focus on the issues in interacting with the resulting images.
3D computer graphics can be defined as computer output through graphic images that appear “solid” or three-dimensional. Typically, this involves creating a 2D image (such as on a monitor, a poster, or movie screen) that represents a view of the 3D scene from some vantage (the viewpoint). We will restrict our discussion to these systems, although there exists true 3D ‘volumetric’ display systems, such as holography and uncommon devices such as a verifocal mirror.

We will focus on the technologies that can present dynamic, large 3D computer graphics - the most common of these include: monitors, data and movie projectors, televisions, and head mounted displays. Each of these allow for different types of interaction and levels of immersion.
2. Generating 2D images

Our goal is to generate a 2D image of a 3D scene. That is, given a 3D scene, and a position and orientation of a virtual camera, we need to compute the camera’s resulting 2D image. The image is composed of discrete pixel elements called pixels, and we look to compute the correct color for each pixel. This is similar to taking a virtual camera snapshot of the virtual scene.
A 3D scene is composed of a set of 3D objects. An object is typically described as a set of geometric primitives (basic elements understood by the system) that define the surface of the objects (surface models) or as volume information (volumetric models – typically found in medical applications). Each approach has advantages, though surface models are the most common for interactive and photorealistic applications.
To generate a 2D view of a 3D scene systems pass the scene objects through a graphics pipeline. The different stages in this pipeline depend on a fundamental approach to the image generation method, forward rendering or backward rendering (ray tracing). Ray tracing is commonly used for photorealistic, non-real-time image generation. Ray tracing traces the rays of light that would land on a pixel. Most of these approaches, while capable of generating extremely realistic looking images, do not operate in real-time, and thus do not allow a high level of interaction. For example, watching movies – though containing high quality 3D computer graphics – is a passive experience for the audience. For this article, we will focus instead on forward rendering approaches used in most interactive applications. Foley, et. al., provides a well accepted mathematical treatment of computer graphics.
The forward rendering graphics pipeline has several stages through which the scene primitives pass. The pipeline described here is a basic one followed by the common standards OpenGL and DirectX. There exist variations to this pipeline, such as those in multi-graphics processor systems, but all share the same basic premise. Given a set of models, each defined in its own local (object) Cartesian coordinate space, the first stage is to transform each object into its appropriate location in a global or world coordinate system. This transformation is done through multiplying the vertices of a model by a model transformation matrix. This, in effect, places each object in the 3D scene. Given a virtual camera’s position, orientation, and intrinsic (such as resolution, aspect ratio, etc.) parameters, the 3D scene is then transformed into a viewing or camera coordinate system (another transformation matrix multiplication).
The next stage is to project each object primitive onto the virtual camera’s image plane. To do this, each primitive undergoes a projection (typically a perspective projection, though there are others, such as orthographic projection). Finally those primitives that are labeled as either being within the camera’s view frustum, partially in the view frustum (requires clipping), or completely out of the view frustum (reject). That is, we know which pixels are being projected onto by a given primitive.
Finally, the primitives are rasterized. This involves setting pixel color values in a file or, more typically, in a block of memory, such as a frame buffer. For a given primitive, the pixels it projects onto have its color values set depending on the lighting and several primitive properties, such as depth (is it the closest primitive to the camera for a given pixel), materials, textures, and transparency. Lighting and texture mapping, applying images such as photos onto a primitive, help increase the perceived realism of the scene by providing additional 3D depth cues.
After each primitive is passed through this pipeline, the scene has been rendered, and the image complete. The next frame begins completely anew, and each primitive is again passed through the entire pipeline. For interactive applications, this process is done several times a second (frame rate), at least 10 Hz, and optimally at 30 or 60 Hz. Other visual presentation properties: image color, resolution, contrast brightness, FOV, visual accuracy, and latency (time from receiving input to display of appropriate image).

3. Perceiving 3D from 2D images
But how can humans perceive three-dimensional information from these two-dimensional output images? Humans use a variety of cues within images to capture 3D information of the scene. These can depth cues are divided into cues within a single image (monoscopic), two images of a scene at the same time from different positions (stereoscopic), a series of images (motion), and the physical body (physiological). Only a brief summary from Craig, et. al., is included here.

Monoscopic depth cues (cues within a single image) include:

· Interposition – an object that occludes another is closer
· Shading –interplay of light and shadows on a surface gives shape information
· Size – usually, the larger objects are closer
· Linear Perspective – parallel lines converge at a single point
· Surface Texture Gradient – usually, there is more detail for closer objects
· Height in the visual field – usually, the higher (vertically) objects in the image are farther
· Atmospheric Effects – usually, the blurrier objects are farther
· Brightness – usually, the dimmer objects are farther
Interposition, shading and size are the most prominent depth cues.
Stereoscopic depth cues (cues within two images of the scene, taken at the same time) are based on the fact that each of our eyes sees a different, laterally displaced, image of the world. When we focus on a point, called the fixation point, it appears at the center of the retina of both eyes. All other objects will appear at different places on the two retinas. The brain correlates the differences in an object’s position on the retinas as depth information. Of note, this is similar to the computer vision approach of depth from stereo. Stereo depth cues can be simulated by generating two images that mimic the different views of the scene from each eye. Then the user’s left eye is presented with only the left eye image, and the right eye with only the right eye image. Presented with the differing images, the user then fuses the images to perceive a 3D scene. Some people have problems with their binocular vision or stereo vision and might not be able to perceive a single 3D view from the two stereo images.
In generating the correct image for each eye, the system must take into account many factors including, the distance between user’s eyes (interpupilary distance), the fixation point, and distance to display surface. As these vary per person, and in the case of the fixation point continually varying, always generating the correct image is impossible. Fortunately, a simple approximation of always focusing ‘at infinity’ and assuming that the user’s view direction is perpendicular to, and passes through the center of, the image plane, can create images that work for a majority of situations.
Instead of rendering the user’s view from a single point, two images are rendered, typically the left eye with a (interpupilary distance/2) translation applied in the –x dimension, and the right eye with (interpupilary distance/2) in the +x dimension. This does limit the amount of separation (visual angle) that an object can have between the two images before it can no longer be fused, thus limiting how close an object can be to the user. Further if any other assumption (such as interpupilary distance) is not measured accurately or updated appropriately, the perceived location of an object rendered in stereo will be different than its modeled location.
There are several different methods to present these stereo image pairs to the user, such that each eye receives its appropriate image. Time-parallel methods present both images to the user at the same time. Head Mounted Displays (HMD, see article on Virtual Reality) are devices with two displays mounted within inches of the user’s eyes. The stereo images are displayed on the two screens. The old View-Master stereograph viewer operated on similar principles.

Other time-parallel approaches display both images superimposed on one screen. Anaglyph approaches use colored lens (e.g. red and blue) filters fitted into glasses worn by the user. The two images are rendered in either blue (left) or red (right). The red lens filter on the left eye blocks out the red image, and thus the left eye sees only the blue image. The blue lens works similarly for the right image. A similar approach can be achieved using polarized lenses. Images are projected through a polarizing lens (either circular or linear polarized, where one lens is rotated 90 degrees with respect to the other) that allows only light vibrating in a certain axis to pass through. The user wears glasses with similar polarizing lenses that allow only the image for the appropriate eye to pass through. These are passive stereoscopic approaches.

Another method is to use time-multiplexed projection, in which the two stereo images are rendered and projected one-at-a-time, in sequence (left eye then the right eye). ‘Shutter’ glasses are worn to channel the correct image to the appropriate eye. Most commercial glasses have LCD panels that are either open to let light through, or when signaled, activate the LCD panels to block out light. The glasses are synchronized with the display (e.g. using infrared emitters) to ensure the correct image is completely visible before the LCD is open for that eye. This is an active stereoscopic approach. There are advantages and disadvantages to the different stereoscopic approaches, and they vary in cost, 3D fidelity, accuracy, and the dynamics of the rendered scene.

Motion depth cues are signals found in a sequence of images that provide 3D information of the scene. Motion parallax is the fact that objects nearer to the eye will move a greater distance across the retina over some period of time compared to objects farther away. Motion parallax is generated when either the object being viewed moves in relation to the user or vice versa. This can be observed by looking out the passenger-side window of a car as it is moving. Nearby cars, signs, and stores will move a greater distance over some time as would objects farther away, such as large skyscrapers, clouds, and mountains.
Finally, physiological depth cues are physical changes in the body when we focus on point in the scene. Accommodation is the changing of the shape of the lens of the eye to focus on an object. Convergence is the rotation of the eye such that the fixation point or object is in the center of the retina for each eye. These cues are typically weaker than the previously discussed cues, and are difficult to simulate with computer graphics.
4. Interacting with 3D graphics
Now that we have covered how 3D graphics is presented to the user, we will now discuss the basics of interacting with 3D graphics. We will focus on real-time interaction, where the most common inputs are:
· Changing the viewpoint of the scene
· Interacting with the scene

· Issuing a system command

Most methods use traditional 2D devices, such as keyboard, mice buttons, and joystick buttons, to issue commands to the system. More advanced virtual reality systems use complex interaction devices (see Virtual Reality). Examples of commands are toggling a rendering option, loading a model, and deleting a selected object. Typically these commands are located on a graphical user interface - an interface to the program that is a combination of 2D and 3D controls called widgets.
Changing the viewpoint, or navigation, is typically controlled with an additional device, such as a mouse, keyboard, joystick, tracking system, or haptic feedback device. The viewpoint of most interactive programs either is from a first-person, inside-looking-out, perspective or a third-person, outside-looking-in, perspective. Referring back to the rendering pipeline, navigation is simply changing the position and orientation of the camera that is viewing the scene. The new updated pose of the camera is used to render each frame.
A first-person viewpoint is analogous to seeing the virtual scene from the perspective of a virtual character or vehicle. Most of the navigation is to simulate walking or flying. The most common navigation method is to have a set of controls handle the direction the character is facing (e.g. the mouse) and an additional set of controls for translation along the view direction and an axis perpendicular to the view direction. Flying has the viewpoint translate along the view direction. Walking is similar, but the viewpoint is ‘clamped’ to a height range from the ground plane. First-person ‘shooter’ video games typically employ a mouse+keyboard or joystick combination for navigation.
The third person perspective, or trackball style navigation, has the camera move about a sphere that circumscribes the objects of interest. This has the effect of always having the object of interest be in the center of the rendered image. This is common in scientific visualization, medical imaging, engineering, and design applications. In these tasks, the goal is to provide the user with a broader perspective of the model, as opposed to the first person perspective that tries to immerse the user inside the virtual scene.
The final type of system input is interacting with the scene. Examples of scene interaction include selecting an object (picking) and affecting objects and systems. Picking, using a cursor to select an object, determines the first object that is intersected by a ray from the camera’ location through the cursor. Each application has different methods in which a user may to interact with virtual objects and systems (e.g. physics simulation). Typically, most systems try to incorporate interaction mnemonics that are effective, natural, make sense, and consistent.
5. Future Directions
While the mouse, keyboard, and joystick are the most common devices to interact with the scene, for many tasks, they are not the most natural. Is natural interaction important? How can interface designers create natural interactions for potentially complex tasks? This is complicated by tasks that have no physical equivalent, such as deleting or scaling. Researchers are continually evaluating new widgets, controls, and devices. As computer graphics application work with increasingly more complex data, interaction requirements will increase. Examples include being able to handle 3D environments, haptic feedback, and multi-sensory output. Poor interaction choices can reduce the efficacy of a system for training, ease of use, immersion, and learning. These are all critical research topics in the short and long term for computer graphics human computer interaction.
Benjamin Lok, University of Florida
Further Reading

Bowman, D. & Hodges, L. (1997). An Evaluation of Techniques for Grabbing and Manipulating Remote Objects in Immersive Virtual Environments, 1997 ACM Symposium on Interactive 3-D Graphics, pp. 35 -38.

Eberly, D. (2000). 3D Game Engine Design: A Practical Approach to Real-Time Computer Graphics. Morgan Kaufmann, ISBN: 1558605932.

Faugeras, O., Vieville, T., Theron, E., Vuillemin, J., Hotz, B., Zhang, Z., Moll, L., Bertin, P., Mathieu, H. , Fua, P., Berry, G. & Proy, C (1993). Real-time Correlation-Based Stereo: Algorithm, Implementations and Applications. INRIA Technical Report RR-2013.
Foley, J., van Dam, A., Feiner, S., and Hughes, J. (1995). Computer Graphics: Principles and Practice in C (2nd Edition). Addison-Wesley, IBSN: 0201848406.

Hand, C. (1997) A Survey of 3-D Interaction Techniques. Computer Graphics Forum, 16(5), 269-281.
Hearn, D., and Baker., M. (1996). Computer Graphics, C Version (2nd Edition). Prentice Hall, ISBN: 0135309247.

Lindeman, R., Sibert, J., & Hahn, J. (1999) Hand-Held Windows: Towards Effective 2D Interaction in Immersive Virtual Environments. IEEE Virtual Reality.
Mine, M., Brooks, F., & Sequin, C. (1997) Moving Objects in Space: Exploiting Proprioception in Virtual-Environment Interaction. Proceedings of SIGGRAPH 97.

Sherman, W. & Craig, A. (2003) Understanding Virtual Reality: Interace, Application, and Design. Morgan Kaufmann, ISBN: 1-55860-353-0.
Watt, A., & Watt (1993). 3D Computer Graphics, 2nd Edition. Addison-Wesley, ASIN: 0201154420.

Woo, M., Neider, J., Davis, T., & Shreiner, D. (1999). OpenGL® Programming Guide: The Official Guide to Learning OpenGL, Version 1.2 (3rd Edition). Addison-Wesley, ISBN: 0201604582.
