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Abstract. Supporting students during learning tasks is the main goal of intelligent 
tutoring systems, and the most effective systems can adapt to students based on a 
model of their current state of knowledge or their problem-solving actions. Most 
tutoring systems focus on individual students, but there is growing interest in sup-
porting student pairs. However, modeling student pairs involves considerations 
that may differ from individual students. This paper reports on hidden Markov 
models (HMMs) of student interactions within a visual programming environ-
ment. We compare HMMs for individual students to those of student pairs and 
examine the different approaches the students take. The resulting models suggest 
that there are some important differences across both conditions. There is poten-
tial for using these models to predict problem-solving modes and support adaptive 
tutoring for collaboration in problem-solving domains. 

Keywords: Collaboration · Hidden markov models · Pair programming · Visual 
programming 

1 Introduction 

Intelligent tutoring systems (ITSs) support student learning by adapting problem dif-
ficulty [1], providing personalized hints [2, 3], or giving feedback on the learner's 
progress [4]. However, ITSs’ ability to support problem solving have traditionally 
been limited when the problem is a creative or open-ended learning task because such 
problems have many possible correct solutions [4, 5]. While some lines of research 
are actively investigating complex domains whose problems do not have formulaic 
solutions [6], much work is needed in order to seamlessly support users in solving 
open-ended problems. Nonetheless, this type of learning task support is an essential 
step in supporting human learning with computers, as solving open-ended problems is 
a central component of many real-life endeavors.  

In addition to the limitation of most tutoring systems to well-defined tasks, the vast 
majority of adaptive learning environments focus on supporting individual users. How-
ever, collaborative problem solving is not only mandated within curricular standards for 
a variety of disciplines, it arises organically both inside and outside classroom settings 
[7]. When people solve problems collaboratively, their approaches and strategies differ 
from individual problem solving [8], and developing an understanding of those differ-
ences is crucial for adaptively supporting collaborative problem solving.   
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This paper represents a step toward automatically supporting collaborative pairs in 
a complex problem-solving domain. We examine paired problem solving as it arises 
when solving computer science problems, within structured collaboration referred to 
as pair programming [9]. We present an exploratory study of the differences in prob-
lem-solving approaches between individual students and student pairs. Based upon 
detailed interaction logs of the problem-solving collaboration, we built hidden Mar-
kov models of the interaction sequences for both individual students and collaborative 
student pairs. While not predictive of learning gains, the models highlight that many 
of the problem-solving modes are shared across both groups; however, each exhibits a 
different mode that may have emerged as a result of working individually or with a 
partner. These findings point the way toward building adaptive support for paired 
problem solving. 

2 Related Work 

Many ITSs build a representation of the student’s progress, which allows the system 
to adapt to that specific student’s needs and provide appropriate scaffolding [10]. 
Aspects of a student’s problem-solving process that have been utilized to create stu-
dent models within ITSs range from low-level actions, such as textual edits [3], to 
combinations of several features of an action, such as the action type, involved com-
ponents, and final outcome [11]. The research community has taken an interaction-
based perspective, attempting to model learners based on their interactions within an 
ITS's interface. In particular, models of problem-solving strategies have been utilized 
to inform the design of adaptive systems [1] by building hidden Markov models of 
students' problem-solving strategies within an ITS for middle school algebra [12] and 
concept mapping within a teachable agent for middle school science [13]. The present 
work builds upon this prior research by focusing on computer science as the learning 
domain and on comparing individual students to students working in pairs. 

The vast majority of ITSs have historically focused on individual students. Al-
though this is still the norm, recent years have shown an increased interest in adapting 
ITSs to support student pairs and groups in general. In computer science, pair pro-
gramming is an effective paradigm for supporting learning [9, 14–16]. Even at the 
elementary school level, student pairs collaborating through an ITS achieved similar 
learning gains to individual students and were able to do so having completed fewer 
problems within the tutor [8]. System logs and audio recordings have been used to 
detect when students are collaborating, as well as the intensity of the collaboration 
[17]. A framework for detecting common patterns of collaboration based on students' 
speech and interactions within a touch-based tabletop system has also been proposed 
[18]. The work presented in this paper contributes to this field of research by present-
ing models that can be used to compare individual students and student pairs complet-
ing a problem-solving task.  
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3 Study 

In this study, students implemented a simple game using a visual programming lan-
guage, and their collaborative or individual problem-solving actions were recorded.  

Students were recruited from the second course on computer programming at 
North Carolina State University. These students had prior experience with program-
ming in Java, but were pre-screened to ensure that none had interacted with visual 
programming languages before. A total of 30 students participated in the study: 14 
worked individually and 16 were assigned to the paired condition, for a total of 8 
student pairs. Students were paired based upon their schedules and then through ran-
dom selection for mutual availability. Participants' ages varied between 18 and 28 
(μ=21), with one participant of age 40. Two of the 30 participants were female, com-
mensurate with the population of computer science undergraduate students at the 
university; one female student was randomly paired with a male student and the other 
was in the individual students condition. In exchange for participating in the study, 
students received credit for a homework assignment in their programming course. The 
programming task was to implement the win conditions for a game of "Rock-Paper-
Scissors." Fig. 1 shows a partially implemented student program and its output. 

 

Fig. 1. Visual programming environment and partial rock-paper-scissors program 

Students were first given a brief tutorial of the Snap! programming language in 
which program structures are represented by blocks, which can be grabbed, dropped, 
and snapped together to create programs [19]. The students were allowed to ask ques-
tions of the research coordinator during and after the initial tutorial, but not during the 
programming task. Students were provided with two paper artifacts: a scaffolding 
document for building the program, and a Snap! block reference sheet that included 
the blocks required to complete the task and where to locate them within the interface. 
Students working in pairs followed the pair programming paradigm, sharing one 
computer and performing one of two roles at any given moment during the task: the 
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driver used the computer and created the program, and the navigator read the scaf-
folding document and provided instructions to the driver. They switched roles three 
times (at moments indicated within the scaffolding document), giving each student 
the opportunity to take on both roles twice during the task. Individual students com-
pleted the task in an average of 37 minutes (nindividuals=14; min=23 minutes; max=60 
minutes; σ=10.5 minutes), while student pairs tended to complete the task slightly 
faster, on average 34 minutes (npairs=8; min=23 minutes; max=42 minutes; 
σ=6.3 minutes). This difference was not statistically significant (Mann-Whitney U 
test: p=0.73).  

Students were given an individual multiple-choice pre-test before the Snap! tutorial 
and an identical post-test following the task. There were no significant differences in 
pre-test scores between the individual and collaborative students (μindividuals=0.78; 
μpairs=0.81). Overall, students achieved a statistically significant increase in test score 
over the course of the study (μpre=0.79; μpost=0.86; one-tailed t-test p=0.02). Disaggre-
gating by condition, there was a significant increase in test score for the individual 
students (μpre=0.78; μpost=0.89; one-tailed t-test p=0.01), but this was not the case for 
the student pairs (μpre=0.81; μpost=0.83; one-tailed t-test p=0.29). 

4 Modeling Interaction Sequences 

Having collected the full sequential interaction traces, we proceeded to model the 
event sequences. The underlying notion is that problem-solving sequences comprise 
visible actions that reflect problem-solving modes. We use hidden Markov models 
(HMMs) to model the problem-solving sequences [20]. These represent stochastic 
processes through states and transitions. At any given moment, the HMM is in one of 
its hidden states. Each state emits an observation after each event, and these observa-
tions can be directly measured and used to predict which state the model is currently 
in (see Fig. 2). One model was built for each condition of the study: one for individual 
students and another for student pairs. We interpret the hidden states to represent the 
"modes" that the students employ during their programming task. (Note that since 
HMMs model unobservable constructs, the theoretical constructs that they represent 
are subject to interpretation.) The observations correspond to the event sequences 
stored in the database of problem-solving logs from the study. Each observation in 
this model has three dimensions: 

• Event type: These represent semantically meaningful events within the interface. 
─ CREATE: a block was added onto the scripting area 
─ DELETE: a block was removed from the scripting area 
─ SNAP: two blocks in the scripting area were connected 
─ UNSNAP: two blocks in the scripting area were separated 
─ MOVE: a block was dragged and dropped within the scripting area 
─ PARAM: a block's parameter was set or changed 
─ CATEGORY: the current block category was switched 
─ RUN: the current program was run 
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• Edit distance from final solution: The textual representation of the session's cur-
rent program was compared to the final session program (note that each student 
and student pair completed the task), and edit distance (number of character 
changes that need to be made to a string to match another string) was calculated. 
The observation consisted of determining if the student was getting closer or 
farther from the final solution or remained the same edit distance away from the 
solution after the event. 

• Elapsed time since previous event: These were classified as either being under 30 
seconds (QUICK) or over 30 seconds (DELAY). This threshold was empirically 
determined by measuring the elapsed time when the students were either reading 
the instructions or consulting with their partner. 

 
 

 

Fig. 2. Sequential HMM dia-
gram 

Table 1. Observation symbols 

Event Dist. Time Obs. symbols 

CREATE 

DELETE 

MOVE 

SNAP 

UNSNAP 

PARAM 

CATEGORY 

RUN 

CLOSE 

FAR 

SAME 

< 30s 

(QUICK) 

> 30s 

(DELAY) 

CREATE_CLOSE_QUICK 

CREATE_CLOSE_DELAY 

CREATE_FAR_QUICK 

… 

DELETE_CLOSE_QUICK 

… 

CATEGORY_QUICK 

CATEGORY_DELAY 

RUN_QUICK 

RUN_DELAY 
 

 
With eight event types, two elapsed time tags, and three edit distance tags, there 

were 48 possible observations from the combinations of these dimensions (see Table 
1 for examples). Removing the events that did not occur in the dataset, there were a 
total of 36 observation symbols. Overall, the individual students carried out an aver-
age of 199 task actions to complete the problem-solving task (nindividuals=14; min=104 
events; max=323 events; σ=63.1 events); the student pairs carried out an average of 
181 task actions (npairs=8; min=130 events; max=258 events; σ=41.6 events). The 
difference between means was not statistically significant (Mann-Whitney U test; 
p=0.36), and the higher standard deviation for individuals could be attributed to both 
the differences in programming skills and the lack of a partner to help direct the activ-
ity. The events were classified into a set of defined observation symbols based on the 
elapsed time since the previous event and the edit distance of the current solution 
from the final session solution, as described in Table 1. 

To determine the number of states for the HMMs, leave-one-session-out cross-
validation was used. Models were trained using all but one of the problem-solving 
sessions, and the log-likelihood was calculated for the probability that the remaining 
session could be generated from the trained model; this was repeated for each session 
in a given condition (14 times for the individual students, 8 for the student pairs). The 
same process was repeated for each possible number of states from 3 to 20 (roughly 
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half the number of the observation symbols), and the average log-likelihood for each 
number of states was stored. The Bayesian Information Criterion (BIC) was calcu-
lated for each number of states and averaged between the two conditions; the lowest 
average BIC corresponded to the 4-state models. Thus, 4-state HMMs were built for 
each condition by retraining the models with all sessions for each condition. 

5 Results 

The HMMs for both conditions are presented in Fig. 3. State transition arrows are 
thicker for higher probabilities and dotted for lower probabilities. Only the observa-
tion probabilities greater than 0.05 are shown in the figure. We named the states based 
on qualitative interpretation of the observation frequencies. The descriptions for the 
individual student HMM state interpretations are as follows: 

• Block search: frequent category switches 
• Program testing and refining: running the program and making changes that take 

the program closer to its final solution 
• Program creation: creating new blocks and snapping them to the existing code, 

moving closer to the final solution 
• Program tweaking: snapping blocks with varying effects to the edit distance, 

moving blocks and editing parameters without affecting the edit distance to the 
final solution 

The descriptions for the student pair HMM states are as follows: 

• Block search: frequent category switches with high frequency of snapping blocks 
and moving closer to the final solution 

• Program testing and refining: running the program and making changes that take 
the program closer to its final solution 

• Program planning: high frequency of category switching with blocks being 
created and moved within the scripting area to get closer to the final solution 

• Program building: moving blocks within the scripting area, snapping them to-
gether, and taking them apart (unsnapping) with varying effects to proximity to 
the final solution 

6 Discussion 

Through the use of the Viterbi algorithm, in combination with the HMMs and observa-
tion sequences, we determined the most likely sequence of hidden states that the indi-
viduals and pairs went through during the task. Table 2 shows summary statistics on the 
percentage of time that individuals spent on each state. In general, most of their time 
was spent in program tweaking, followed by block search as the second most frequent. 
As mentioned earlier, category switching was the most common event, which would 
justify the high frequency of the block search state. The program tweaking state does 
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Table 2. State frequency summary 

Ind. state μ σ Min Max Pair state μ σ Min Max 

Search 0.27 0.07 0.17 0.44 Search 0.27 0.08 0.12 0.37 

Test/Refine 0.20 0.05 0.12 0.28 Test/Refine 0.24 0.07 0.08 0.33 

Tweaking 0.37 0.11 0.11 0.53 Planning 0.20 0.06 0.15 0.35 

Creation 0.16 0.03 0.12 0.21 Building 0.29 0.08 0.12 0.37 

State Composition. Both models exhibited block search and program testing and refin-
ing states. Search was characterized by high probability of category switching within 30 
seconds of prior events. For individual students, however, there was also a small proba-
bility of category switching after longer than 30 seconds from the previous event, per-
haps in part because individual students did not have a partner assisting in their search. 
Additionally, although both conditions featured snapping events that brought the pro-
gram closer to the final solution, the probability was higher for student pairs. The 
test/refine state featured high probability of program run events, as well as parameter 
editing and block snapping. This could indicate that students tested their programs, 
found errors, and fixed parameters or block order. One event was present in the pair 
condition that was not present in the individual: parameter editing with no change in 
distance to final solution. This may be due to partners having conflicting ideas for cor-
recting errors, trying multiple values before finding the correct one. 

Individuals exhibited two additional states: program tweaking and program crea-
tion. Tweaking consisted of quick block snapping with varying effects on distance to 
the final solution, as well as block movement and parameter editing with no effect on 
distance to the final solution. This interpretation was chosen due to the opposing na-
ture of the snapping events: snapping blocks and moving both closer and farther from 
the final solution. This seems contradictory at first, but may indicate that students 
were putting together their programs and modifying the block layout to make correc-
tions. Creation included block creation and snapping, both bringing the program clos-
er to the final solution. Students spent the least amount of time on average in this 
state, and the self-transition probability was nearly zero. This suggests that the state 
serves more as a transition, connecting block search, program tweaking, and testing 
and refinement. 

The pairs also had two additional states: program planning and program building. 
Planning featured category switching, similar to the search state, but also included 
events for block creation, movement, and snapping, all with varying effects on dis-
tance to the final solution. When a block is created but not snapped, it is placed in the 
scripting area; similarly, movement involves grabbing and dropping a block within 
the area. This suggests that the students may be rearranging the blocks' layout to help 
visualize a proposed solution. Building included a large number of prominent obser-
vations: snapping, unsnapping, and moving blocks, and editing parameters, all with 
varying effects on distance to the final solution. This appears to serve a similar pur-
pose to the tweaking state for individuals.  

An additional difference between the individual and pair HMMs involves the state 
transition probabilities: pairs had higher self-transition probabilities than the individuals 
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for common states (Search: pair=0.76, ind.=0.49; Test: pair=0.76, ind.=0.67) and in 
general. This could indicate that pairs persisted with a single problem-solving mode 
longer than the individuals. Interesting to consider is the difference between the individ-
uals' tweaking state and the pairs' planning state. Both appear to be states in which  
students explore solution alternatives, but individuals appear to be more willing to snap 
blocks when modifying their program, while pairs preferred to move blocks within the 
scripting area; this could be a key difference between the conditions. 

7 Conclusion 

During problem solving, adaptive systems can provide a customized learning expe-
rience that is likely very different for individuals and pairs. This paper has presented 
work toward understanding the different problem-solving modes that individuals and 
pairs utilize. The results show that student pairs appear to persist in a mode more 
often than individual students. Depending on a task's learning goals, it may be useful 
to help students persist in a particular problem-solving mode, which could be 
achieved through the use of scaffolding, for example.  

Moving forward, an ITS could use information about an individual's or a pair's 
current problem-solving mode to provide adaptive support. For example, if the system 
hypothesizes that students are spending too long in a state of program tweaking, it 
could prompt them to move into a planning state with tailored feedback. Additionally, 
by updating the HMMs with new interaction sequences that include intelligent sup-
port, a system could continuously adapt to new modes that may emerge. These types 
of models can serve as the basis for the next generation of ITSs that support colla-
borative problem solving, and the methodology could potentially be generalized to 
support other problem-solving domains.  
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