
© Springer International Publishing Switzerland 2015
C. Conati et al. (Eds.): AIED 2015, LNAI 9112, pp. 408–418, 2015.
DOI: 10.1007/978-3-319-19773-9_41

Discovering Individual and Collaborative Problem-
Solving Modes with Hidden Markov Models

Fernando J. Rodríguez() and Kristy Elizabeth Boyer

Department of Computer Science, North Carolina State University,
Raleigh, NC 27695, USA

{fjrodri3,keboyer}@ncsu.edu

Abstract. Supporting students during learning tasks is the main goal of intelligent
tutoring systems, and the most effective systems can adapt to students based on a
model of their current state of knowledge or their problem-solving actions. Most
tutoring systems focus on individual students, but there is growing interest in sup-
porting student pairs. However, modeling student pairs involves considerations
that may differ from individual students. This paper reports on hidden Markov
models (HMMs) of student interactions within a visual programming environ-
ment. We compare HMMs for individual students to those of student pairs and
examine the different approaches the students take. The resulting models suggest
that there are some important differences across both conditions. There is poten-
tial for using these models to predict problem-solving modes and support adaptive
tutoring for collaboration in problem-solving domains.

Keywords: Collaboration · Hidden markov models · Pair programming · Visual
programming

1 Introduction

Intelligent tutoring systems (ITSs) support student learning by adapting problem dif-
ficulty [1], providing personalized hints [2, 3], or giving feedback on the learner's
progress [4]. However, ITSs’ ability to support problem solving have traditionally
been limited when the problem is a creative or open-ended learning task because such
problems have many possible correct solutions [4, 5]. While some lines of research
are actively investigating complex domains whose problems do not have formulaic
solutions [6], much work is needed in order to seamlessly support users in solving
open-ended problems. Nonetheless, this type of learning task support is an essential
step in supporting human learning with computers, as solving open-ended problems is
a central component of many real-life endeavors.

In addition to the limitation of most tutoring systems to well-defined tasks, the vast
majority of adaptive learning environments focus on supporting individual users. How-
ever, collaborative problem solving is not only mandated within curricular standards for
a variety of disciplines, it arises organically both inside and outside classroom settings
[7]. When people solve problems collaboratively, their approaches and strategies differ
from individual problem solving [8], and developing an understanding of those differ-
ences is crucial for adaptively supporting collaborative problem solving.

Discovering Individual and Collaborative Problem-Solving Modes with Hidden Markov 409

This paper represents a step toward automatically supporting collaborative pairs in
a complex problem-solving domain. We examine paired problem solving as it arises
when solving computer science problems, within structured collaboration referred to
as pair programming [9]. We present an exploratory study of the differences in prob-
lem-solving approaches between individual students and student pairs. Based upon
detailed interaction logs of the problem-solving collaboration, we built hidden Mar-
kov models of the interaction sequences for both individual students and collaborative
student pairs. While not predictive of learning gains, the models highlight that many
of the problem-solving modes are shared across both groups; however, each exhibits a
different mode that may have emerged as a result of working individually or with a
partner. These findings point the way toward building adaptive support for paired
problem solving.

2 Related Work

Many ITSs build a representation of the student’s progress, which allows the system
to adapt to that specific student’s needs and provide appropriate scaffolding [10].
Aspects of a student’s problem-solving process that have been utilized to create stu-
dent models within ITSs range from low-level actions, such as textual edits [3], to
combinations of several features of an action, such as the action type, involved com-
ponents, and final outcome [11]. The research community has taken an interaction-
based perspective, attempting to model learners based on their interactions within an
ITS's interface. In particular, models of problem-solving strategies have been utilized
to inform the design of adaptive systems [1] by building hidden Markov models of
students' problem-solving strategies within an ITS for middle school algebra [12] and
concept mapping within a teachable agent for middle school science [13]. The present
work builds upon this prior research by focusing on computer science as the learning
domain and on comparing individual students to students working in pairs.

The vast majority of ITSs have historically focused on individual students. Al-
though this is still the norm, recent years have shown an increased interest in adapting
ITSs to support student pairs and groups in general. In computer science, pair pro-
gramming is an effective paradigm for supporting learning [9, 14–16]. Even at the
elementary school level, student pairs collaborating through an ITS achieved similar
learning gains to individual students and were able to do so having completed fewer
problems within the tutor [8]. System logs and audio recordings have been used to
detect when students are collaborating, as well as the intensity of the collaboration
[17]. A framework for detecting common patterns of collaboration based on students'
speech and interactions within a touch-based tabletop system has also been proposed
[18]. The work presented in this paper contributes to this field of research by present-
ing models that can be used to compare individual students and student pairs complet-
ing a problem-solving task.

410 F.J. Rodríguez and K.E. Boyer

3 Study

In this study, students implemented a simple game using a visual programming lan-
guage, and their collaborative or individual problem-solving actions were recorded.

Students were recruited from the second course on computer programming at
North Carolina State University. These students had prior experience with program-
ming in Java, but were pre-screened to ensure that none had interacted with visual
programming languages before. A total of 30 students participated in the study: 14
worked individually and 16 were assigned to the paired condition, for a total of 8
student pairs. Students were paired based upon their schedules and then through ran-
dom selection for mutual availability. Participants' ages varied between 18 and 28
(μ=21), with one participant of age 40. Two of the 30 participants were female, com-
mensurate with the population of computer science undergraduate students at the
university; one female student was randomly paired with a male student and the other
was in the individual students condition. In exchange for participating in the study,
students received credit for a homework assignment in their programming course. The
programming task was to implement the win conditions for a game of "Rock-Paper-
Scissors." Fig. 1 shows a partially implemented student program and its output.

Fig. 1. Visual programming environment and partial rock-paper-scissors program

Students were first given a brief tutorial of the Snap! programming language in
which program structures are represented by blocks, which can be grabbed, dropped,
and snapped together to create programs [19]. The students were allowed to ask ques-
tions of the research coordinator during and after the initial tutorial, but not during the
programming task. Students were provided with two paper artifacts: a scaffolding
document for building the program, and a Snap! block reference sheet that included
the blocks required to complete the task and where to locate them within the interface.
Students working in pairs followed the pair programming paradigm, sharing one
computer and performing one of two roles at any given moment during the task: the

Discovering Individual and Collaborative Problem-Solving Modes with Hidden Markov 411

driver used the computer and created the program, and the navigator read the scaf-
folding document and provided instructions to the driver. They switched roles three
times (at moments indicated within the scaffolding document), giving each student
the opportunity to take on both roles twice during the task. Individual students com-
pleted the task in an average of 37 minutes (nindividuals=14; min=23 minutes; max=60
minutes; σ=10.5 minutes), while student pairs tended to complete the task slightly
faster, on average 34 minutes (npairs=8; min=23 minutes; max=42 minutes;
σ=6.3 minutes). This difference was not statistically significant (Mann-Whitney U
test: p=0.73).

Students were given an individual multiple-choice pre-test before the Snap! tutorial
and an identical post-test following the task. There were no significant differences in
pre-test scores between the individual and collaborative students (μindividuals=0.78;
μpairs=0.81). Overall, students achieved a statistically significant increase in test score
over the course of the study (μpre=0.79; μpost=0.86; one-tailed t-test p=0.02). Disaggre-
gating by condition, there was a significant increase in test score for the individual
students (μpre=0.78; μpost=0.89; one-tailed t-test p=0.01), but this was not the case for
the student pairs (μpre=0.81; μpost=0.83; one-tailed t-test p=0.29).

4 Modeling Interaction Sequences

Having collected the full sequential interaction traces, we proceeded to model the
event sequences. The underlying notion is that problem-solving sequences comprise
visible actions that reflect problem-solving modes. We use hidden Markov models
(HMMs) to model the problem-solving sequences [20]. These represent stochastic
processes through states and transitions. At any given moment, the HMM is in one of
its hidden states. Each state emits an observation after each event, and these observa-
tions can be directly measured and used to predict which state the model is currently
in (see Fig. 2). One model was built for each condition of the study: one for individual
students and another for student pairs. We interpret the hidden states to represent the
"modes" that the students employ during their programming task. (Note that since
HMMs model unobservable constructs, the theoretical constructs that they represent
are subject to interpretation.) The observations correspond to the event sequences
stored in the database of problem-solving logs from the study. Each observation in
this model has three dimensions:

• Event type: These represent semantically meaningful events within the interface.
─ CREATE: a block was added onto the scripting area
─ DELETE: a block was removed from the scripting area
─ SNAP: two blocks in the scripting area were connected
─ UNSNAP: two blocks in the scripting area were separated
─ MOVE: a block was dragged and dropped within the scripting area
─ PARAM: a block's parameter was set or changed
─ CATEGORY: the current block category was switched
─ RUN: the current program was run

412 F.J. Rodríguez and K.E. Boyer

• Edit distance from final solution: The textual representation of the session's cur-
rent program was compared to the final session program (note that each student
and student pair completed the task), and edit distance (number of character
changes that need to be made to a string to match another string) was calculated.
The observation consisted of determining if the student was getting closer or
farther from the final solution or remained the same edit distance away from the
solution after the event.

• Elapsed time since previous event: These were classified as either being under 30
seconds (QUICK) or over 30 seconds (DELAY). This threshold was empirically
determined by measuring the elapsed time when the students were either reading
the instructions or consulting with their partner.

Fig. 2. Sequential HMM dia-
gram

Table 1. Observation symbols

Event Dist. Time Obs. symbols

CREATE

DELETE

MOVE

SNAP

UNSNAP

PARAM

CATEGORY

RUN

CLOSE

FAR

SAME

< 30s

(QUICK)

> 30s

(DELAY)

CREATE_CLOSE_QUICK

CREATE_CLOSE_DELAY

CREATE_FAR_QUICK

…

DELETE_CLOSE_QUICK

…

CATEGORY_QUICK

CATEGORY_DELAY

RUN_QUICK

RUN_DELAY

With eight event types, two elapsed time tags, and three edit distance tags, there

were 48 possible observations from the combinations of these dimensions (see Table
1 for examples). Removing the events that did not occur in the dataset, there were a
total of 36 observation symbols. Overall, the individual students carried out an aver-
age of 199 task actions to complete the problem-solving task (nindividuals=14; min=104
events; max=323 events; σ=63.1 events); the student pairs carried out an average of
181 task actions (npairs=8; min=130 events; max=258 events; σ=41.6 events). The
difference between means was not statistically significant (Mann-Whitney U test;
p=0.36), and the higher standard deviation for individuals could be attributed to both
the differences in programming skills and the lack of a partner to help direct the activ-
ity. The events were classified into a set of defined observation symbols based on the
elapsed time since the previous event and the edit distance of the current solution
from the final session solution, as described in Table 1.

To determine the number of states for the HMMs, leave-one-session-out cross-
validation was used. Models were trained using all but one of the problem-solving
sessions, and the log-likelihood was calculated for the probability that the remaining
session could be generated from the trained model; this was repeated for each session
in a given condition (14 times for the individual students, 8 for the student pairs). The
same process was repeated for each possible number of states from 3 to 20 (roughly

Discovering Individual and Collaborative Problem-Solving Modes with Hidden Markov 413

half the number of the observation symbols), and the average log-likelihood for each
number of states was stored. The Bayesian Information Criterion (BIC) was calcu-
lated for each number of states and averaged between the two conditions; the lowest
average BIC corresponded to the 4-state models. Thus, 4-state HMMs were built for
each condition by retraining the models with all sessions for each condition.

5 Results

The HMMs for both conditions are presented in Fig. 3. State transition arrows are
thicker for higher probabilities and dotted for lower probabilities. Only the observa-
tion probabilities greater than 0.05 are shown in the figure. We named the states based
on qualitative interpretation of the observation frequencies. The descriptions for the
individual student HMM state interpretations are as follows:

• Block search: frequent category switches
• Program testing and refining: running the program and making changes that take

the program closer to its final solution
• Program creation: creating new blocks and snapping them to the existing code,

moving closer to the final solution
• Program tweaking: snapping blocks with varying effects to the edit distance,

moving blocks and editing parameters without affecting the edit distance to the
final solution

The descriptions for the student pair HMM states are as follows:

• Block search: frequent category switches with high frequency of snapping blocks
and moving closer to the final solution

• Program testing and refining: running the program and making changes that take
the program closer to its final solution

• Program planning: high frequency of category switching with blocks being
created and moved within the scripting area to get closer to the final solution

• Program building: moving blocks within the scripting area, snapping them to-
gether, and taking them apart (unsnapping) with varying effects to proximity to
the final solution

6 Discussion

Through the use of the Viterbi algorithm, in combination with the HMMs and observa-
tion sequences, we determined the most likely sequence of hidden states that the indi-
viduals and pairs went through during the task. Table 2 shows summary statistics on the
percentage of time that individuals spent on each state. In general, most of their time
was spent in program tweaking, followed by block search as the second most frequent.
As mentioned earlier, category switching was the most common event, which would
justify the high frequency of the block search state. The program tweaking state does

414 F.J. Rodríguez and K

not appear to be productive
due to being stuck, leading t

Table 2 also shows the s
Pairs tended to spend more
block search state; these sta
tion. The pairs also demon
collaborative aspect of the t

K.E. Boyer

at first, but students may have engaged in off-task behav
them closer to the solution [21].
ummary statistics for the state frequencies of student pa
time in the program building state, followed closely by

ates have high frequency of getting closer to the final so
strated a program planning state, which may be where
task is most prominent.

Fig. 3. Student HMMs

iors

airs.
the

olu-
the

Discovering Individual and Collaborative Problem-Solving Modes with Hidden Markov 415

Table 2. State frequency summary

Ind. state μ σ Min Max Pair state μ σ Min Max

Search 0.27 0.07 0.17 0.44 Search 0.27 0.08 0.12 0.37

Test/Refine 0.20 0.05 0.12 0.28 Test/Refine 0.24 0.07 0.08 0.33

Tweaking 0.37 0.11 0.11 0.53 Planning 0.20 0.06 0.15 0.35

Creation 0.16 0.03 0.12 0.21 Building 0.29 0.08 0.12 0.37

State Composition. Both models exhibited block search and program testing and refin-
ing states. Search was characterized by high probability of category switching within 30
seconds of prior events. For individual students, however, there was also a small proba-
bility of category switching after longer than 30 seconds from the previous event, per-
haps in part because individual students did not have a partner assisting in their search.
Additionally, although both conditions featured snapping events that brought the pro-
gram closer to the final solution, the probability was higher for student pairs. The
test/refine state featured high probability of program run events, as well as parameter
editing and block snapping. This could indicate that students tested their programs,
found errors, and fixed parameters or block order. One event was present in the pair
condition that was not present in the individual: parameter editing with no change in
distance to final solution. This may be due to partners having conflicting ideas for cor-
recting errors, trying multiple values before finding the correct one.

Individuals exhibited two additional states: program tweaking and program crea-
tion. Tweaking consisted of quick block snapping with varying effects on distance to
the final solution, as well as block movement and parameter editing with no effect on
distance to the final solution. This interpretation was chosen due to the opposing na-
ture of the snapping events: snapping blocks and moving both closer and farther from
the final solution. This seems contradictory at first, but may indicate that students
were putting together their programs and modifying the block layout to make correc-
tions. Creation included block creation and snapping, both bringing the program clos-
er to the final solution. Students spent the least amount of time on average in this
state, and the self-transition probability was nearly zero. This suggests that the state
serves more as a transition, connecting block search, program tweaking, and testing
and refinement.

The pairs also had two additional states: program planning and program building.
Planning featured category switching, similar to the search state, but also included
events for block creation, movement, and snapping, all with varying effects on dis-
tance to the final solution. When a block is created but not snapped, it is placed in the
scripting area; similarly, movement involves grabbing and dropping a block within
the area. This suggests that the students may be rearranging the blocks' layout to help
visualize a proposed solution. Building included a large number of prominent obser-
vations: snapping, unsnapping, and moving blocks, and editing parameters, all with
varying effects on distance to the final solution. This appears to serve a similar pur-
pose to the tweaking state for individuals.

An additional difference between the individual and pair HMMs involves the state
transition probabilities: pairs had higher self-transition probabilities than the individuals

416 F.J. Rodríguez and K.E. Boyer

for common states (Search: pair=0.76, ind.=0.49; Test: pair=0.76, ind.=0.67) and in
general. This could indicate that pairs persisted with a single problem-solving mode
longer than the individuals. Interesting to consider is the difference between the individ-
uals' tweaking state and the pairs' planning state. Both appear to be states in which
students explore solution alternatives, but individuals appear to be more willing to snap
blocks when modifying their program, while pairs preferred to move blocks within the
scripting area; this could be a key difference between the conditions.

7 Conclusion

During problem solving, adaptive systems can provide a customized learning expe-
rience that is likely very different for individuals and pairs. This paper has presented
work toward understanding the different problem-solving modes that individuals and
pairs utilize. The results show that student pairs appear to persist in a mode more
often than individual students. Depending on a task's learning goals, it may be useful
to help students persist in a particular problem-solving mode, which could be
achieved through the use of scaffolding, for example.

Moving forward, an ITS could use information about an individual's or a pair's
current problem-solving mode to provide adaptive support. For example, if the system
hypothesizes that students are spending too long in a state of program tweaking, it
could prompt them to move into a planning state with tailored feedback. Additionally,
by updating the HMMs with new interaction sequences that include intelligent sup-
port, a system could continuously adapt to new modes that may emerge. These types
of models can serve as the basis for the next generation of ITSs that support colla-
borative problem solving, and the methodology could potentially be generalized to
support other problem-solving domains.

Acknowledgements. Thanks to the members of the LearnDialogue Group and the Center for
Educational Informatics at NCSU for their helpful input. Thanks to Alexandria Vail, Xiaolong Li,
and Allison Martínez-Arocho for their contributions. This material is based upon work supported
by the National Science Foundation through a graduate research fellowship and IIS-1409639. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation.

References

1. Guin, N., Lefevre, M.: From a customizable ITS to an adaptive ITS. In: Lane, H., Yacef,
K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS, vol. 7926, pp. 141–150. Springer,
Heidelberg (2013)

2. Stamper, J.C., Eagle, M., Barnes, T., Croy, M.: Experimental Evaluation of Automatic
Hint Generation for a Logic Tutor. IJAIED 22(1), 3–17 (2013)

Discovering Individual and Collaborative Problem-Solving Modes with Hidden Markov 417

3. Lazar, T., Bratko, I.: Data-driven program synthesis for hint generation in programming
tutors. In: Trausan-Matu, S., Boyer, K.E., Crosby, M., Panourgia, K. (eds.) ITS 2014.
LNCS, vol. 8474, pp. 306–311. Springer, Heidelberg (2014)

4. Kazi, H., Haddawy, P., Suebnukarn, S.: Leveraging a domain ontology to increase the
quality of feedback in an intelligent tutoring system. In: Aleven, V., Kay, J., Mostow, J.
(eds.) ITS 2010, Part I. LNCS, vol. 6094, pp. 75–84. Springer, Heidelberg (2010)

5. Walker, E., Walker, S., Rummel, N., Koedinger, K.R.: Using problem-solving context to
assess help quality in computer-mediated peer tutoring. In: Aleven, V., Kay, J., Mostow, J.
(eds.) ITS 2010, Part I. LNCS, vol. 6094, pp. 145–155. Springer, Heidelberg (2010)

6. Ogan, A., Walker, E., Aleven, V., Jones, C.: Toward supporting collaborative discussion in
an Ill-Defined domain. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS
2008. LNCS, vol. 5091, pp. 825–827. Springer, Heidelberg (2008)

7. Ogan, A., Walker, E., Baker, R.S.J.d., Rebolledo-Mendez, G., Jimenez Castro, M., Lauren-
tino, T., de Carvalho, A.: Collaboration in cognitive tutor use in latin america: field study
and design recommendations. In: Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, pp. 1381–1390 (2012)

8. Olsen, J.K., Belenky, D.M., Aleven, V., Rummel, N.: Using an intelligent tutoring system
to support collaborative as well as individual learning. In: Trausan-Matu, S., Boyer, K.E.,
Crosby, M., Panourgia, K. (eds.) ITS 2014. LNCS, vol. 8474, pp. 134–143. Springer, Hei-
delberg (2014)

9. Williams, L., Wiebe, E., Yang, K., Ferzli, M., Miller, C.: In Support of Pair Programming
in the Introductory Computer Science Course. Comput. Sci. Educ. 12(10), 197–212 (2002)

10. Koedinger, K.R., Stamper, J.C., McLaughlin, E.A., Nixon, T.: Using data-driven discovery
of better student models to improve student learning. In: Lane, H., Yacef, K., Mostow, J.,
Pavlik, P. (eds.) AIED 2013. LNCS, vol. 7926, pp. 421–430. Springer, Heidelberg (2013)

11. Kardan, S., Roll, I., Conati, C.: The usefulness of log based clustering in a complex simu-
lation environment. In: Trausan-Matu, S., Boyer, K.E., Crosby, M., Panourgia, K. (eds.)
ITS 2014. LNCS, vol. 8474, pp. 168–177. Springer, Heidelberg (2014)

12. Tenison, C., MacLellan, C.J.: Modeling strategy use in an intelligent tutoring system: im-
plications for strategic flexibility. In: Trausan-Matu, S., Boyer, K.E., Crosby, M., Panour-
gia, K. (eds.) ITS 2014. LNCS, vol. 8474, pp. 466–475. Springer, Heidelberg (2014)

13. Jeong, H., Gupta, A., Roscoe, R., Wagster, J., Biswas, G., Schwartz, D.L.: Using hidden
markov models to characterize student behaviors in learning-by-teaching environments. In:
Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp.
614–625. Springer, Heidelberg (2008)

14. McDowell, C., Werner, L., Bullock, H., Fernald, J.: The effects of pair-programming on
performance in an introductory programming course. In: Proceedings of the 33rd ACM
Technical Symposium on Computer Science Education (SIGCSE 2002), pp. 38–42 (2002)

15. Braught, G., MacCormick, J., Wahls, T.: The benefits of pairing by ability. In: Proceedings
of the 41st ACM Technical Symposium on Computer Science Education (SIGCSE 2010),
pp. 249–253 (2010)

16. Thomas, L., Ratcliffe, M., Robertson, A.: Code warriors and code-a-phobes: a study in at-
titude and pair programming. In: Proceedings of the 34rd ACM Technical Symposium on
Computer Science Education (SIGCSE 2003), pp. 363–367 (2003)

17. Martinez, R., Wallace, J.R., Kay, J., Yacef, K.: Modelling and identifying collaborative
situations in a collocated multi-display groupware setting. In: Biswas, G., Bull, S., Kay, J.,
Mitrovic, A. (eds.) AIED 2011. LNCS, vol. 6738, pp. 196–204. Springer, Heidelberg
(2011)

418 F.J. Rodríguez and K.E. Boyer

18. Martinez-Maldonado, R., Kay, J., Yacef, K.: An automatic approach for mining patterns of
collaboration around an interactive tabletop. In: Lane, H., Yacef, K., Mostow, J., Pavlik, P.
(eds.) AIED 2013. LNCS, vol. 7926, pp. 101–110. Springer, Heidelberg (2013)

19. Harvey, B., Mönig, J.: Bringing “No Ceiling” to scratch: can one language serve kids and
computer scientists? In: Constructionism, pp. 1–10 (2010)

20. Rabiner, L.R., Juang, B.H.: An Introduction to Hidden Markov Models. IEEE ASSP Mag.
3, 4–16 (1986)

21. Sabourin, J., Rowe, J.P., Mott, B.W., Lester, J.C.: When off-task is on-task: the affective
role of off-task behavior in narrative-centered learning environments. In: Biswas, G., Bull,
S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS, vol. 6738, pp. 534–536. Springer,
Heidelberg (2011)

	Discovering Individual and Collaborative Problem- Solving Modes with Hidden Markov Models
	1 Introduction
	2 Related Work
	3 Study
	4 Modeling Interaction Sequences
	5 Results
	6 Discussion
	7 Conclusion
	References

