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much appealRecentwork on dialogue systems
Abstract has exploredmachine learning teclgues toau-

tomatically learn dialogue managers from aBrp
L_ear.r}ing dialogue management models poses ra (Scheffler and Young, 2002; Hardy et al.,
significant challenges. In a complex task  2006; Williamsand Young, 2007 Bangaloreet
oriented domain in which information ix- al., 2008; Sridhaet al, 2009)
changedvia parallel,interleaveddialogue and To support more natural humapmputerdia-
task streamseffective dialogue marjagement logue earlier work on dialoguesystemsenv-
models should be able toake dialogue . . . . )

sioned rich interaction environments that take

moves based on both th@logueand thetask ) . .
context. This paper presents a eataven - into account observed user actions for selecting

proach to learimg dialogue management mo optimal dialogue stragies(Carberry, 1990; Rich
els that deterrme when to make dialogue and Sidner]1998 Allen et al, 200). However,
moves to assist usersO task completion activ ~ recent @tadriven approacheshave primarily
ties, as well as the type of dialogm®ve that focused on application domaiims which infar-
should be selected fer given user interaction mation betweenthe user and the system are
context.Combining features automaticallx-e communicated solely by dialogue, such ag-tel

tracted from the dialogue and the taskye
compare twoalternate modeling approaches.
The results of an evaluation indicathe
learned modelareeffective in predicting both
the timing and the type of system dialogue

phonebased systems(Hardy et al.,, 2006
Bangaloreet al, 200§ andonline chat diadgues
(Ivanovic, 2008Kim et al, 2010) With increas-
ing demandgor natural humaitomputerinter-

moves. action beyond these restricted application do-
mairs, dialogue systemare requiredo support
1 Introduction more complextypes of interaction in which us-

ers perform tasks in parallel texchanging di-
Automated talogue systems allow users ®-i |ogue.For instancegdialogue interfacefor task
teract with information systems in a natural and assistance systems, such as intelligent tutoring
intuitive manner With the growthof speech systems,should be abléo monitor usesOtask
enabled applications for mobile devicélse -  completion activities and incorporate the be
mandsfor practical dialogue systenigve been served activities into dialogue managantded-
increasingat an accelerating pacehe core tasks sjons such thatthe systemscan provideuses
of automated dialogue systenmelude dialogue with spontaneousassistance (e.g., providing
management, which is concerned with selectingints) evenwithout an explicit request from the
system actiosin response t@ given user input. yser.
Traditionally, dialogue managers have been \We have been exploringlatadriven a-
manually constructed However, manuét craft-  proaches fom complextaskorientedapplication
ing dialogue managerss laborintensive and  domain in which information is delivereioth
yields sysems that arérittle with respect tain-  py exchanging dialogue with useend by ob-
expected user behavrFor rapid creation of serving users® task completion activiti©sir
robust and adapk dialogue systems, data previouswork hasfocused on the automatic -
driven approache® dialogue management hold terpretation of user dialogue inp(Boyer et al.,



2010; Haet al, 2012) Findings suggest that
identifying an effective representation tonto
bine information fromdialogue andusersQask
completion activitiess key to effective dialogue
processing in a domain consigfiof parallel da-
logue and task streams

maximize aggregate expectedwards, such as
user satisiction (Walker et al, 1997) Learned
policiesthat result from RL exploratiodo not

by design,necessarily reflect the patterns in the
bootstrapdialogue corpusAdditionally, to cover
all possiblestate spacg reinforcement learning

As the next step in this line of investigation ontypically requires a very large set of training a

complextaskorienteddomairs with parallel da-
logue and task streamthis work proposes an
approach to automatically learningdialogue
managementnodels from a huan dialogue coe
pus The proposedapproachcombine infor-
mation froma dialoguestreamandatask stream
in order tocreatespontaneous dialogue interve
tions for uses based on monitarg usesCactivi-

ta, which limits the canplexity of the dialogue
systemin its representationf the dialogue states
and the system actioff¥ounget al, 2013)

A secondbody ofrelatedwork focuses ortlia-
logue act classificatiorClassificationbased p-
proaches aim at learning the patterns of dialogue
that are present in the corpus.variety of na-
chine learning frameworks have been exploited,

ties Two subtasks of dialogue management aréncluding hidden Markov model$Stolcke et al.,

addressedthe first is to determine when togsr
vide dialoguefeedback(timing), and he second
is to determinewhat kind of dialogue feedback to
provide ¢ype). Dialogue managers in conve
tional domains have primarily focusd on the
selectionof feedback typeHowever, determn-
ing the appropriatéiming of systemmovesis
critical for dialogue systemthat supporparallel
dialogue and task streams

The work presentetiere makes threeontii-
butions First, it endeavord¢o expanddatadriven
dialogue management ddressing more oo
plex taskoriented domaingsonsisting ofparallel
dialogue and task streanfSecond,t proposes a

2000 Boyer et al., 2010 maximum entropy
models (Bangaloreet al, 2008; Sridharet al,
2009 Ha et al., 2012, support vector machines
(Ivanovic, 2008)conditional random field&Kim
et al, 2010) and memorybased classifisrin
combindion with latent semantic analysiéDi
Eugenio et al, 2010) Classificationbased p-
proachesncorporaterich sets ofeaturesjnclud-
ing not only lexical information, syntactic fea-
tures and dialogue struture, but alsoprosodic
featuresin the case of spoken dialog(®tolcke
et al., 2000 Sridharet al, 2009 and nonverbal
features such as facial expressi¢Bsyer et al,
2011)andshifts in posture (Ha et al., 2012).

timing intervention model that determines the While mostwork on dialogue act classife&:

correct time to makepontaneous system inte
ventiors. Third, it presentsa maximum entropy
dialogue management model and compale

ternate approache#. also compares the predi

tion hasfocused on either offline analysis ofdi
logue (Stolcke et al., 20Q0vanovic, 2008; Kim
et al., 2010Di Eugenio et al., 2000or interpre-
tation of user dialogué€Boyer et al., 2010; Ha et

tive power of the dialogue and task streams oal., 2012) Bangalore et al. (2008)tilized dia-

thetargeteddialogue managemetdsks

2 Related Work

Datadriven approaches tialogue management

continue to behe subject of increasing attention

within the dialogue community.Prominent
among these argeinforcement learning pa
proaclesfor learningdialogue policies from as
pora(Hendersoret al, 2008; Levinet al, 2000;
Lewis and Di Fabbrizio, 2006; Rot al.,2000;
Schefflerand Young, 2002; Singtet al., 2002;
Williams andYoung, 2007; Young, 2002These
approaches modalialogue as Markov decision
processes, either fullgbservabld MDPs) or pa-
tially observabld POMDPs), in which the tranis

tions of dialogue states are associated witht sy

tem acions and rewardsThe goal of reinfore-
ment learning is to learn optimalolicies that

logue act classificatioms a mechanisrfor de-
terminng sygem dialogue moves. They pro-
poseda unified dialogue act classificatiorp-a
proach for both the interpretation of user utte
ances and selection of systeimloguemoves.

Our work is similar todBangalore et al. (2008)
in that it takesa dialogue acftclassificdion ap-
proachto the task of selectingsystem difbogue
moves. However, it addresses the problems
posed by omplex taskorientedapplicationdo-
mairs in which information is communicated not
only by dialogue exchanges but also by manito
ing usersO taglerformanceln such domaig a
userOgaskactivitiesconstitutea full communi@-
tive streamin its own right separate from the
dialoguestream The challenges oparallel da-
logue and task streanase addressed by expioi
ing automatically obtained task featuresmeo
bined with dialogue featuretn contrast to -



vious work (Bangalore et al. 2008, Boyer et al., For each lesson, students completed atpse
2010) in which task information was derived and a postest before and after the main tutoring
from manual annotation, our work utilizes aut session. The preand postest consisted of the
matically computed task faaes. same set of questions to assess studentsO

Our work also focuses ongrowing applica-
tion area of dialogue systemimtelligent tuta-

knowledge related to the lessonOs objectives.
Compared @ studentsO ptest results, signi

ing. In support of student learning, recent workcant learning gamwere observedon the post

in this areautilized human tutorial dialogue co

test which indicatesthat the tutorial dialogue

pora to learn effective tutorial strategies usingwvas effectivefor student learningMitchell et al,

MDPs (Chi et al., 20L,0Mitchell et al., 2013 to

develop tutorial dillogue models that adapt to

students® afttive states ForbesRiley and

2012)

3.2 Dialogue aanotation

Litman, 2011), and to improve robustness of aA subset of the collected data was manuatly a

symbolic tutorial dialogue systenDfikovskaet
al., 2013).

3 Task-Oriented Dialogue Corpus

To learndialogue managementodelsfrom n&-

urally occurring humatio-human dialogue we

utilize a human tutorial dialogueorpuswe cd-

lected in the domain of introductory progra-

ming in JavaThe corpus consists of textudib-

logueexchanges heeenstudens andtutorsin a

web-based remoteutoring inteface aligned
with task contextogs (Appendix A) A subset 6

the corpus was annotated witlialogue acts,
which was used to train and tet$te dialogue
maragement modeldescribed in this pzer.

3.1 Human tutoring study

The data collection study involvddrty-two un-
dergraduatestudentswho were paired with one
of four tuors. The students werenrolled ina

first-year engineering course and were -pre

screened to filter out those with significanbpr
gramming experienceThe students were oo
pensated for #ir participation with partial

course creditThe tutors were graduate student

notatedwith dialogue acts usingn annotation
scheme consisting of 13 dialogue act tags for
taskoriented tutorialdialogue Table 1). The
annotated corpusonsists ofthe first of the six
tutoring lessons from 21 students, which contains
2564 utterances (1777 tutor, 787 student). The
average number of utterances per tutoring- se
sion was 122 (min = 74; max = 201). Taea-

age number of tutor utterances per session was
84.6 (min = 51; max = 137)@nd the average
number of student utterances per session was
37.4 (min = 22; max = 64).

Three human annotators were trained to apply
the scheme. The training consisted of anative
process involving collaborative and independent
tagging, followed by refinements of the tagging
protocol. At the initial phase of training, tha-a
notators tagged the corpus collaboratively. In
later phases annotators tagged independently. To
comput agreement between different annotators,
24% (5 of the 21 sessions) of the corpusre
doubly annotated by two annotators. All possible
pairs of the annotators participated in douliie a
notation. The aggregate agreement Wa0 in

SCohenf)s Kapg&ohen, 196Q)

with previous tutoring or teaching experience ing Dialogue Management Models

Java programmingandthe students worked with

the same tutor for the entire study. Each lessomo support daskorienteddialoguesystem cag-

consisted of between four anHirteen distinct
subtasks.
The students completed six fomyinute tute-

ble of not only responding tasers@ialogue i-
put but als providing spontaneousysteminter-

vention during users@ask activities a dialogue

ing lessons, covering progressive topics inantr manager shoulgrovide two functionalitiesThe
ductory computer science over four weeks. Eacfirst is to determinethe timing of a systemdia-

lesson consisted of four to thirteen subtashks
which later subtasks builipon earkr onesDur-

logue move (i.e.whether or not to provide a

torial dialogue move at aiven contexXt The

ing eachtutoring sessionthe paired student and second is to determine thge of dialoguemove

tutor interacted remotely using a wbhsed -

(i.e., selecting from available systewialogue

toring inteface.With this tutoring interface, the acf). In this work the problem ofdetermining
student and the tutor were able to exchange tethe systemOs next dialogue miveastasa clas-
tual dialogueand share a synchronized view ofsification task.In previous workwe found a

the task.

maximum entropy approach was effective for



Tag Description Agreement
H Hint: The tutor gives advice to help the student proceed with the task .50
DIR |Directive: The tutor explicitly tells the student the next step to take .63
ACK [Acknowledgement:Either the tutor or the student acknowledges previous utterance 73

conversational grounding

RC |Requestfor Confirmation: Either the tutor or the student requests confirmation fron Insufficient

other participant (e.g:;Make sense?”) data

RF |Request for FeedbackThe student requests an assessment of his performance or 1.0

work from the tutor

PF |Positive FeedbackThe tutor provides a positive assessment of the student(s perfq .90

mance

LF |Lukewarm Feedback: The tutor provides an assessment that has both positive aad .80

tive elements

NF |Negative FeedbackThe tutor provides a negative assessment of the student®s pe 40

mance

Q Question: A question which does not fit into any of the above categories .95
A Answer: An answer to an utterance marked Q .94
C Correction: Correction of a typo in a previous utterance .54
S Statement: A statement which does not fit into any of the above categories 71
@) Other: Other utterances, usually containing only affective content .69

Tablel. Dialogue act annotation scheme and inégéer agreement
classifying userdialogue act for taskoriented The taskoriented dialogue considered in this

dialogue withparallel dialogue and task streamswork includes twoparallel andinterleaveddata
(Ha, 2012) Maximum entropy outperformed streams an explicit dialogue streamconsisting
both Naive Bayes and conditional @mm fields.  of textual exchanges between a student and a
Building on these results, vaamployamaximum  tutor, and an implicit task streamconsisting of
entropy classifieto learn dialogue management the studentOs problesulving activities.Thus, a
modelsthat predict both the timing and the typegiveninteractionhistory can be decomposed into
of the system dialogue movEhe following se- a dialogue history and a task toig/, rewriting
tions describe two alternate approaches #® di equation(1) as follows,

logue managemerthat canboth determine the
timing and determine the type sfstem dialogue
interventions in which 2 1 1, dy s 1d; and

4.1 One-step dialogue management wdel T/ 1 1y 0 11 represent the  history

. . of dialogue utterances and the history of student
In the first model, the two dialogue managemenf,qk activities respectively.

tasksare framedas a single classification o In this work the conditional probability digtr
lem by treating the decision @bt to make a tu-  pyiion in Equation (2) is estimatedsing the
torial dialogue move as a special dialogue act. ovimum entropy frameworkBerger et al,
Thus, afinite.set of dialgue moves allowed for 1996) The maximum entropy framework selects
the system is defined &s= {m, !m,,--!m}, 3 probability distribution that results in the hig
in which M ! 3 U {NoMov! } _and el est entropy among all possitgelutions. Given a
lday,!" 5,1 1" \}is the set of dialogue acts yectorr of feature set, the conditionafobabi-
available for the systemGiven! and thei'" ity distribution is estimated by the following
step in a given user interaction history equation,

U{7% = h;_,lhy 1! 11, the goal ofthe dia- Lo

logue management model tis predictsystemds ~ P(X! m;|!) ! !mek o 3)
dialogue move ,,, for the nextstep which is
determined by the following equation.

I 41 = argmaxmy P(! |H!” k) 1)

my 1 = argmax, enP(! [DIT1)(2)

in which A represents weights adis a normé
izing factor. This work used MALLET



(McCallum, 2002)to estimate this conditional
distribution.

4.2 Two-step dialogue nanagement model

A potential shortcoming of the orstep model is

is used for the prediction of both the timing and
the type of system move.

5.1 Automatic task analysis

In order to provide a measure students@sk

that the probability distribution over dialogue progress through each of the&oring sessions, an

actsis prone todistortiondepending on the po
tion of NoMove in the training dataTo avoid
this, the second modehkes a twestep approach,
treating each dialogue management taskan
independent classification taskihe twostep
model first determirge whether or not to maka

edit distance metric was implemented. Thig-me
ric computes the minimum edit distance between
a studentOs program at a particular tiraad a
representative solutiofor a given programming
task,in order to estimatdow far away the st
dent is from completing the tasBecause our

dialogue move. If a decision is made to provide dutors were experienced in the subject matter and
dialogue move, the second classifier is called fowere familiar with the lesson structures, we can

a selection ofhe type of dialogue move
In this modé, systemOs dialogue moxg ,
for the nextinteractionstep is determmied bya

functionf (! ' ), such that

g P(#s% | PR) > p(mes |1 TR

FHEF) U 1"4$1% v cpaP(dal! %) (5)
otherwise

Similar tothe onestep modelEquation (5) can
be written as

PO 1% g DO ) (B)

This conditional probabilitydistribution isalso
estimated by the maximum entropy framework.

5 Features

To learnhigh-performing dialogue management
models br taskoriented dialoguewith parallel
dialogue and task streanisis crucial to haven
effective representation ofiser interaction state
that capturesinformation fromall availabledata
streams The dialogue managementodels -
scribed in the previous sectidetermine theys-
temOs next dialogue move basediser intera-
tion state specified bthe features extraetl from
the dialogue and the task streanmscontrast to
previous work on taskriented dialogue, in
which task informationis incorporated into -
logue utterances by manual taggif®angalore
et al., 2008; Boyer et al., 201®ur workdoes
not require manual &frt to obtainthe relevant
task information. Instead, wely ontask context
logs generated duringtudentsO interact®with
the tutoring interface, as well asnotionof stu-
dentsO task progremstomaticallyestimatecby a
task analysis algorithnThe sameset of features

safelyassume that they knew what this final state
of the code woulde and thus hadan intuitive
metric of student progressvhichis analogous to
our edit distance metric. As this value changes
over a session, one can observe how the st
dentOs progress is atfat by tutor dialogue acts.

Because a charactbased edit distance would
not capture the relative functional importance of
each part of the studentOs prograum,edit dis-
tance metric is based on tokenized versions of
the program, as generated by the Jemanpiler,
and the output is the number of tokens that differ
from the solution for that task. In this way,
comments, variable names, or string literals with
many characters are all treated as single tokens
and do not artificially inflate the edit distance
This tokenization also allows for abstraction of
these comments, variable hames, and string lite
als into generalized tokens so that they can be
more easily compared between students.

5.2 Dialogue features

Previous work on dialogue act classificatioas
shown that lexical featuresextracted from di-
logue utteranceare good predictors of dialogue
acts(Bangalore et al., 2008Boyer et al., 2018,
Kim etal., 2010) However this finding does not
applywhen the goal of dialogue act classification
is to learndialogue managemeniodelsbecause
determining system moves precedes systém u
terance generationinstead, this work exploits
features lhat represnt localinteraction structure
within dialoguestreans, which includescurrent
student dialogue act, current tutor dialogue act,
previous tutor dialogue act, and tutor utterance
count.

e Current student dialogue actrepresents
the interpreted dialogue act ftie preu-
ous userdialogue input.Student dialogue
act interpretation is not addressed in this



paper, assuminthe existence of an exte

nal module that carries out user dialogue

interpretation (e.g., Ha et a012).

Current tutor dialogue act represents the
type of systemdialogue act at the current
interaction step.n our tutorial dialogue
corpus, we obserde tutors often made
seveaal dialogue utterances in succession
such as a feedback“Great Job.”) fol-
lowed by a question “Qo you have any
questions?”’). Thus, the value ofhe cur-
rent tutor dialogueact impacts theproba-
bility distribution overthe tutorOs next ai

logue move. This feature captures such

temporal patterngresent in tutor dialogue
moves as oleved in the corpus.

Previous tutor dialogue actrepresents the
type of systemdialogue actgeneratedor
the pevious interaction stef.his is sini-
lar to the current tutor dialogue act fea-

models temporal pattermsnong task @&
tivities.

Same log typeis a binary feature ind
cating the type of activities #@e current
and previous interaction step is identical.
Previous and current log typeis a fa-
ture that combinethe current and prav
ous log typs (i.e.,abigram of logtypes)
Elapsed time is the amount of time
sincethe last logged activity, which ne-
resens the duration ofthe userOs ira
tivity. This feature is includetb enable
the lkearned dialogue management rabd
to make spontaneouslialogue interve-
tionswhena userhas beemetectedo be
inactive for @ excessivgeriod of time.
Elapsed coding time specifies the
amount of timethe user hagakensince
the beginning o€urrent coding task.

ture, but models longer temporal patterns®s  Evaluation

by extending the size a@fiteraction history.
Tutor utterance count represents the
number ofsystem dialoguectsgeneragd

in successionvithout interruption untithe
current interaction stedn our corpus it
was observed that the tutor dialogue turn
often consi¢ of multiple utterancesThis
featureis included to model system da-
logue turns consisting of multiple uttean
es.

5.3 Task features

To createa rich representation of task context, a

number of features were automatically extracted

from task streamsThree groups of task infor-
mationwere consideredncluding typesof task
activity taken by userthe amount of timéaken
between certain activitiesand theuserOs task

progress estimated by the task analysis algorithn

(Section 5.1) Alternate representations tfiese
featureswere empiricdly compared, resulting in
the following task features incorporated inrcu
rent dialogue management models.

Current log type represents the type of
activity taken atthe current interaction
step either bythe user orthe system.A
complete list of log typess shownin
AppendixB.

Previous log typerepresents the type of
activity taken at the previous interaction
step. Analogous tgrevious tutor dia-
logue act in dialogue stream, this feature

The dialogue act models were trained and tested

using themanually annotated portion of thesk
oriented tutorial dialogue corpus described in
Section 3.The textual dialogue exchanges in the

gorpus  were aligned with the loggethsk

completion activities based onthe timestamp,
resulting in6919 total interaction logs Table 2
shows the distribution of different types of-a
tivities in the resultinginteraction logs.lt was

observed thatutors made a dialogue moven

26.5% of thetotal logged interactionéTable 3.

Interaction Type Frequency (%)
Programming 38.2
Compilingthe Program 10.8
Runningthe Program 12.2
Progressing to Next Task 4.2
Exchanging Dialogue 34.6

Table 2 Distribution ofinteraction types

Tutor Dialogue Move
Move 26.5
NoMove 73.5
Table 3 Distribution of systendialogue move

Frequency (%)

Among the thirteen dialogue acts in the 6rig
nal annotation schem@ection 3.2) four rarely
occurring dialogue acts were combiriatb other
categoies which include LF fukewarm feed-
back) merged with NF Aegative feedback) and
RC (request for confirmation), RF (equest for

feedback), and C {orrection) merged to O dth-

er). A new category, GREETg(eetings) was



addkd to distinguisttonventional expressions for achieved significantly higher accuracies over the
greetingsand thanks frommore generalstae- baselinefor the task of predicting the type af-t
ments and question¥able 4shows the resulting torial dialogue movesas well. Again, the twe
distribution of tutor dialogue acts thecorpus. step model performed ggiificantly better than
the onestep mode(#(9) = 4.22p = .0011).

Dialogue Act Frequency (%)
S (Statement) 35.4 6.2 Comparing dialogueand task streams
PF (Positive Feedback) 19.8 The second studyompared the predictive power
Q (Question) 16.0 of the dialogue stream and the task stream on the
H (Hint) 8.0 given two dialogue management tasks. In this
DIR (Directive) 6.6 study, the accuracy of thewo-step model was
A (Answer) 5.7 compared in three conditionssing the dialogue
GREET (Greetings) 3.1 features only(Dialogue), using the task features
ACK (Acknowledgement) 2.3 only (Task), and using all featuregstll). Table 6
NF (Negative Feedback) 15 reports the results
s (_:_3;&9;)4 Distribution of tutor diallc.)6 < Features Timing Type
' gue acts Dialogue 79.6 45.0

The performance of the dialogue act modelgTask 80.1 44.9

were evaluatedh a tenfold cross validation. In |All 80.3 49.7°

the cross validation, theorpuswas partitioned to  Table 6 Comparison of features on dialog
ten noroverlapping sets and each set was usethanagement taskss(atistical significance ove
as testing data exactly once, while models wereialogue, "statistical significance oveiask)

trainedusing the remaining nine sets. o ] ]
For determining when to intervenehe da-

6.1 Results logue and the tasleaturesexhibitedsimilar pie-
dictive power. No statistical significance was
found for the difference between the dialogue
and the taskconditions The highest accuracy
Jvas achieved by thé// condition. Compared to
the 4/l condition the Dialogue conditionshowed
statistically significantlecrease in accura¢y9)

= 2.21, p = 0.0272, which implies the task
stream providedmportant featuresfor the da-
logue management modeldeterminingthe tim-
ing of tutorial dialogue moves.

The first study comparedthe accuraciesof the
dialogue management modads predicting the
timing and the typef tutor dialogue move The
accuracy of the timing prediction was calculate
for all user ineraction logsn the data, including
both dialogue exchangesand taskcompletion
activities. The accuracy of the type prediction
was calculated for dialogue activitidyy tutors
only. The results are shown in Table 5

Model Timing Type A similar trend was observed faletermining
Baseline 73.5 35.4 what type ofdialoguemove to make. The Dia-
One-step 79.2 40.5 logue and theTask conditions achieved miilar
Two-step 80.3" 49.7° accuracies, with thénighest accuracy achieved

by theAll condition. The drofs in accuracycom-
pared to thed4/l condition were statistically sg-
nificant for both theDialogue (¢(9) = 3.38,p =
0.0040)and the Task conditions (¢2(9) = 4.36,p =
0.0009. The results imply that the prediction of
Both the onestep(#(9) = 4.14p =0.0013 and  the type of tutorial dialogue moveequired n-
the twostep(#(9) =6.26,p < .0001)models pe-  formation from both the dialogue and the task
formed significantly better than the majority streams.
baselinein predicting the timing otutorial dia-
logue moves.The twostep model achieved 7 Discussion
higher accuacy than the onetep model. fie
difference between the two models wstatist-
cally significant(¢(9) = 2.17p = 0.0291)
The onestep(#(9) = 2.68,p = 0.0126)and the
two-step (#(9) = 10.93 p < 0.000) models

Table 5 Model accuracy (%dn dialogue mia-
agement tasks gtatistical significance ov
baseling “statistical significance over orstef
mode)

The experiments presented in Section @nco
paredtwo alternate approaches to learnid@-
logue managemenmodels for two given sb-
tasks determiningwhen toprovidethe user with
a dialogue move anddetermining whichtype of



dialogue move to choosd&.he resultssuggest 8 Conclusions and Future Work

that the two-step aproach, whichmodek the ) ) )
two subtasksas separate classifisr was more Automatically learning dialogue management

effective than the alternate ostep approach modelsfor _complextasleorienteddomairs wit.h_ .
which combined the two subtasks into a singlé€parate dialogue and task streams poses isignif
classification poblem. The twostep model C€ant challengedsEffective dialogue management
achieved higher performance than the -step MOcelsin suchdomairs shouldbe able toproc-
model in both the timing and the type predictiontively intervene by makingpontaneous dialogue
However, he differencein the performancef Moves based on the observed historpath the
the two modelsvas more appant in the type dialogue andthe userOs task activitied/ith the
prediction, with the twostep modelachievhg Overarching goal of creating a daigven auo-
over 22% higheraccuracy than the onestep mated dialogue system thlat:_orporatesparallel
model. One possible explanation for the stper dialogue and task streamgis paper haspre-
ority of the two stegmodel over the onetep sented classificatiehased dialogue management

model is thathe corpus used to train the modelsmedels that integrata rich set of features aot
was highly skewed. Fomore than73% of the Mmatically extractedfrom parallel dialogue and
total interaction logsri the corpus, the tutors did @Sk streamsTwo subtasks of dialogue mareag
not provide any dialogue feedbacBince the Ment were consideredehen the system should
onestep model treateNoMove as a special di ~ Provide user with a dialogue move and what
logue actthe skewed distribution ovevoMove Of System dialogue act the system shouldciele

and Move impacted the learned distribution overfOr @ given user interaction contexXtn evalia-
dialogue acts. tion foundthata two-step approach that modeled

Two previousinvestigatimsreported the ace  the two subtaskas separate classifieveere ¢
racies of dialogue act classification on systenf€ctive, achieving significantly higher perfo
utterances. Bangalore et al. (2008) reported B1ance than an alternate approdbht modeled
prediction accuracy of 55% for system dialogugh€ two subtaskeith a single classifier _
acts when a flat task model was used in a-cat _1he results suggesseveral promising dire
logueordering domainWhen a hierarchical task tions for future_ work First, mcorpqratmg richer
structure was used in the same domain, thiéatures may improve éhaccuracies ofekrned
achieved prediction accuracy for system dialogu@0dels, such as more global interaction higgor
acts was 35.69%Bangaloreand Stent, 2009) and deeper dialogue structures. Second, dpvelo
Boyer (2010) achieved accuracy of 57% fossy N9 more sophlstlcated_ task anadgswll_l inform
tem dialogue acts in a taskiented tutorial di- the learned models with representationf the
logue While both of thesdines of investigation USer task context, guiding the models to make
employed task structure feagsrthat were man ~ MOre contexippropriate decisionskinally, it
ally annotatedour bestperforming twestep da- will be importantto evaluatehe learned models

logue management modaisulted in comparable Py incorporating them into a dialogue maeag
performance utiliing only automatic features, Ment system andalidating their effectiveness in
achievinganaccuracy of 49.7% interactiors with users in rich taskriented da-
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Appendix A. An Excerpt from the Task-Oriented DialogueCorpus

Le”s:;sor TIaDsk Role Type Text Timestamp
1 4 STUDENT|CODING  |System.out.printin("Hello World" 2011-09-21
08:17:17.737
1 4 STUDENT|CODING  |System.out.printin( "Hello World") 20110921
08:17:19.407
1 4 STUDENT|CODING |System.out.printin("Hello World"); 2011-09-21
08:17:19.812
1 4 TUTOR |MESSAGE |good. 2011-09-21
08:17:24.913
1 4 TUTOR |MESSAGE |also you can try to compile at anytime. 20110921
08:17:33.805
1 4 STUDENT|COMPILE_ |studentCodgt101\JavaTutor3.java 20110921
BEGIN 08:17:38.080
1 4 STUDENT|COMPILE_ |line 1 : cannot find symbol 20110921
ERROR symbol : method printin(java.lang.String) 08:17:38.220
location: class java.io.PrintStream
System.out.printin("Hello World");
N
1 error
1 4 TUTOR |MESSAGE |carefully compare your line with the example |201109-21
08:17:57.330

Appendix B. Types of Activity Logs in Corpus

Log Type Description Action Initiator
MESSAGE Either student or tutor hagnt a chat message. Student,Tutor
SESSION_PROGRESS|Tutor has allowed student to progress to next task. Tutor
CODING Student hasvritten programming code. Student
COMPILE_BEGIN Student has begun compiling code. Student
COMPILE_SUCCESS |Recent codeompilation has ended successfully. N/A
COMPILE_ERROR Recent code compilation has failed with errors. N/A
RUN_BEGIN Student has begun runningde. Student
INPUT_SENT Student has sent an input to a running code. Student
RUN_SUCCESS Recent code runninigas ended successfully. N/A
RUN_STOP Tutor hasstogpedrunning studentOs code because of errors|Tutor

code.




