
Efficient Trace Data Compression using Statically Selected Dictionary

Kanad Basu and Prabhat Mishra
Computer and Information Science and Engineering

University of Florida, Gainesville FL 32611-6120, USA
email: {kbasu, prabhat}@cise.ufl.edu.

Abstract

Post-silicon validation and debug have gained importance in
recent years to track down errors that have escaped the pre-
silicon phase. Limited observability of internal signals during post-
silicon debug necessitates the storage of signal states in real time.
Trace buffers are used to store these states. To increase the debug
observation window, it is essential to compress these trace signals,
so that trace data over larger number of cycles can be stored in
the trace buffer while keeping its size constant. In this paper, we
propose several dictionary based compression techniques for trace
data compression that takes account of the fact that the difference
between golden and erroneous trace data is small. Therefore, the
static dictionary selected based on golden trace data can provide
notably better compression performance than the dynamic dictionar-
ies selected in the current approaches. This will also significantly
reduce the hardware overhead by reducing the dictionary size. Our
experimental results demonstrate that our approach can provide up
to 60% better compression compared to existing approaches, while
reducing the architecture overhead by 84%.

I. Introduction

Increase in System-on-Chip (SoC) design complexity has made
design verification an essential step before a chip is released in
the market. However, with the time-to-market constraints, it is not
possible to spend a lot of time in this process. The verification must
be foolproof and should be accomplished as fast as possible. Pre-
silicon debug has been a popular method for identifying the design
errors before the chip is actually fabricated. Formal verification and
extensive simulation are the two main approaches of pre-silicon
verification. However, many physical parameters cannot be modeled
correctly in early stages; as a result, pre-silicon validation and debug
fail to actually detect and fix all the errors.

Manufacturing tests are used to detect manufacturing defects, like
shorts and opens. However, they are not designed to capture any
functional bugs that might have escaped the pre-silicon phase. Post-
silicon validation techniques are used to capture these design errors
that are present even after the chip is fabricated.

Post-silicon debug operates on a fabricated chip. Therefore, it is
not possible to record the values of each and every internal signal.
Various techniques have been proposed to observe some selected
internal signals that will aid in the debug process [1], [2], [11]. These
internal signal states are stored in a trace buffer during execution.
During debug, the trace buffer content is analyzed, where it is
matched against a set of ideal values to check for possible errors.

The trace buffer has two parameters, width and depth. Width
refers to the total amount of debug data that can be stored per cycle,

∗ This work was supported in part by NSF grants CAREER-0746261 and
CNS-0915376.

while depth refers to the total number of cycles over which debug
data is to be stored. In order to keep the trace buffer size constant,
while increasing the amount of trace data that can be stored, either
the depth or the width has to be compressed. An efficient lossless
trace data compression technique is necessary which can provide
both fast compression and high compression efficiency, with minor
impact on the architecture overhead. Different techniques of trace
data compression, either by depth [3], [4] or by width [5] have
been proposed. Depth compression approaches deal with selecting
the cycles where the data are erroneous, and store the data for only
those cycles. The problem with depth compression algorithms [3],
[4] is that they assume rerunning the same set of tests on the same
system produce the same output, that is, repeatable; which may not
always be true. It would be better if the optimized trace data can
be generated by running the tests only once. Width compression
[5] utilizes this observation and run the tests just once in order to
generate the trace data and compress them.

We have proposed a lossless dictionary based width compression
scheme that operates on real-time to compress the trace data. Unlike
[5], our method chooses the dictionary offline, which provides
a better compression performance as well as huge reduction in
compression architecture overhead. Three different compression
algorithms have been proposed to trade-off between compression
performance and architecture overhead.

We have used Compression Ratio, defined in Equation 1, as a
metric to measure the efficiency of a compression algorithm. A
higher compression ratio implies a better compression.

Compression Ratio =
Uncompresssed Data Size

Compressed Data Size
(1)

The rest of the paper is organized as follows. Section II describes
the related works in post-silicon debug and compression field. Sec-
tion III describes our trace data compression techniques. Section IV
describes the experimental results. Section V concludes the paper.

II. Related Work

The primary problem concerning post-silicon debug is the limited
observability of the internal signals. Once the values of signals
are known, they are analyzed using some algorithms like failure
propagation tracing [6] to identify the errors in the circuit.

In order to obtain real-time observability of the internal chip
signals, the obvious choice would be to use chip pins to observe
them [7]. However, this method is difficult to implement in the
presence of high frequency internal clocks and limitation of the
chip pins. As a result, trace buffer based debugging techniques have
been proposed [8] to counter this problem. In these techniques, the
Embedded Logic Analyzer (ELA) acquires the signal sample and
stores them in an on-chip trace buffer. The data from the trace buffer



is then loaded to a processor via low bandwidth interface, which
analyzes them to find out the error in the circuit. Since the trace
buffer is used only for debugging, it is better to keep its size as small
as possible to reduce the overall cost, area and energy requirements.
Thus, to increase the amount of data that can be stored in a trace
buffer, trace compression techniques have been proposed [3], [4],
[5], which compress the trace data before storing them into trace
buffer.

In order to compress the trace data, a compression technique is
required which can provide a good compression with very low archi-
tecture overhead. In general, complex statistical algorithms produce
best possible compression but introduce huge area overhead. On the
other hand, simple dictionary-based techniques introduce acceptable
area overhead but sacrifices compression efficiency. The dictionary
based compression scheme was improved to remember mismatches
with the help of bitmasks by Seong et al. [9] for code compression
in embedded systems. Bitmask based compressions were also used
in [10] for test compression. In this paper, we have explored the
standard dictionary based compression, bitmask-based compression,
as well as a variation of the BSTW compression scheme to provide
much better performance in terms of compression and area overhead
compared to existing approaches.

III. Trace Data Compression

The existing compression techniques compress the trace data by
selecting a dictionary dynamically during execution. This not only
results in inferior compression performance (due to non-optimal
dictionary selection), but also increases the architecture overhead.
This section describes our trace data compression techniques. The
overview is shown in Figure 1.

Trace Data
Dictionary

Static Dictionary

Actual Trace Data

(Potentially Erroneous)

Data Compression

Dynamic Trace
Compressed

Trace Data

Golden 

Generation

Fig. 1. Overview of our trace compression procedure
Our approach is based on an important observation. In any post-

silicon debug environment, after the trace data is collected from the
chip, it is validated by checking with a set of ideal trace data, that is
obtained from a golden model. Since very few (2-5%) bugs actually
remain to be tracked during the post-silicon debug phase, there
are a few cycles which produce erroneous values [3], [4], that are
different from the ideal ones. We utilize this information to design
our approach. Since the difference between the ideal and the actual
trace data is very small, the same dictionary applicable for ideal
trace data compression can be reused for compression of the actual
trace data. This takes care of the two problems by providing a better
compression performance, and reducing the architecture overhead as
well1. These compressed data are then read out through a channel to
a debugger, where they are checked against the ideal trace data. Any
discrepancy in the trace data is reported as error. As can be seen from
our analysis in Section III-C, introduction of 2-5% error in trace
data results in 2-6% penalty in compression performance, which
is acceptable. It can be seen from the discussions in Section IV,
even with the introduction of errors, our technique provides less
compression penalty compared to the methods described by [5].
The remainder of this section describes our dictionary selection
algorithms and also performs a theoretical analysis of the maximum

1no need to implement a dynamic dictionary selection algorithm

penalty possible when the dictionary from the ideal trace data is used
to compress the actual (potentially erroneous) trace data.

A. Dictionary Selection Algorithms

We have explored three compression algorithms for compression
of the trace data, namely Dictionary based compression (DC),
Bitmask based compression (BMC) and fixed Dictionary MBSTW
(fMBSTW) based compression. All these three techniques use a
dictionary for compression. The dictionary selection is extremely
vital since it would be reused to compress the actual trace data.
We will now describe how the dictionaries are selected in order to
achieve the maximum compression performance.

1) Dictionary based compression (DC): Algorithm 1 outlines the
dictionary selection method. In a dictionary based compression, the
main aim is to include in the dictionary all the unique entries which
have maximum repetitions in the dataset. Therefore, the first step
determines all the unique entries in the dataset. We then find the
number of repetitions for each entry. The unique entries are sorted
in a descending order of the number of repetitions. The entries with
the highest number of repetitions are included in the dictionary.

Algorithm 1 Dictionary selection algorithm for DC
M = Number of unique entries
N = Number of Dictionary Entries
DIC = Dictionary
for each entry in M do

Calculate the number of repetitions in the entire dataset
end for
Sort the M entries in decreasing order of repetition count
Include the first N entries in DIC

2) Bitmask Based Compression (BMC): The dictionary selection
for bitmask based compression follows the same trend as the
dictionary based compression, that is, select dictionary entries giving
the maximum savings. However, there is a minor difference between
the two. While savings for DC corresponds to just the repetitions,
for BMC it includes those due to bitmask based matchings as well.
Hence, the savings for each unique entry should be calculated based
on the direct as well as bitmask based matches. The entries are
then sorted in order of savings and included in the dictionary. The
dictionary selection algorithm is shown in Algorithm 2.

Algorithm 2 Dictionary selection algorithm for BMC
M = Number of unique entries
N = Number of Dictionary Entries
DIC = Dictionary
for each entry in M do

Calculate the savings due to repetition and bitmask based
matching in the entire dataset

end for
Sort the M entries in decreasing order of total savings
Include the first N entries in DIC

3) Fixed Dictionary MBSTW compression (fMBSTW): The com-
pression technique for fMBSTW algorithm follows the same tech-
nique as MBSTW compression [5]. The difference from MBSTW is
that the dictionary is selected statically and the number of dictionary
entries is limited. We would now explain the dictionary selection
steps for fMBSTW in Algorithm 3. This algorithm is shown for a
2-fMBSTW (2-strings are encoded together, similar to 2-MBSTW).
This can be further extended to 3-fMBSTW, where 3 strings are
encoded together.



Algorithm 3 Dictionary selection algorithm for fMBSTW
M = No. of unique entries
N = No. of Dictionary Entries
DIC = Set of Dictionaries
first entry = last entry = NULL
Create a 2-tuple for each pair of entries in M
for each 2-tuple do

Calculate the savings across the entire dataset assuming only
this tuple is in the dictionary

end for
Find the 2-tuple with the highest savings and add it to DIC
first entry = first entry of 2-tuple
last entry = last entry of 2-tuple
N = 2
while Size of DIC less than N do

find the 2-tuple that starts with last entry and produces
maximum savings
if such a 2-tuple exists then

Include the 2-tuple in DIC, N = N + 1
else

Find any 2-tuple (not containing an entry already in DIC)
which has the highest savings and include it in DIC
last entry = last entry of the 2-tuple, N = N + 2

end if
end while

Figure 2 shows an illustrative example for dictionary selection
using Algorithm 3. In this example, the strings in the trace data
are represented using p, q, r, s, t. The amount of savings for each
2-tuple is shown in Figure 2. We want to have a dictionary of size
4. As can be seen, the highest savings is obtained from the 2-tuple
< r, s >. Both of these are now included in the dictionary. The
last entry is s here. Now, we proceed to see which 2-tuple with
the first entry s has the maximum savings. < s, p > is selected
as the 2-tuple and included in the dictionary. When searching for
the next 2-tuple, it is seen that < p, r > gives the highest savings.
However, r is already present in the dictionary. Hence, < p, r > is
avoided. The 2-tuple having the next highest savings is < p, t >.
Therefore, t is selected for the dictionary. In this way, the dictionary
is built up.

Final Dictionary

Savings

Tuple

Savings

Tuple

<p,q>

12

<p,r> <p,s> <p,t> <q,p>

25 4 17 11

<q,r>

12

<q,s>

12

<q,t>

7

<r,p>

19

<r,q>

14

Savings

Tuple

Savings

Tuple <r,s>

28

<r,t> <s,p> <s,q> <s,r>

21 15 129

<s,t>

12

<s,p>

14

<s,q>

7

<s,r>

9

<s,t>

11

Savings for each tuple

p

t

s

r

Fig. 2. Example of dictionary selection in fMBSTW

B. Dynamic Trace Data Compression

Our final goal is to debug the DUT, for which we need the trace
data from it. Application of a set of tests produces the trace data

from the DUT which are compressed to reduce the size of the trace
buffer. The overview of the compression architecture is shown in

Trace 
U

T

Input Compression

Engine

Dictionary

Tests Buffer

D

Fig. 3. Actual Trace Data Compression

Figure 3. As can be seen, the compression architecture consists
of two parts, the dictionary and the actual compression engine.
Depending on the design and associated constraints, a specific
compression algorithm and its respective dictionary is used. For
example, when BMC is most suitable for a design, the compression
engine will have BMC in it and the dictionary will be the one
selected for BMC. It should be noted, that the dictionary size is
fixed here and not variable as in the case of dynamic dictionary
selection [5]. Actually, [5] tried to include every single unique
string in the dictionary. This increases the dictionary size, thereby
introducing significant architecture overhead and also degrades
the compression performance (since the number of bits used to
index the dictionary increases with an increase in dictionary size).
Our approach eliminates these disadvantages by keeping a limited
number of profitable entries in the dictionary.

C. Performance Analysis with Erroneous Trace Data

Our approach is promising due to use of statically selected
dictionary. However, this dictionary will be used to compress
actual (potentially erroneous) trace data. This section analyzes our
procedure and determines the performance degradation that may
occur when the dictionary obtained from ideal trace data is used to
compress the actual trace data. We have kept the trace data length
constant at 32 bits. We introduce a term compression penalty, which
is the ratio of the number of extra bits needed for compression
when error is introduced, compared to the original trace data length.
Obviously, a lower compression penalty signifies less number of bits
needed to accommodate the error, and hence, a better compression
performance.

Compression Penalty (CP ) =
Number of extra bits needed

Size of original trace data

We first analyze the compression penalty for DC and BMC. Next,
similar analysis is performed for fMBSTW.

1) Compression Penalty for DC and BMC: We try to obtain the
compression penalties for the two methods DC and BMC. In this
section, we make two important observations.

Theorem 1: When statically selected dictionary (based on golden
trace data) is used, the compression penalty is bounded by the
percentage of error introduced in the actual trace data.

Proof: Let there be x strings in the original trace data. Let the
percentage of error in case of actual trace data be l, expressed as
a fraction (l < 1). The introduction of error changes l × x strings.
In the worst case, all these l × x strings will be among the strings
originally compressed, and these will now be uncompressed due to
contamination. Let the number of bits required to compress the rest
(that is (1− l)×x strings) in the dataset be M 2. It should be noted
that these strings are not affected due to error injection and hence,
the value of M remains constant in both cases. Let the number of
dictionary entries be 2d, so that d bits are needed to represent the

2Some of the strings may be compressed, while the rest uncompressed



dictionary. The l×x strings were compressed in the ideal case using
(1+ d) bits each. If yideal be the number of bits after compression
for the ideal trace data, it can be rewritten as,

yideal = M + l × x× (1 + d) (1)

Now, let’s analyze the actual trace data. In the worst case, all of
the l × x strings remain uncompressed. Each of these strings will
require 33 bits3 to be represented. The M bits required to represent
the (1−l)×x strings will remain the same. If yfaulty is the number
of bits needed to represent the strings now, it can be represented as

yfaulty = M + l × x× (33) (2)

which implies,

yfaulty = yideal + l × x× (32− d) (3)

Therefore, number of extra bits needed, represented as yextra, is

yextra = yfaulty − yideal = l × x× (32− d) (4)

If CPDC is the compression penalty for DC, then from the defini-
tion,

CPDC =
l × (32− d)

32
(5)

As can be seen CPDC is always less than l, and hence is bounded
by it.

For example, with 8 dictionary entries, we have d = 3, and
assuming the error rate is 5%, (which is the maximum error rate in
these scenarios [3], [4]), we get

CPDC = 4% (6)

Thus, we see that a very slight compression penalty is introduced
in DC even in the worst case. It can be seen from Equation (5) that
increase in dictionary size can lessen this degradation.

Theorem 2: Compared to the ideal case (if dictionary was
selected using erroneous trace data), the compression penalty using
statically selected dictionary (using golden trace data) will be
bounded by the twice the percentage of error.

Proof: We would like to see if the actual trace data were com-
pressed without the help of ideal dictionary, how much compression
would be obtained. In this case, the dictionary entries might differ
from the ideal dictionary. If n is the extra number of strings that can
be compressed in the actual case and m is the number of strings that
were compressed in the ideal case, then the total number of strings
compressed are m + n − l × x. It is obvious that the maximum
value of n can be l × x, otherwise, these new strings would have
been compressed in case of ideal trace compression, that is, these
new strings would have been represented in the ideal dictionary.
Therefore, the maximum number of strings compressed is m, which
is the same case as in golden trace data.

As an example, consider a hypothetical trace data set of 20 entries.
Suppose we choose the best 2 entries in the dictionary, each of
which can compress a total of 5 entries. Therefore the total number
of compressed entries will be 10. Corresponding to the symbols
described above, x = 20, m = 10 and d = 2. Let the error rate
be 10%, that is l = 0.1. When error is introduced, the number of
strings contaminated is l × x, that is, 2. In the worst case, both
these strings were part of m and are now left uncompressed due to
errors. The number of compressed strings now are m− l×x, which
is equal to 8. Now, if we try to compress these erroneous data with
a different set of dictionary, let the number of extra strings being
compressed be n. It is obvious that if n is greater than 2, the new

332 bits (original size), plus one bit to indicate not compressed

dictionary would have been selected in the first place, so that the
value of m would be different. So, the maximum value of n is
bounded by l × x.

However, in the best case, these contaminated strings can be
all compressed using some other entry, which is not part of the
dictionary now. Let us reiterate our previous example to explain
this. For example, all of the l × x contaminated entries can be
compressed using some other entry. Now, if that entry has high
enough frequency, it will be included in the dictionary. In this
example, the maximum frequency (original, without contamination)
that an entry can have is 5; otherwise, it would have been included in
the original dictionary. Therefore, the maximum number of strings
that can be compressed with the new dictionary is m+ l × x, that
is, 12 in this case. Hence, the maximum number of strings that
can be compressed extra using the dynamically selected dictionary
is (m + l × x) − (m − l × x), that is, 2 × l × x, which means
the difference in compression ratio should be 2× l. Therefore, the
difference in compression efficiency between the dictionary based
on golden data and dictionary based on actual data, will be bounded
by twice the error rate in the data.

It can be noted that the analysis for BMC will be similar to DC.
This is because, even for BMC, the worst case comes when some
strings which were completely compressed (not using bitmasks)
change to uncompressed due to error introduction.

2) Compression Penalty for fMBSTW: To find the compression
penalty, we analyze the worst case condition for 2-fMBSTW here.
The worst case scenario can be divided in two parts. The first part
is similar to that of DC and BMC, that is, the worst part comes
when some completely compressed strings become uncompressed.
The second part of the condition is explained as follows. Suppose,
two consecutive strings correspond to two consecutive dictionary
entries a, b. Therefore, all the two strings will be compressed using
the 11 prefix, followed by the dictionary entry corresponding to
a. However, if either a or b gets contaminated by error, in the
worst case, one of them is uncompressed and the other one gets
compressed separately, which requires more bits to compress the
trace data. We now investigate the compression penalty in this
approach.

Let the error rate and the number of strings be l and x as before.
Let d be the number of bits to represent the dictionary index.
Therefore, the number of such strings changed is l × x. Each of
these string corresponds to a < a, b > tuple which is broken due
to perturbation. Before the introduction of error, the number of bits
required to compress these is given as yideal in Equation (7)

yideal = l × x× (2 + d) (7)

Here, 2 bits are needed to represent the prefix 11 and d bits for the
dictionary index of a. After perturbation (of b), in the worst case,
a is independently compressed as single bits using the prefix 014.
Therefore, the number of bits needed to represent are (36 + d)5.
There will be l×x such occurances. Therefore, the total number of
bits needed to represent the erroneous tuples is given by yfaulty as

yfaulty = l × x× (36 + d) (8)

As before, let M be the number of bits required to compress the
other (1− l)× x strings. Since M is unchanged in either case, the
number of extra bits needed, is given by

yextra = yfaulty − yideal = l × x× 34 (9)

4as discussed in Section III-A.3
5(2 + d) + (2 + 32), where 2 + d bits are needed to compress a and

2 + 32 bits are needed to represent the uncompressed string b



Therefore, the compression penalty is given by,

CPfMBSTW =
l × 34

32
(10)

With a 5% error rate we can see that,

CPfMBSTW = 5.31% (11)

Thus, even with an introduction of 5% error, the compression
penalty is small. These analysis will be later verified with experi-
mental results in Section IV-C.

IV. Experiments
We have compared the compression performance of our approach

with the algorithms proposed by Anis et al. [5] (MBSTW and
WDLZW). We have also investigated our compression performance
when the number of dictionary entries are varied. We have shown
that our methods require much less compression architecture over-
head compared to those in [5]. Finally, in Section IV-C, we have also
analyzed the effect of introduction of errors on compression ratio
and validated the equations developed in Section III-C. We have
applied all the algorithms on the 5 largest ISCAS 89 benchmarks.

A. Compression Performance

First, we compare the compression performance of our algorithms
with the algorithms in [5] using the traces obtained from ISCAS
89 benchmark circuits. The traces were obtained by following the
approach outlined in [11]. The results are reported in Figure 4.
We have fixed the dictionary entry to be 8 in each of the two
compression algorithms, DC and BMC. For MBSTW, we have used
the 2-MBSTW algorithm6. For the fMBSTW algorithm, the number
of dictionary entries is floored to the nearest integer which is a power
of 2. It can be seen that the fMBSTW approach works best in all
cases except s38584. This is because the traces of s38584 has very
less number of unique entries. As a result, even with 8 dictionary
entries, a large portion of the circuit can be compressed using DC.
DC works better than MBSTW in most cases and worse only in
some cases (s9234 and s35932). The reason for this is the large
number of unique entries in those trace data, which are effectively
captured by MBSTW, but not by the 8-entry dictionary used in DC.
If the number of bits needed to represent the compressed data is
analyzed, it can be seen that fMBSTW provides up to 60% reduction
in compressed data size compared to MBSTW and 70% compared to
WDLZW. WDLZW provides worst performance for almost all the
benchmarks. The high redundancy in the trace dataset is responsible
for its somewhat good performance in s38584 and s38417.

0	  
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  

s9234	   s13207	   s38584	   s38417	   s35932	  

Co
m
pr
es
si
on

	  R
a-

o	  

Benchmarks	  

MBSTW	   WDLZW	   DC	   BMC	   fMBSTW	  

Fig. 4. Comparison of compression performance

Next, we vary the dictionary size of DC to see the effect on
compression ratio. The results are shown in Figure 5. We have
varied the number of dictionary entries from 8, 16, 32 and 64. As

6Provides better performance than the 3-MBSTW algorithm

can be seen from Figure 5, the variation is not uniform for all the
benchmarks. For s9234, s13207 and s35932, the compression ratio
increases with increase in dictionary entries. On the other hand, for
s38584 and s38417, increase in number of dictionary entries worsens
the compression ratio and the optimal compression is achieved at
8 dictionary entries. Once we reach an optimal compression ratio,
any increase in the number of dictionary entries will add to the total
compressed data size both due to the increased number of entries
in the dictionaries and increase in the number of bits representing
the dictionary index.

0	  
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  

s9234	   s13207	   s38584	   s38417	   s35932	  

Co
m
pr
es
si
on

	  ra
,
o	  

Benchmarks	  

8	  entries	   16	  entries	  	   32	  entries	   64	  entries	  

Fig. 5. Compression performance with dictionary entries

B. BRAM Requirement (Hardware Overhead)
The dictionary for compression has to be stored in on-chip 32-bit

BRAMs. We have computed the total size of BRAMs needed for
compression using each of these algorithms. Figure 6 compares the
requirements for each of these approaches. It can be seen that since
the dictionary size is always fixed (8 entries) for DC and BMC, the
number of BRAMs required in these two algorithms is significantly
less than any other approaches. WDLZW has the highest number of
BRAM requirements since it captures all the double symbol repeti-
tions (which worsens the compression performance). For fMBSTW,
the number of BRAMs is kept floored to the nearest higher power
of 2 for the number of unique entries in the stream7. From Figure 6,
it can be seen that our two methods (DC and BMC) provides almost
96% less compression architecture overhead compared to MBSTW
and almost 99% less than WDLZW.

1	  

10	  

100	  

1000	  

10000	  

s9234	   s13207	   s38584	   s38417	   s35932	  

N
um

be
r	  
of
	  B
RA

M
s	  
ne

ed
ed

	  

Benchmarks	  

MBSTW	   WDLZW	   DC	   BMC	   fMBSTW	  

Fig. 6. BRAM requirements

It can be seen that there is a tradeoff between better compression
ratio and lower architecture overhead. As can be seen from Figure 4
and Figure 6, either of the two techniques BMC or fMBSTW can be
applied based on priority - BMC can be used for least area overhead
(up to 96% reduction) with reasonable compression improvement
(10%) compared to MBSTW, whereas fMBSTW should be used for
best possible compression (up to 60%) while providing reasonable
(up to 84%) reduction in BRAM requirement.

7Results in Figure 4 are also reported using this configuration



C. Compression Performance with Erroneous Trace Data

We now like to validate the analysis done in Section III-C. Errors
have been inserted randomly at a rate of 2% to 10% in steps of 2%
in the trace data, and the same is compressed using DC, BMC and
fMBSTW. Figure 7 shows the comparison of compression penalty in
DC with varying percentage of error. It can be seen that the change
in compression penalty complies with Equation (5) in Section III-C.
For example, putting a value of l = 2% in Equation (5) will result in
a compression penalty of less than 2%, which matches in the figure
for all the benchmarks. We have conducted similar experiments for

0.00%	  

1.00%	  

2.00%	  

3.00%	  

4.00%	  

5.00%	  

6.00%	  

7.00%	  

8.00%	  

9.00%	  

s9234	   s13207	   s38584	   s38417	   s35932	  

Co
m
pr
es
si
on

	  P
en

al
ty
	  

Benchmarks	  

2%	  error	   4%	  error	   6%	  error	   8%	  error	   10%	  error	  

Fig. 7. Comparison of compression penalty for DC

BMC based compression technique as well. The results in Figure 8
shows that the compression penalty also follows Equation (5).

0.00%	  

1.00%	  

2.00%	  

3.00%	  

4.00%	  

5.00%	  

6.00%	  

7.00%	  

s9234	   s13207	   s38584	   s38417	   s35932	  

Co
m
pr
es
si
on

	  P
en

al
ty
	  

Benchmarks	  

2%	  error	   4%	  error	   6%	  error	   8%	  error	   10%	  error	  

Fig. 8. Comparison of compression penalty for BMC

Now, we would like to verify the last part of the discussion in
Section III-C, that is, the change in compression penalty with error
rate for fMBSTW. We have conducted similar experiments and the
results are shown in Figure 9.

0.00%	  
1.00%	  
2.00%	  
3.00%	  
4.00%	  
5.00%	  
6.00%	  
7.00%	  
8.00%	  
9.00%	  
10.00%	  

s9234	   s13207	   s38584	   s38417	   s35932	  

Co
m
pr
es
si
on

	  P
en

al
ty
	  

Benchmarks	  

2%	  error	   4%	  error	   6%	  error	   8%	  error	   10%	  error	  

Fig. 9. Comparison of compression penalty for fMBSTW

An important observation here is that the change in penalty is
sharper than the case of Figure 7 or Figure 8. This is quite obvious
as per the discussion in Section III-C, since in fMBSTW, 2 strings

are affected when an error is introduced, whereas in DC or BMC,
only 1 string is affected.

Finally, we compare how the introduction of errors affect the
compression performance in cases of MBSTW and fMBSTW. The
results are shown in Figure 10. We have introduced 2% error for
every benchmark’s trace data. It can be seen that the compression
penalty obtained using fMBSTW is always less than MBSTW,
the maximum difference being 4% for s38417. The reason for
higher penalty in MBSTW is that if error gets introduced early,
MBSTW cannot benefit from a profitable sequence. In summary, our
approach (fMBSTW) will perform significantly better irrespective
of the percentage of errors in the dataset.

0.00%	  

1.00%	  

2.00%	  

3.00%	  

4.00%	  

5.00%	  

6.00%	  

7.00%	  

s9234	   s13207	   s38584	   s38417	   s35932	  

Co
m
pr
es
si
on

	  P
en

al
ty
	  

Benchmarks	  

MBSTW	   fMBSTW	  

Fig. 10. Comparison of compression penalty

V. Conclusions
Post-silicon validation is extremely complex and time consuming

in overall design methodology. To aid in debug, trace data obtained
from the chip are stored in the trace buffer. However, the trace buffer
size is limited due to area/cost constraints. Trace data compression
schemes have been popular which deals with dynamic dictionary
based compression that enables to store larger traces. We have
proposed a trace data compression technique, which employs a
statically computed dictionary. We have used three compression
algorithms for compressing the trace data. Our approaches can
produce up to 60% better compression performance, and reduce the
compression architecture overhead up to 84% compared to best-
known existing approaches.

References

[1] H. Ko and N. Nicolici, “Algorithms for state restoration and trace-
signal selection for data acquisition in silicon debug,” IEEE TCAD,
vol. 28, no. 2, pp. 285–297, Feb. 2009.

[2] X. Liu and Q. Xu, “Trace signal selection for visibility enhancement
in post-silicon validation,” in DATE, 2009.

[3] J. Yang and N. Touba, “Expanding trace buffer observation window
for in-system silicon debug through selective capture,” in VTS, 2008.

[4] E. Anis and N. Nicolici, “Low cost debug architecture using lossy
compression for silicon debug,” in DATE, 2007, pp. 225–230.

[5] ——, “On using lossless compression of debug data in embedded logic
analysis,” in ITC, 2007, pp. 1–10.

[6] O. Caty, P. Dahlgren, and I. Bayraktaroglu, “Microprocessor silicon
debug based on failure propagation tracing,” in ITC, 2005, pp. 10–293.

[7] B. Vermeulen and S. Goel, “Design for debug: Catching design errors
in digital chips,” IEEE Des. Test, vol. 19(3), pp. 37–45, 2002.

[8] R. Leatherman and N. Stollon, “An embedded debugging architecture
for socs,” IEEE Potentials, vol. 24, no. 1, pp. 12–16, February 2005.

[9] S. Seong and P. Mishra, “Bitmask-based code compression for embed-
ded systems,” IEEE TCAD, vol. 27(4), pp. 673–685, April 2008.

[10] K. Basu and P. Mishra, “Test Data Compression Using Efficient
Bitmask and Dictionary Selection Methods,” IEEE TVLSI, vol. 18,
no. 9, pp. 1277–1286, 2010.

[11] K. Basu and P. Mishra, “Efficient Trace Signal Selection for Post
Silicon Validation and Debug,” in International Conference on VLSI
Design, 2011.


