
Trace Buffer Attack: Security versus Observability
Study in Post-Silicon Debug
Yuanwen Huang∗, Anupam Chattopadhyay†, Prabhat Mishra∗

∗University of Florida, Gainesville, Florida, USA
†Nanyang Technological University, Singapore

{yuanwen, prabhat}@cise.ufl.edu, anupam@ntu.edu.sg

Abstract—Since the standardization of AES/Rijndael
symmetric-key cipher by NIST in 2001, it gained widespread
acceptance in various protocols and withstood intense scrutiny
from the theoretical cryptanalysts. From the physical
implementation point of view, however, AES remained
vulnerable. Practical attacks on AES via fault injection,
differential power analysis, scan-chain and cache-access timing
have been demonstrated so far. Along this line, in this paper,
we propose a novel and effective attack, termed Trace Buffer
Attack. Trace buffers are extensively used for post-silicon debug
of digital designs. We identify this as a source of information
leakage and show that, unless proper countermeasure is taken,
Trace Buffer Attack is capable of partially recovering the secret
keys of different AES implementations. We report the detailed
process of trace-buffer attack with experimental results. We also
propose a countermeasure in order to avoid such attack.

Keywords: Cryptography, Cryptanalysis, Trace Buffer,
Post-silicon Debug, AES.

I. INTRODUCTION

As the human civilization is collectively progressing to-
wards an ubiquitous information age, the corresponding stakes
on ensuring confidentiality, integrity and authenticity are also
rising higher. Advanced Encryption Standard (AES) algorithm
with various key lengths (128, 192 and 256) is widely used.
The fact that AES stood the intense scrutiny from attackers
over the last 15 years itself makes it an important benchmark
for cryptography and cryptanalysis. So far, the best-known
attempt against full AES-128, by algebraic cryptanalysis,
has a computational complexity of 2126.1, which is slightly
better than the brute-force attack and practically infeasible [1].
However, the perspective of physical cryptanalysis changes
this scenario completely.

In practice, one routinely faces a situation where the crypto-
graphic schemes are deployed in different adversarial setting,
where keys are compromised, and the internal memory is not
fully opaque. This situation leads to a set of physical crypt-
analysis techniques, commonly known as side channel attacks.
Side channel attacks exploit the physical implementation of
cryptographic algorithms. The physical implementation might
enable leakage, i.e., observations and measurements on the
implementation details, as well as tampering with them. Such
attacks have broken systems with mathematical security proof.
In this scenario, secure implementation is rapidly becoming as

This work was partially supported by the NSF grants (CCF-1218629 and
CNS-1441667) and SRC grant (2014-TS-2554).

978-1-4673-9140-5/15/$31.00 c©2015 IEEE

important as the mathematical security proofs. For example, an
AES implementation with protection against a first-order side-
channel attack is presented here [2]. The protected design is
still vulnerable to more sophisticated attacks and even then,
incurs 4.6× area- and 3.6× power-overhead, respectively,
compared to the unprotected implementation.

In light of these developments, it is of utmost importance to
remain fully aware of the design vulnerabilities, in the form
of precise information leakage. In this paper, we introduce
Trace Buffer Attack (TBA), a novel attack that can be
mounted with the help of post-silicon debug facilities present
in a chip. System-on-Chip (SoC) designs have in-built trace
buffer (described in Section 2) that traces a small set of
internal signals during execution, and the traced signal values
are used during post-silicon (off-line) debug. There is an
inherent conflict between security and observability. While
debug engineers would like to have better observability, the
security experts would like to enforce limited or no visibility
with respect to the security modules in a SoC design. A
trade-off is typically made where trace signals are carefully
selected to maintain security while providing reasonable debug
capability. To the best of our knowledge, the vulnerability of
trace buffers in cryptographic implementation has not been
studied in the literature. We conclusively show that to achieve
a certain quantifiable level of debugging ability, security is
compromised. We consider AES as the benchmark algorithm
for demonstrating the efficacy of this attack though, the attack
can be mounted on other ciphers following the same principles
outlined in this work. Our experimental results demonstrate
that we can fully recover the secret key for AES-128 (iterative)
implementation whereas we can partially recover the secret
key for various pipelined AES implementations.

The rest of this paper is organized as follows. A back-
ground on AES and trace buffer is provided in Section II.
Section III surveys related work on AES attack and trace
buffer. Section IV describes the details of trace buffer attack.
Section V presents the experimental studies. To prevent TBA,
a countermeasure is proposed in Section VI. The paper is
concluded with outline of future work in Section VII.

II. BACKGROUND

A. AES Specification

AES works on a block size of 128 bits and a key size of
128, 192 or 256 bits, which are referred to as AES-128, AES-

192 and AES-256, respectively1. We briefly review AES-128
here, for further details readers can refer to [3].

Add
RoundKey

Sub
Bytes

Shift
Rows

Mix
Column

Add
RoundKey

Sub
Bytes

Shift
Rows

Add
RoundKey

Initial Round

Rounds

Final Round

Plaintext Key

Key
Expansion

Ciphertext

𝒂𝟎,𝟎 𝒂𝟎,𝟏 𝒂𝟎,𝟐 𝒂𝟎,𝟑

𝒂𝟏,𝟎 𝒂𝟏,𝟏 𝒂𝟏,𝟐 𝒂𝟏,𝟑

𝒂𝟐,𝟎 𝒂𝟐,𝟏 𝒂𝟐,𝟐 𝒂𝟐,𝟑

𝒂𝟑,𝟎 𝒂𝟑,𝟏 𝒂𝟑,𝟐 𝒂𝟑,𝟑

𝒌𝟎,𝟎 𝒌𝟎,𝟏 𝒌𝟎,𝟐 𝒌𝟎,𝟑

𝒌𝟏,𝟎 𝒌𝟏,𝟏 𝒌𝟏,𝟐 𝒌𝟏,𝟑

𝒌𝟐,𝟎 𝒌𝟐,𝟏 𝒌𝟐,𝟐 𝒌𝟐,𝟑

𝒌𝟑,𝟎 𝒌𝟑,𝟏 𝒌𝟑,𝟐 𝒌𝟑,𝟑

𝒃𝟎,𝟎 𝒃𝟎,𝟏 𝒃𝟎,𝟐 𝒃𝟎,𝟑

𝒃𝟏,𝟎 𝒃𝟏,𝟏 𝒃𝟏,𝟐 𝒃𝟏,𝟑

𝒃𝟐,𝟎 𝒃𝟐,𝟏 𝒃𝟐,𝟐 𝒃𝟐,𝟑

𝒃𝟑,𝟎 𝒃𝟑,𝟏 𝒃𝟑,𝟐 𝒃𝟑,𝟑

𝒂𝟐,𝟐

𝒌𝟐,𝟐

𝒃𝟐,𝟐

Fig. 1: AES Encryption Flow

The encryption flow of AES is shown in the Figure 1. AES
accepts a 128-bit plaintext, 128-bit user key and generates
128-bit ciphertext. The encryption proceeds through an initial
round and subsequent 10 round repetition of 4 steps. These
steps are SubBytes, ShiftRows, MixColumns and AddRound-
Key. In the final round, MixColumns step is skipped. For each
of these rounds, separate 128-bit round subkeys are needed.
The round subkeys are generated from the initial user key via
a key expansion step. The key expansion uses Rijndael’s key
schedule.

The plaintext is organized as a 4×4 column-major order ma-
trix, which is operated through the AES rounds. The SubBytes
step uses a non-linear transformation on every element of the
matrix. The non-linear transformation is defined by an 8-bit
substitution box, also known as Rijndael S-box. The ShiftRows
step cyclically shifts the bytes in each row by a certain offset.
In the MixColumns step, each column is multiplied by a fixed
matrix. In the AddRoundKey step, each byte of the matrix is
exclusive-OR-ed with each byte of the current round subkey.
This is shown graphically in the Figure 1.

B. Trace Buffer

One of the major challenges in post-silicon validation and
debug is the limited controllability and observability of the
fabricated integrated circuit. Trace buffer is widely used to
improve the observability of circuit and thus assist post-silicon
debug and analysis. It is a buffer that traces (records) some of
the internal signals in a silicon chip during runtime. If an
error is encountered, the content of trace buffer would be
dumped out through JTAG interface for off-line debug and
error analysis. Due to design overhead constraints, the number
of trace signals is only a small fraction of all internal signals
in the design. The size of the trace buffer directly affects the
observability that we can get from the trace buffer.

Figure 2 illustrates how the trace buffer is used during post-
silicon validation and debug. Signal selection is done during

1For the rest of the paper, unless explicitly specified, we will use AES-128
and AES interchangeably.

Fig. 2: Overview of trace buffer in system validation and debug

the design time (pre-silicon phase). Let us assume that S1, S2,
..., Sn are the selected trace signals. Figure 2 shows a trace
buffer with a total size of n×m bits, which traces n signals
(buffer width) for m cycles (buffer depth). For example, the
ARM ETB [4] trace buffer provides buffer sizes ranging from
16Kb to 4Mb. In this case, a 16Kb buffer can trace 32 signals
for 512 cycles (i.e., n=32 and m =512). Once the trace signals
are selected, they need to be routed to the trace buffer. A
trigger unit is also needed that decides when to start and stop
recording the trace signals based on specific (error) events.
The trace buffer records the states of the traced signals during
runtime. During debug time, the states of traced signals will
be dumped out through the standard JTAG interface. Signal
restoration is performed to restore as many states as possible,
which is to maximize the observability of the internal signals
in the chip. The off-line debug and analysis would be based
on the traced signals and the restored signals.

III. RELATED WORK AND MOTIVATION

A. AES Attack

Since the pioneering works on differential power analy-
sis [5], numerous side-channel attacks have been developed.
Side-channel attacks are classified into passive, semi-invasive
and invasive attacks depending on the level of intrusion
necessary for the attacker. The side-channels are of varied
forms ranging from the software execution pattern such as
cache timing [6] to more detailed hardware-oriented infor-
mation leakages such as electromagnetic waves [7], acoustic
waves [8] and optical fault injections [9]. Recent surveys on
timing channels and invasive fault attacks are available in [10]
and [11], respectively. Another approach of constructing an
invasive attack originates from a malicious hardware, secretly
inserted into a chip. These are commonly known as hardware
Trojans [12].

Considering the impact that AES has on our everyday
communications, many of the attack techniques report their
efficacy by demonstrating an attack on AES, which is also
the target cipher for the current work. Among the hardware

side-channel attacks reported against AES, attacks based on
scan-chain [14] and external fault injections [15] are most
prominent. For all these attacks, effective countermeasures
are proposed and the inherent resilience of various design
points [16] is studied. It is also shown that there exists
an interplay between the countermeasures of one attack and
the consequently increased vulnerability against another at-
tack [17].

B. Trace Buffer Observability versus Security

Trace buffer is widely used to improve the observability
of circuit and thus assist post-silicon debug and analysis.
The quality of selected trace signals will directly affect the
observability that we can get from the trace buffer. The goal
of trace signal selection is to obtain a set of signals, which
can restore the maximum number of internal states in the
chip. Basu et al. [18] proposed a metric based algorithm that
employs total restorability for selecting the most profitable
signals. Chatterjee et al. [19] proposed a simulation based
algorithm which is shown to be more promising than metric
based approaches. Li and Davoodi [20] proposed a hybrid
approach which combines the advantages of metric and sim-
ulation based approaches.

While it is accepted in the research community that there is
a strong link between observability/testability and security, it
is surprising that the vulnerability of trace buffers in cryp-
tographic implementation is not studied so far. This forms
the core motivation of our work. We show that an effective
security attack is possible by analyzing the trace buffer content
during post-silicon debug.

IV. TRACE BUFFER ATTACK

The proposed trace buffer attack proceeds in two phases.
In the first phase, we attempt to establish the correspondence
between the signal values in trace buffer and variables in the
AES design. In the second phase, depending on the trace buffer
size and the number of cycles for which each signal is dumped,
the signal values are fed to the restoration algorithm. The
restoration algorithm attempts to recover the user-specified
key. Details of each step are elaborated in the following
sections.

A. Attack Step 1: Determine Trace Buffer Signals

If an attacker wants to steal the primary key, signal values
in the trace buffer are the starting point of hacking. Unless
the traced data is encrypted or debugging is authentication
based, the attacker can easily dump traced data through JTAG
interface. The challenge for Trace Buffer Attack is that the
attacker does not know what signals are recorded in the trace
buffer. We assume that the attacker has access to a few test
chips and the RTL description of the AES design. The one-
to-one mapping between the traced signals and the registers
in RTL description can be established by running some test
chips and matching with RTL simulation.

1) Simulate the RTL implementation of the AES design with
a random key k and a random input plaintext t for c
cycles. During simulation, all the internal register values
are stored.

2) Run the test chip with the same key k and the same input
plaintext t for c cycles. Each traced signal will have a
vector of c values stored in the trace buffer.

3) Dump out the values in trace buffer through JTAG. For
each traced signal, we compare its value vector with
all the register value vectors from RTL simulation. If a
unique match is found in the RTL simulation, this traced
signal is identified in the RTL description. Repeat the
process until all the traced signals are uniquely identified.

For the two case studies in Section V, the above mapping
process can be finished in no more than 512 cycles. For the
iterative AES-128 in Section V-A, it takes 24 cycles (2 runs,
each run takes 12 cycles) to uniquely identify the 32 traced
signals. For the pipelined AES ciphers in Section V-B, 512
cycles suffice to uniquely identify all the 64 traced signals in
each design.

B. Attack Step 2: Signal Restoration

Let us assume that the attacker has finished the preparation
in Attack Step 1 and successfully identified the signals in the
trace buffer. The next step is to run the chip in the working
mode with the secret primary key and take advantage of the
trace buffer to initialize the attack. The attacker dumps out the
signal states recorded in the buffer during online encryption,
and tries to analyze the design so as to recover as many other
signals as possible, and eventually obtain the primary key. In
post-silicon debug, restoration of unknown signals based on
trace buffer data is a crucial step in debugging. This section
will detail the approach for signal restoration based on trace
buffer.

Fig. 3: Illustration of signal restoration for an AND gate

The signals can be reconstructed from the traced signals
in two directions: forward and backward restoration. Forward
restoration pushes the restoration of signals from input to
output, which is the process of inferring output values if some
inputs are known. Backward restoration infers input values
if some outputs are known. Figure 3 illustrates forward and
backward restoration with a simple example of AND gate.
Figure 3(a) shows forward restoration: if one of the inputs is
0, the output can be inferred to be 0; if both of the inputs
are 1, the output can be inferred to be 1. Figure 3(b) and (c)
shows backward restoration: if the output is 1, both of the

inputs can be inferred to be 1. However, if the output is 0,
backward restoration might not be successful as shown in (c).
The restoration process for other logic components is similar
to AND gate. The restoration for registers (flip-flops) is that
the state at current cycle is related to the state at previous
cycle as specified by their truth tables. Algorithm 1 outlines
the major steps in a typical restoration algorithm. It assigns the
signal values (based on trace buffer content) of the design and
performs forward and backward restorations to construct value
assignments for un-traced signals. This process continues until
no new assignments are created. Although this algorithm has
exponential complexity, in reality, it completes the process
very fast (as demonstrated in Section V) since the number of
new values created decreases significantly after each iteration.

Algorithm 1 SIGNAL RESTORATION ALGORITHM

Input: Traced signals (nodes) with values at each cycle
Output: Restored signal (node) values
Put all traced nodes into UnderProcess queue
Update the traced nodes with their known values (0/1)
Update all other nodes with unknown values (X)
while UnderProcess is not empty do

Take a node N from UnderProcess to restore its
neighbors
for each node in N ’s BackwardNeighbors do

Backward Restoration for this neighbor node
if value at any cycle is restored then

Push this neighbor into UnderProcess

for each node in N ’s ForwardNeighbors do
Forward Restoration for this neighor node
if value at any cycle is restored then

Push this neighbor into UnderProcess

return

V. EXPERIMENTAL RESULTS

We use the AES Verilog implementations (the iterative
AES-128 [22], and the pipelined AES-128, AES-192 and
AES-256 [23]) from the OpenCores website. The Synopsys
Design Compiler is used to synthesize the RTL implementa-
tion into a gate-level netlist. We develop C++ code to simulate
the gate-level circuits and run the signal restoration algorithm.
We use [21] to select trace signals for the trace buffers since
it produces signals that can maximize observability compared
to the other signal selection techniques. The signal selection
algorithm picks the best signals for debugging purpose without
consideration of security, which means it is ignorant of the
fact that the AES design contains security secrets (keys).
The experiments were conducted on a computer with AMD
Opteron 2.4GHz core and 32GB memory.

A. Case Study 1: iterative AES-128

The iterative AES-128 design has 530 flip-flops and about
25,000 basic logic gates. The 530 flip-flops (registers) include:

• ld r, which is a one-bit control signal.
• dcnt[0..3], which is a 4-bit register keeping track of the

encryption rounds.
• text in r[0..127], which is a 128-bit register holding the

plaintext.
• w0[0..31], w1[0..31], w2[0..31], and w3[0..31], which

are 32-bit each, holding the round keys.
• u0.rcon[24..31] and u0.r0.rcnt[0..3], which are 8 tempo-

rary registers in the key expansion unit.
• text out[0..127], which is a 128-bit register holding the

ciphertext.
The signals recorded in the trace buffer are identified by

using methods detailed in Section IV-A. The selected signals
for each buffer width is as follows:

• BufferWidth=8: {dcnt[2], ld r, w3[2], w3[1], w3[30],
w3[27], w3[17], w3[13]}

• BufferWidth=16: {dcnt[2], ld r, w3[4], w3[29], w3[27],
w3[23], w3[22], w3[18], w3[16], w3[15], w3[14],
w3[13], w3[12], w3[10], w1[9], w3[8]}

• BufferWidth=32: {dcnt[2], ld r, sa03[7], sa13[7], w3[7],
w3[6], w3[3], w3[2], w3[1], w3[31], w3[30], w2[29],
w3[27], w3[26], w3[25], w3[24], w3[23], w3[22],
w3[21], w3[20], w3[18], w2[17], w3[16], w3[15],
w0[14], w3[13], w3[12], w3[11], w3[10], w3[9], w3[8],
w3[0]}

TABLE I: Iterative AES-128: Number of bits in the key re-
covered and memory/time requirements for signal restoration.
hhhhhhhhhhhBufferWidth

BufferDepth 64 128 256 512

8

leaked key (bits) 6 6 6 6
memory (MB) 116.4 161.4 252.0 432.0
time (mm:ss) 0:27.75 0:56.07 1:50.35 3:43.26

16

leaked key (bits) 18 25 28 28
memory (MB) 116.4 161.4 252.0 432.0
time (mm:ss) 0:27.82 0:55.94 1:51.00 3:44.10

32

leaked key (bits) 98 128 128 128
memory (MB) 116.4 161.4 252.0 432.0
time (mm:ss) 0:28.01 0:55.98 1:52.81 3:51.38

We explore different trace buffer sizes with buffer widths
of 8, 16, and 32, buffer depth (traced cycles) of 64, 128, 256
and 512 in our experiments, which should be suitable for the
AES-128 design. Table I shows our results of restoring the
primary key from the trace buffer content on the iterative AES-
128 cipher. The trace buffers with a buffer width of 32 and
a buffer depth no less than 128 are able to recover the full
primary key in a few minutes.

Figure 4(a) shows the number of bits in the user key
leaked with different buffer sizes. Figure 4(b) shows the total
number of internal states restored (debug observability) during
restoration. The number of restored primary key bits increases
with bigger buffer width. For the same buffer width, the
number of restored key bits increases slightly as the trace
cycles increase, and it will be saturated after buffer depth is
big enough (256 cycles or more). The 8× 512, 16× 512 and
32 × 512 trace buffer can respectively restore 6, 28 and 128
bits of the primary key.

64 128 256 512
0

20

40

60

80

100

120

140

BW=8 BW=16 BW=32

Buffer Depth

N
u

m
b

e
r

o
f

L
e

a
k

e
d

 K
e

y
 B

it
s

(a) Number of primary key bits leaked

64 128 256 512
0

10000

20000

30000

40000

50000

60000

70000

80000

BW=8 BW=16 BW=32

Buffer Depth

N
u

m
b

e
r

o
f

R
e

s
to

re
d

 S
ta

te
s

(b) Number of flip-flop states restored

Fig. 4: Iterative AES-128: security and observability trade-off using Buffer Widths (BW) of 8, 16 and 32, and Buffer Depths
of 64, 128, 256 and 512. The 32×128, 32×256, and 32×512 trace buffers are able to recover the full primary key.

The fact that the 32×512 trace buffer can restore all 128-bit
primary key is not surprising. The iterative AES-128 design2

has relatively short pathways with only 530 flip-flops in total.
The 32 signals selected out of the 530 flip-flops is the set of
signals which could offer best observability to the debugger.
As shown above, 2 signals are from the control unit; 2 signals
are from the intermediate result register; the other 28 signals
are from the round key register in the key expansion unit.
The selected signals from the key expansion unit are most
responsible for giving away information to restore the primary
key. The success of recovering the full primary key is due to
the observability provided by the trace buffer.

B. Case Study 2: pipelined AES ciphers

The main difference from the iterative version is that the
pipelined implementation unrolls all the encryption rounds to
be independent hardware units, which makes the pipelined ver-
sion about 10-15 times as large as the iterative. For example,
the pipelined AES-128 cipher has 6720 flip-flops and about
290,000 logic gates, which is roughly 10 times (10 encryption
rounds) as large as the iterative AES-128. This poses a greater
challenge for the restoration process, because many signal
values are not inferable due to the long pathways between the
known signals. Only signals that are very close to the input
can be propagated backward and possibly restore the primary
key bits.

We explore different trace buffer sizes with buffer widths
of 8, 16, 32 and 64, buffer depth of 512 in our experiments.
We set the buffer depth to be 512 cycles, which should be
suitable for the pipelined AES ciphers. Table II shows the
experimental results on the pipelined implementation of AES-
128, AES-192, and AES-256 ciphers. For a buffer width of
64, we are able to respectively restore 20, 19 and 44 bits of
the primary key for AES-128, AES-192 and AES-256 in a few
hours.

Figure 5 shows our experimental results of pipelined AES
ciphers as we increase the trace buffer width. As the trace
buffer width increases, both observability and the leaked

2For iterative implementation, the restoration is clearly able to recover the
key and we expect the same trend to follow for AES-192 and AES-256.

number of key bits increase. The restoration algorithm is not
able to restore the full primary key for any of the pipelined
AES ciphers. Nevertheless, considerable knowledge about the
key is gained, which does not suffice to recover the secret
though, can aid other modes of cryptanalysis.

TABLE II: Pipelined AES-128, AES-192 and AES-256: Num-
ber of bits in the key recovered and memory/time requirements
for signal restoration.
hhhhhhhhhhhBufferWidth

AESciphers AES-128 AES-192 AES-256

8

leaked key (bits) 4 1 8
memory (GB) 4.66 5.37 6.56
time (h:mm:ss) 3:51:45 4:29:05 6:38:06

16

leaked key (bits) 6 4 16
memory (GB) 4.66 5.37 6.56
time (h:mm:ss) 3:44:14 4:12:22 6:22:59

32

leaked key (bits) 11 8 32
memory (GB) 4.66 5.37 6.56
time (h:mm:ss) 3:19:12 4:10:25 6:31:08

64

leaked key (bits) 20 19 44
memory (GB) 4.66 5.37 6.56
time (h:mm:ss) 3:42:02 4:08:43 6:03:15

VI. PROPOSED COUNTERMEASURE

To prevent the trace-buffer attack, we propose a counter-
measure based on built-in randomness assumption. Physically
Unclonable Functions (PUFs) [24] are used as the chosen
source of randomness. PUF provides a challenge-response
mechanism, where the mapping from a challenge to a response
is controlled by the manufacturing process as well as the
nature of the Integrated Circuit (IC). This complex control
makes PUF structures hard to clone and at the same time a
unique device identification can be obtained. Compared to the
look-up table-based storage of key, PUF provides a large set
of challenge-response keys with a storage requirement that
increases linearly with the number of challenge bits. Only a
valid user is aware of the challenge-response sets.

The countermeasure is graphically shown in the Figure 6.
During the recording of the trace signals, the signals from
consecutive clock cycles are XOR-ed according to a PUF
response. Since the PUF response is only known to the
valid user, he/she can recover the trace signal easily. For a

8 16 32 64
0

10

20

30

40

50

AES-128 AES-192 AES-256

Buffer Width

N
u

m
b

e
r

o
f

L
e

a
k

e
d

 K
e

y
 B

it
s

(a) Number of primary key bits leaked

8 16 32 64
0

100000

200000

300000

400000

AES-128 AES-192 AES-256

Buffer Width

N
u

m
b

e
r

o
f

R
e

s
to

re
d

 S
ta

te
s

(b) Number of flip-flop states restored

Fig. 5: Pipelined AES ciphers: security and observability trade-off.

malicious user, recovering the original trace signals is hard.
The idea of this countermeasure closely follows a similar
countermeasure proposed for scan-chain attacks [25]. Note that
the countermeasure is described in generic fashion as it can
be scaled to larger bit-widths as needed.

Fig. 6: PUF-based Countermeasure

VII. SUMMARY AND OUTLOOK

In this paper Trace Buffer Attack is introduced. We study the
current practice in trace buffer signal selection and restoration
algorithms. Based on that, it is experimentally demonstrated
that AES, the currently dominant block cipher, is vulnerable.
With a trace buffer size of 32 × 128, the full key of the
iterative AES-128 can be restored with a computation time
of one minute. For pipelined AES, partial key can be restored
in a few hours. This leads to a trade-off between security and
debug observability. An efficient PUF-based countermeasure
is proposed to prevent the trace buffer attack. This work can
be extended in multiple directions. One may take up further
experiments to determine the actual PUF overhead, to account
for the PUF modeling attacks, to construct hybrid attacks
involving trace buffers as well as study the vulnerability of
other ciphers apart from AES.

REFERENCES

[1] A. Bogdanov et al., “Biclique cryptanalysis of the full AES,” in
Advances in Cryptology: ASIACRYPT 2011.

[2] A. Moradi et al., “Pushing the limits: A very compact and a threshold
implementation of AES,” in Advances in Cryptology: EUROCRYPT
2011.

[3] FIPS 197, Advanced Encryption Standard, 2001. [Online]. Available:
csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[4] ARM Embedded Trace Buffer, [Online]. Available: http://infocenter.arm.
com/help/index.jsp?topic=/com.arm.doc.dai0168b/ar01s03s03.html

[5] P. C. Kocher et al., “Differential power analysis,” in CRYPTO , 1999.
D. J. Bernstein, Cache-timing attacks on AES, 2005. [Online]. Available:
http://cr.yp.to/papers.html#cachetiming

[6] D. Osvik et al., “Cache attacks and countermeasures: The case of AES,”
CT-RSA, 2006.

[7] D. Genkin et al., “Stealing keys from PCs using a radio: Cheap
electromagnetic attacks on windowed exponentiation,” Cryptology ePrint
Archive, Report 2015/170, 2015.

[8] D. Genkin et al., “RSA key extraction via low-bandwidth acoustic
cryptanalysis,” CRYPTO, 2014.

[9] S. Skorobogatov and R. Anderson, “Optical fault induction at-
tacks,”Springer, 2003.

[10] C. Rebeiro et al., Timing Channels in Cryptography: A Micro-
Architectural Perspective, Springer, 2015 edition.

[11] A. Barenghi et al., “Fault injection attacks on cryptographic devices:
Theory, practice, and countermeasures,” Proceedings of the IEEE, 2012.

[12] S. Bhunia et al., “Hardware trojan attacks: Threat analysis and counter-
measures,” Proceedings of the IEEE, 2014.

[13] B. Ege et al., “Differential scan attack on AES with x-tolerant and x-
masked test response compactor,” in Digital System Design (DSD), 2012.

[14] S. Ali et al., “Test-mode-only scan attack using the boundary scan
chain,” in ETS, 2014.

[15] D. Mukhopadhyay, “An improved fault based attack of the advanced
encryption standard,” in Progress in Cryptology: AFRICACRYPT 2009.

[16] S. Ali et al., “AES design space exploration new line for scan attack
resiliency,” in VLSI-SoC, 2014.

[17] F. Regazzoni et al., “Interaction between fault attack countermeasures
and the resistance against power analysis attacks,” in Fault Analysis in
Cryptography, 2012.

[18] K. Basu and P. Mishra, “RATS: restoration-aware trace signal selection
for post-silicon validation,” IEEE Trans. VLSI Syst., 2013.

[19] D. Chatterjee et al., “Simulation-based signal selection for state restora-
tion in silicon debug,” in ICCAD, 2011.

[20] M. Li and A. Davoodi, “A hybrid approach for fast and accurate
trace signal selection for post-silicon debug,” IEEE Trans. on CAD of
Integrated Circuits and Systems, 2014.

[21] K. Rahmani et al., “Efficient trace signal selection using augmentation
and ILP techniques,” in ISQED 2014.

[22] OpenCores AES-128 cipher, [Online]. Available: http://opencores.org/
project,aes core

[23] OpenCores AES ciphers (all key sizes), [Online]. Available: http://
opencores.org/project,tiny aes

[24] I. Verbauwhede and R. Maes, “Physically unclonable functions: Man-
ufacturing variability as an unclonable device identifier,” in GLSVLSI,
2011, pp. 455–460.

[25] S. Banik et al., “Cryptanalysis of the double-feedback xor-chain scheme
proposed in Indocrypt 2013” in Progress in Cryptology – INDOCRYPT
2014.

