Hardware Trojan Detection using ATPG and Model
Checking

Jonathan Cruz!, Farimah Farahmandi?®, Alif Ahmed?, and Prabhat Mishra®
!Department of Electrical and Computer Engineering
2Department of Computer and Information Science and Engineering
University of Florida, Gainesville FL, USA

Abstract—The threat of hardware Trojans’ existence in inte-
grated circuits has become a major concern in System-on-Chip
(SoC) design industry as well as in military/defense organizations.
There is an increased emphasis on finding effective ways to
detect and activate hardware Trojans in current research efforts.
However, state-of-the-art approaches suffer from the lack of
completeness and scalability. Moreover, most of the existing
methods cannot generate efficient tests to activate the potential
hidden Trojan. In this paper, we propose an effective test
generation approach which is capable of activating malicious
functionality hidden in large sequential designs. Automatic test
pattern generation (ATPG) works well on full-scan designs,
whereas model checking is suitable for logic blocks without
scan chain. Due to overhead considerations, partial-scan chain
insertion is the standard practice today. Unfortunately, neither
ATPG nor model checking is suitable for partial-scan designs.
Our proposed hardware Trojan detection technique utilizes the
combination of ATPG and model checking approaches. We use
model checking on a subset of non-scan elements and ATPG on
scan elements to avoid common pitfalls of running the original
design using any one of these techniques. Experimental results
demonstrate the effectiveness of tests generated by our proposed
approach to detect Trojans on Trust-hub benchmarks.

I. INTRODUCTION

Designing today’s system-on-chips (SoC) is a highly com-
plex process that is subject to stringent time-to-market con-
straints. It is a common practice to integrate third-party
Intellectual Property (IP) blocks in the production of SoCs in
order to remain competitive in today’s global market. However,
interfacing with untrusted third-party IP affects a design’s
trustworthiness and security. An adversary can tamper with
the design or insert malicious components, known as hardware
Trojans, within third-party facilities. Hardware Trojans are a
small modification in the design that can be triggered in an
extremely rare input event. As a result, hardware Trojans are
dormant during most of the run-time and can escape detection
during conventional functional validation techniques (such
as simulation-based validation using random or constraint
random tests). The effects of hardware Trojan insertion attacks
range from information leakage to complete chip malfunction
[L]. Therefore, it is extremely important to find efficient
validation approaches to detect and activate hardware Trojans
if they exist.

Existing logic testing methodologies for Trojan detection
target rare node activation while monitoring the designs ob-

This work was partially supported by grants from National Science Foun-
dation (CNS-1441667), SRC (2014-TS-2554), and Cisco.

Input: Design D

Identify rare branches/
suspicious gates

Constraint
Generation

Test Vector
Generation

Scan Replacement

Model
Checker

™~

Stuck-at Circuit
Insertion

Fault list Generation

sanuadoud

syne4 je-yoms

Signal Trace Constraints

Test vectors

Fig. 1: The overview of our proposed approach.

servable outputs [25]. Some approaches use N-detect testing
with an ATPG tool for generating test vectors leading to an
increased likelihood for Trojan activation [2], [24]. Most of
these techniques assume a full scan chain when dealing with IP
that contain sequential elements [3]], [2]]. However, partial-scan
chains offer an attractive alternative to designs with area or
testing constraints. Therefore, with the introduction of partial-
scan inserted IP, it becomes even harder to detect Trojans
that rely on these verification tools alone since the depth and
testable complexity of sequential parts will be increased [4],
[S)]. Formal methods have also been used in Trojan detection
and verifying design security. With model checking, security
properties can be specified by a designer to verify the security
of the design [6]. However, model checking is known to suffer
from state explosion which limits its effectiveness on verifying
security in large designs.

Motivated by the limitations of these tools, we propose a
test generation framework that combines the strengths of these
two common design verification techniques, already a part of
the normal verification design flow. Our approach increases
the efficiency for Trojan detection in partial-scan designs by
reducing the potential state space for model checker and re-
moving the complexity of non-scan sequential ATPG in ATPG
tools. Figure || shows the overview of our approach. As shown
in Figure [T} our method identifies suspicious branches/gates
which may be used as triggering conditions for hardware
Trojans. In order to generate tests to activate rare nodes, scan
replacement is done in the next step. We generate security

properties that targets activation of equivalent signals/gates of
rare nodes in the gate-level netlist. The scan replaced netlist
as well as the security properties are used by the model
checker. We generate a set of constraints using model checker
to facilitate directed test generation using ATPG tool. To the
best of our knowledge, there are no previous attempts to
address Trojan detection particularly in partial-scan designs
using a combination of model checking and ATPG tools.
We have applied our methodology on Trust-Hub and custom
benchmarks and have demonstrated that our approach not
only detects the hidden Trojans but also activates them in an
effective manner.

The rest of the paper is organized as follows. Section II
introduces the background in ATPG and model checking.
Section IIT describes the related work using these techniques.
Section IV describes our hardware Trojan detection approach
of using ATPG and model checking. Section V describes the
experimental setup, analysis, and results. Finally, Section VI
concludes the paper.

II. BACKGROUND
A. Design for Test

Design for Testability (DFT) is a technique employed in
designing ICs for the purposes of reducing test costs and
associated time [1]. A very common technique for DFT is
scan-chain insertion. The idea here is to replace regular flip-
flops (FFs) in the design with scan flip-flops. Scan FFs can be
chained together to form a scan-chain. The purpose of these
scan-chains is to reduce the loading time when testing sequen-
tial elements of a design, increasing a circuit’s overall gate
controllability and observability. While including a full scan-
chain is ideal, it may not be feasible due to the incurred area
overhead or delays that invalidate various design constraints.

Partial-scan chain insertion is used as a cost-effective
alternative [7] to achieve acceptable test coverage, while
maintaining design constraints. In partial-scan designs, not all
FFs are included in the scan-chain. However, these non-scan
FFs introduce branches in the circuit with low controllability
and observability, which can be exploited as a rare trigger
condition by a malicious attacker. Controllability measures the
difficulty associated with setting a particular signal to a logic
value, and observability measures the difficulty of observing
a signal at an observable point in the circuit.

B. Automatic Test Pattern Generation

ATPG is a test methodology used to identify faulty behav-
ior(s) in circuits due to design defects. The goal of ATPG
is to create a set of test patterns that achieve a desired test
coverage, TC, and fault coverage, FC, through fault simulation.
Test coverage is the ratio of detected faults over testable
faults, while fault coverage is the ratio of detected faults
over all faults. With the use of DFT and scan-chains, ATPG
can efficiently generate test vectors by treating any design as
combinational logic, consequently reducing the complexity.
This is no longer the case in partial-scan designs. ATPG
tools must now consider a sequential set of test vectors to

activate a target fault. The sequential ATPG complexity is
linearly proportinal to the sequential depth and exponentially
porportional to the number of sequential cycles (more complex
than feedback loops) [8]. The worst-case complexity (cyclic
sequential designs) of sequential ATPG becomes 9%, in a 9-
valued logic system where NNV is the number of flip-flops [9].

C. Model Checking

Model checking is a formal method used to verify a design
against functional properties (expected design behavior). To
verify a design using model checkers, users must first either
manually, or through the use of a program, translate their
design into a model specification language understood by
the tool. Design properties are then described in a temporal
language using either computational tree logic (CTL) or linear
temporal logic (LTL). Once the tool has both the design
and properties to be verified, it begins to unroll the state
space. A Boolean satisfiability assignment is extracted from
the unrolled states and checked using an internal SAT solver.
If unsatisfiable, the model checker produces a counterexample
computation path [10].

Functional design verification with model checking can be
extended for use in verifying design security [15]. Properties
can be written and verified with security features in mind,
such as monitoring the primary output for leaking secret keys
[6]]. However, as previously mentioned, a common problem of
the model checking approach is state explosion caused by the
exponential nature of exploring a designs state space. This fact
limits the practicality of model checking on larger designs.

III. RELATED WORK

ATPG and formal methods have been used for Trojan
detection and security verification in recent years [15]. As
with any ATPG tool, sequential test pattern generation is a
complex process [9], [8]. While scan-chains are implemented
to mitigate the complexity, designs with a significant amount
of non-scan cells can greatly reduce ATPG performance,
resulting in ATPG-untestable faults [12] that an attacker can
exploit.

One common approach to Trojan detection involves logic
testing to trigger a set of rare nodes. These methods gener-
ate test patterns with high probability of activating Trojans.
Common to most of these approaches is the use of an ATPG
tool, SAT solver, or some combination for test generation.
Both Wolff et al. and Zhang et al. propose Trojan detection
approaches that incorporate ATPG tools for generating test
patterns [13[], [3]. Yet, with the introduction of partial-scan
designs, the effectiveness of full-sequential ATPG for gener-
ating test patterns is greatly reduced due to the complexity of
full-sequential ATPG on non-scan FFs. The method proposed
in [14] utilizes N-detect full scan ATPG and SAT solver
for Trojans detection. However, this approach also fails to
effectively consider designs that have a significant non-scan
regions which will limit the effectiveness of ATPG.

Functional design verification with model checking can be
extended for use in verifying design security [15]. Properties

can be written and verified with security features in mind,
such as monitoring the primary output for leaking secret keys
[6]. However, as previously mentioned, a common problem of
the model checking approach is state explosion caused by the
exponential nature of exploring a designs state space. This fact
limits the practicality of model checking on larger designs.
Although approaches based on symbolic algebra detect the
existence of hardware Trojans, they cannot generate tests to
activate it [16]].

IV. TROJAN DETECTION USING ATPG AND
MODEL CHECKING

Many Trojan detection techniques utilize ATPG, model
checking, or both in generating test patterns for detection;
however, they do not consider partial-scan instances of a third-
party IP (3PIP). ATPG is expected to encounter notable exe-
cution overhead in most partial-scan designs with significant
sequential depth or cyclic sequential structures due to their
complexity [8]]. Additionally, previously detectable faults can
be unintentionally rendered undetectable with the removal of
scan FFs from the scan-chain. This makes it much harder to
generate tests for suspicious regions as it is no longer within
the realm of combinational complexity. With model checking
alone, medium to large designs are expected to suffer from
state explosion, preventing efficient test generation.

We propose a framework to improve the test generation
efficiency by combining the benefits of the two approaches.
To the best of our knowledge, our approach is the first attempt
to use both ATPG and model checking for efficient test
pattern generation in partial-scan designs for Trojan detection.
Algorithm 1 shows the major steps in our proposed framework
shown in Figure 1. Algorithm 1 takes a design D, and outputs
a set of test vectors 71'. In line 5, the set of rare nodes
R are identified in the design which are used by the con-
straintGeneration and testVectorGeneration procedures. The
constraintGeneration procedure (Algorithm 2) uses model
checking to produce a set of signal traces S. Finally the
testVectorGeneration method (Algorithm 3) uses ATPG with
the design, rare nodes and signal traces to produce a set of
test vectors for activating each rare node.

To maximize the benefits of each tool, our framework also
includes parallel execution of model checking and ATPG. The
final test pattern is taken from whichever execution generates
results first. The remainder of this section describes the
steps involved in the proposed hybrid approach: rare branch
identification, constraint generation, and test vector generation.

A. Rare Branch Identification

For each IP, initial analysis is performed at the RTL level
to determine suspicious gates in the design. In a design,
rare branches are branches that are not covered after running
random tests up to millions of cycles. Mapping the RTL
branches to gate-level netlist after synthesis is done in two
phases. The first phase identifies any suspicious boundary and
register nets and uses the synthesis tool commands to attempt

Algorithm 1 Trojan Detection Algorithm

1: Input: Design D

2: Output: Set of testvectors T'

3: procedure TROJANDETECTION(D)
4: R, S, T= {}

R = identifyRareBranches(D)

S = constraintGeneration(D, R)
T = testVectorGeneration(D,R,S)
return 7T’

® W

to preserve suspicious signal nets. In these cases, identifiable
naming will be preserved after synthesis. If any rare branch
is not accounted for, then, the second phase constructs a
structural dependency graph of the two representations and
attempts to match these graphs using approximate graph
matching heuristics as suggested in [[17].

Other statistical or functional methods for determining rare
nodes at RTL or gate-level such as FANCI [18] and MERS
[L9] are equally applicable. These circuit branches identified
as rare will be used in model checking property generation and
ATPG stuck-at faults/ node justification. The rationale here is
that a Trojan can be activated as a result of a rare sequence
of inputs and/or state transitions; otherwise, the malicious
insertion becomes a triviality that can be detected during
traditional design testing and verification [13]. By focusing on
activating hard-to-trigger or rare nodes, we are increasing the
likelihood of Trojan detection. With partial-scan designs, the
non-scan FFs can be ideal candidates for embedding Trojans
due to the low controllability and observability values. These
Trojan instances are generally much harder to detect and will
be the threat model we use for the remainder of the paper.

Algorithm 2 Constraint Generation Algorithm

1: Input: Design D, set of rare nodes R

2: Output: set of signal traces S

3: procedure CONSTRAINTGENERATION(D, R)

S, P={}

5 replace scan FFs with pseudo-primary inputs
6 for each » € R do

7: P, = assert G !(r_cond)

8

9

»

S; = modelChecker(P;,D)
return S

B. Constraint Generation

Because ATPG performance generally suffers in the pres-
ence of non-scan sequential elements, we use model checking
to generate traces transformed into constraint structures for
the ATPG tool and facilitate test generation for rare nodes
with non-scan FFs in their fan-in. Suppose a design D, has
m scan elements and n non-scan elements. The potential state
space is 2™%". To reduce the state space for use in model
checking, we create that has all scan FFs replaced with pseudo-
primary inputs. This is equivalent to breaking up a scan-chain
of m elements into m separate scan-chains. As a result of this

scan_in ——]

@ >

c F
S i Ly L

FF FF

-
j——scan_out

(a)

scanl

FF

C

D F @H_ E ﬂ
| FF FF

scan2

()

Fig. 2: (a) Design before scan replacement. (b) Design after
scan replacement with pseudo-primary inputs scanl and scan2

replacement, the model checking tool now has an effective
state space of 2" mitigating the state explosion issue. It is
important to note that design can still have a significant amount
of state space after the scan replacement. In such cases, the
design can be fed to the model checking tool at the component
level, helping reduce the state space even further.

Example 1: Let us consider a sample design A given in
Figure 2 (a). After simulating the design for millions of cycles
with random input, the rare branches are identified and the
corresponding nodes are marked in red R1-R4. All scan FFs
are then replaced with pseudo-primary inputs as shown in
Figure 2 (b) for use in constraint generation.

The synthesized design is automatically converted to the
tool’s intermediate representation. For each rare node in the
design identified from the first step, we generate properties
(P;) expressed in LTL as:

P, : assert G |(ActivationCond)

The negation of the rare node activation is specified as
properties in order to output the trigger condition as a counter-
example trace from the model checker tool.

Algorithm 2 generates a set of signal traces to be used in
ATPG. The algorithm takes the design, D, and replaces the
scan FFs with pseudo-primary inputs. A property specified as
the negation of the activation is generated for each rare node
r € R. Model checker then outputs a signal trace for each
property, which is used in Algorithm 3. Note, if the traces
from this algorithm are invalid, ATPG will not generate a valid
test vector due to justification conflicts.

scan_in =—— —

SFF

FF

FF FF

—e
j—tele scan_out

E
G

Fig. 3: Rare node R1 Counter-example trace from model
checker captured in stuck-at circuit

Example 2: Suppose we want to generate a trace for rare node
R1 (low 1 signal probability). From Algorithm 2, the property
assert G |(R1) (G == always temporal operator) along with
the scan replaced design from Figure 2 (b) are run through
the model checker. One possible signal trace for the activation
levels would be {1,1,1,X,1,1} ("X” = don’t care) for signals
{scanl, scan2, A, B, E, G}.

Algorithm 3 Test Vector Generation Algorithm

1: Input: Design D, Rare nodes R, signal traces S
2: Output: set of test vectors T

3: procedure TESTVECTORGENERATION(D, R, S)
4: T, F = {}

5 add ATPG AND primitive from S

6 for each » € R do

7: F; = addStuckAtFault(r;)

8 T; = runFullSequential ATPG(F;)

9 if I, == AU then

10: T; = runJustification(r;)
11: T=TUT;
12: return 7’

C. Test Vector Generation

We cannot expect random test patterns to reliably activate
rare or suspicious nodes in a circuit. Therefore, we use ATPG
with N-detect testing to generate directed tests patterns for
the remaining circuit. The activation levels of all relevant
internal signals from the suspicious node’s fan-in cone and
scan replacements are extracted from the trace and combined
together with an ATPG primitive AND gate referred to as
stuck-at circuit. The addition of these primitives are for test
generation purposes only and have no effect on the design
functionality. A stuck-at O fault is added to the tool’s fault
list for each stuck-at circuit. The ATPG tool is then run
using full-sequential ATPG to generate test vectors that trigger
each fault. If the stuck-at faults from the modified design are

undetectable by the ATPG tool, we then attempt to justify
the rare node trigger condition to generate a pattern. With our
framework, the ATPG tool experiences a much faster execution
time because the complexity of non-scan sequential ATPG is
removed by utilizing a model checker for that portion shown in
the results. In the event that no test pattern can be generated
for a rare node due to justification conflicts, we cannot say
anything about the existence of a Trojan in the design.

In Algorithm 3, we use the design D, rare nodes R, and
signal trace S from model checking as input and output a
set of test vectors 7. The test vectors and fault list, F', are
initially empty sets. We build the design in the ATPG tool
then create stuck-at circuits using ATPG primitives and the
traces generated in the previous step. Faults for each rare node
r stuck-at circuit are added to the ATPG’s fault list F'. Full-
sequential ATPG is run with the current fault list to generate
patterns. If the ATPG tool returns AU (ATPG untestable) no
test pattern is generated. We then attempt to run justification
to generate a test pattern.

Example 3: Let us consider the design after the constraints are
generated from model checking. We provide the design from
Figure 1, the list of rare nodes, and signal traces to the ATPG
tool. The relevant traces are transformed into a stuck-at circuit
with ATPG AND primitives as shown in Figure 3. A stuck-at
0 fault is added for each stuck-at circuit and the ATPG tool is
run. An example test vector from ATPG for a stuck-at 0 fault
at stuck-at circuit R1 would be:

scan-in: {1, 1, 1} primary inputs (A,B,C,D) : {1,1,1,1}

V. EXPERIMENTS
A. Experimental Setup

To evaluate our approach, we implemented the framework
described above and applied it on two AES-128 and RS232
benchmarks from Trust-Hub benchmark suite. More informa-
tion on the Trojan circuits and their implementation can be
found on Trust-Hub [20], [21]. Additionally, two modified
AES-128 benchmarks (cb_aes) are used to showcase the
limitations of model checking and ATPG. Both custom AES
benchmarks are a subset of the AES module and only include
15 and 20 key rounds, respectively. The Trojan (a comparator
and FF) checks the final output of the last round against a
predetermined output. If they match, the secret key is leaked
through the primary output.

A machine with Intel Core i5-3470 CPU @ 3.20GHz and
8 GB of RAM is used for testing. For each benchmark, the
design is simulated for millions of cycles to identify the rare
branches. The benchmarks are then synthesized using design
compiler with DFT scan insertion with no area or power
optimization. In mapping rare branches to rare nodes for our
experiments, identifying boundary signal naming from primary
inouts, and registers was sufficient.

A subset of the FFs are randomly selected for scan in an
iterative process to maintain a high test coverage for partial-
scan insertion. To make it harder to detect and showcase
the efficiency of our approach, Trojan activation and payload

FFs are excluded from the scan-chain effectively simulating
a scenario in which an adversary would insert a Trojan in
hard to detect areas after scan-chain insertion. With the rare
nodes identified and scan chain inserted, the scan FFs are
then replaced with primary inputs and given to the SMV tool
[22] for model checking. Properties for each rare node are
written in LTL and given to the model checker along with the
design, which is converted from Verilog to .smv format. The
resulting counter-example traces are then given to Synopsys
TetraMAX [23] for ATPG N-detect with N = 10. Stuck-at
circuits are constructed from the traces using ATPG AND
primitives and corresponding stuck-at 0 faults are added to
the tool’s fault list. For a Trojan to be detected, its effect
must be propagated to an observable output. Therefore, the
final phase in our approach is to translate the test vectors into
testbenches. By targeting rare nodes, the test vectors generated
from N-detect ATPG have an increased likelihood of activating
a Trojan. The suspicious design is simulated using ModelSim
with the resulting testbench and its output is compared (XOR)
with either a golden model or functional specification from the
IP vendor to detect the presence of a hard-to-detect functional
Trojan. Some constraints were imposed on the design due to
tool limitations. For example, in SMV results are not accurate
in designs with multiple clock domains and in TetraMAX
sequential elements with multiplexed clocking are not allowed.
In order to maximize the benefits of using ATPG and model
checking approaches, our framework also includes parallel
execution of them. The test pattern is taken from whichever
execution generates results first.

B. Results

The experimental results from designs with partial-scan
insertion are described in Table 1. The benchmarks are listed
in the first column. Columns 2 and 3 describe the percent of
FFs that are included in the scan-chain and the corresponding
test coverage. Column 4 shows the number of rare branches
identified from our initial analysis simulation. Columns 6, 8§,
10, and 12 report the CPU time in generating test vectors for
each approach. In columns 5, 7, 9, and 11 we show whether the
test vectors detected the Trojan. Finally the last three columns
show the improvement of our framework over ATPG, model
checking, and MERO.

For AES and RS232 circuits, sequential ATPG alone out-
performs model checking and the combined approach. Note
that the combined approach still generates a test vector in
comparable time, yet we take the test pattern resulting from
ATPG as it finishes first. The execution time difference be-
tween AES and RS232 can be attributed to the location of the
Trojans. Both AES benchmarks have Trojans that compare the
state (primary input) to a predetermined value. On the other
hand, in RS232, the Trojans are activated as a result of internal
sequential signal combination.

The custom benchmarks are used to illustrate the weak-
nesses in both sequential ATPG and model checking.
cb_aes_15 has a total of 5889 FFs, 883 non-scan FFs, and
a max non-scan sequential depth of 3. cb_aes_20 has a total

TABLE I: COMPARISON OF OUR APPROACH AGAINST ATPG, MODEL CHECKING, AND MERO FOR TROJAN DETECTION
WITH PARTIAL-SCAN. MO INDICATES MEMORY OVERFLOW WITH 8 GB OF RAM. TO INDICATES TIMEOUT AFTER 57600s

Benchmarks Scan FFs Test | #Rare ATPG Model Chk. (MC) MERO Our Approach Improvement over
(Scan/Total) | Cov. Bran. Detect Time Detect Time Detect Time Detect | Time | ATPG MC MERO

AES-T1000 6448/6933 99% 2 v 0.02s v 85.6s X TO v 8.80s 1x 4280x -
AES-T2000 6468/7108 99% 5 v 0.90s v 216.5s X TO v 22.0s 1x 241x -

RS232-T400 30/59 97% 2 v 0.24s v 3600s v 2810s v 0.52s 1x 15000x | 11708x

RS232-T800 26/58 97% 1 v 0.06s v 7.23s v 3157s v 0.12s 1x 120x 52617x
cb_aes_15 5006/5889 99% 1 v 28800s X MO X 15720s v 7.85s | 3669x — 2003x
cb_aes_20 7262/7809 99% 1 v 28800s X MO X 16740s v 383s | 752x - 437x

”v"” indicates Trojan detected, "X indicates Trojan not detected, " indicates not applicable

of 7809 FFs, 547 non-scan FFs, and a max non-scan sequential
depth of 3. We can see the ATPG tool took a significant
amount of time in generating test patterns to trigger the
rare branch. Similarly model checking fails to generate a
pattern due to state explosion and the tool experiencing a
memory overflow (MO). Our proposed hybrid technique is
able to generate test vectors even when the circuit structure
has sufficient non-scan FF depth and structure.

We also compared our approach to MERO [2]. From Table
1, it is evident that our framework outperforms this approach
in partial-scan designs. Because MERO uses ATPG to justify
trigger conditions, it experiences significant execution over-
head. This fact is illustrated in the AES benchmarks which
experience a timeout (TO). In the case of the custom AES
benchmarks, MERO did not detect the Trojans because the
justification portion could not activate the trigger condition
given the amount of non-scan sequential elements in the
design.

Our experimental results highlight two important aspects
of our test vector generation framework. First, we achieve
acceptable CPU times for all the test benches covered. Second,
our approach is able to generate test vectors that ATPG and
model checking were unable to finish in a reasonable time.
Our results show that we can achieve up to four orders of
magnitude faster execution times than state-of-the-art methods.
This speed up is achieved by leveraging the strengths of each
tool. Specifically, reducing the state space of model checking
and removing the non-scan sequential complexity encountered
using ATPG.

VI. CONCLUSION

Trust in SoC design is an ever increasing concern as more
companies are including third party IPs gathered from un-
trusted vendors. Current Trojan detection methods that utilize
ATPG and model checking tools cannot effectively handle
partial-scan designs. This limitation can cause a significant
execution time penalty due to the complexity of non-scan
sequential ATPG or complete failure in model checking from
state explosion. We proposed a framework that combines
ATPG and model checking for hardware Trojan detection in
partial-scan designs. Experimental results demonstrated the
merits and weaknesses in both approaches and the effective-
ness of combining them in case of partial-scan designs for
generating test vectors targeted at hardware Trojan detection.
We plan to extend our approach using Groebner basis based

formal verification to help with larger circuits that model
checking cannot handle [16]. Future work will also include
investigating more partial-scan benchmarks with differing se-
quential structure and depth to further explore the effectiveness
of the proposed framework.

REFERENCES

[1] M. Tehranipoor and C. Wang, Introduction to Hardware Security and
Trust, Springer, 2011.

[2] R. Chakraborty et al., “MERO: A statistical approach for hardware trojan
detection”, CHES, 2009.

[3] X.Zhang and M. Tehranipoor, “Case Study: Detecting Hardware Trojans
in Third-Party Digital IP Cores”, HOST, 2011.

[4] S. Bhunia et al., “Hardware Trojan Attacks: Threat Analysis and
Countermeasures”, IEEE Special Issue on Trustworthy Hardware, 2014.

[5] M. Tehranipoor and F. Koushanfar, “A Survey of Hardware Trojan
Taxonomy and Detection”, IEEE Design & Test, 2010.

[6] J. Rajendran et al.“Formal Security Verification of Third Party Intellec-
tual Property Cores for Information Leakage” , VLSI Design, 2016.

[71 V. Chickermane and J. H. Patel, “An Optimization Based Approach to
the Partial Scan Design Problem”, Test Conference, 1990.

[8] T. E. Marchok et al. “Complexity of Sequential ATPG” , European
Design and Test Conference, 1995.

[9] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for Digital,

Memory and Mixed-signal VLSI Circuits, Springer, 2004.

E. M. Clarke et al. Model Checking, MIT press, 1999.

H.-M. Koo and P. Mishra, “Test Generation using SAT-based Bounded

Model Checking for Validation of Pipelined Processor”, GLSVLSI,

2006.

I. Pomeranz and S. M. Reddy, “On Undetectable Faults in Partial Scan

Circuits” , ICCAD, 2002.

F. Wolff et al. “Towards Trojan-free Trusted ICs: Problem Analysis and

Detection Scheme”, DATE, 2008.

M. Banga and M. S. Hsiao, “Trusted RTL: Trojan Detection Methodol-

ogy in Pre-silicon Designs”, HOST, 2010.

P. Mishra et al., Hardware IP Security and Trust, Springer, 2016.

F. Farahmandi et al., “Trojan Localization using Symbolic Algebra”,

ASP-DAC, 2017.

Y.-C. Hsu et al., “Visibility Enhancement for Silicon Debug”, DAC,

2006.

A. Waksman et al., “FANCI: Identification of Stealthy Malicious Logic

using Boolean Functional Analysis,”, CCS, 2013.

Y. Huang et al., “MERS: Statistical Test Generation for Side-channel

Analysis based Trojan Detection”, CCS, 2016.

M. Tehranipoor et al., “Trust-hub.org.” http://www.trust-hub.org/

H. Salmani et al., “On design vulnerability analysis and trust benchmarks

development”, ICCD, 2013.

K. McMillan, “Symbolic Model Checking”, Kluwer, 1993.

Synopsys, “TetraMAX User Guide,” Version H-2013.03-SP4, 2013.

S. Saha et al., “Improved Test Pattern Generation for Hardware Trojan

Detection using Genetic Algorithm and Boolean Satisfiability”, CHES,

2015.

F. Farahmandi et al., “Cost-Effective Analysis of Post-Silicon Functional

Coverage Events”, DATE, 2017.

[10]
(11]
[12]
[13]
[14]

[15]
[16]

[17]
(18]
[19]

[20]
[21]

[22]

(23]
[24]

[25]

http://www.trust-hub.org/

	Introduction
	Background
	Design for Test
	Automatic Test Pattern Generation
	Model Checking

	Related Work
	TROJAN DETECTION USING ATPG AND MODEL CHECKING
	Rare Branch Identification
	Constraint Generation
	Test Vector Generation

	Experiments
	Experimental Setup
	Results

	Conclusion
	References

