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Abstract—In this paper, we propose a test generation method
that employs clustering and learning techniques to reduce test
generation time in hybrid systems. While learning-oriented test
generation is a well-studied problem for digital systems, there
are limited efforts for utilizing learning during generation of
directed tests for hybrid systems. This paper makes two important
contributions: i) it develops an efficient technique to cluster a set
of functional scenarios that are expected to have similar test gen-
eration trajectory, and ii) it employs efficient learning mechanism
such that beneficial information is shared during test generation
of similar functional scenarios in a cluster. Our experimental
results using two popular hybrid systems demonstrate that our
approach can significantly (up to 3.8 times, 2.9 times on average)
reduce the overall test generation time.

I. LEARNING-ORIENTED TEST GENERATION

Validation of hybrid systems needs to consider the com-
plexity of both continuous and discrete dynamics. Rapidly
Exploring Random Tree (RRT) algorithm has been used by var-
ious researchers for test generation of hybrid systems [2], [3].
These methods are based on random exploration of possible
system trajectories in the forward [2] and reverse direction [3].
Complex hybrid systems are likely to have numerous functional
scenarios that must be satisfied for complete system validation.
While researchers have demonstrated the utility of learning
during test generation for digital systems, there are limited
efforts to utilize learning across test generation instances in
hybrid systems. It would be beneficial to learn from similar
functional scenarios in hybrid systems. This paper makes two
important contributions: i) it develops a clustering technique
based on key parameters of the functional scenarios, and ii)
it proposes a learning-based directed test generation method
using reverse RRT algorithm.

The overview of our approach is shown in Fig. 1. It high-
lights two important steps of our methodology: clustering of
functional scenarios and learning-based test generation. When
considering multiple test generation instances, it is not possible
to learn from each other unless their test trajectories have con-
siderable similarity or overlap. Unless test generation is done,
we do not know their exact trajectory or overlap. Therefore,
it is a major challenge to cluster a set of similar functional
scenarios before actual test generation. Once clustering is done,
it is also equally critical to develop efficient methods to exploit
learning during test generation of a cluster of similar scenarios
to significantly reduce the overall test generation time.
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Fig. 1: Test generation using clustering and learning

A. Test Scenario Clustering

Test scenario clustering is challenging since the testcase
trajectories are not known a priori. Neighboring functional
scenarios of a state space region that also share the same initial
region are likely to exhibit similar test trajectories. Hence, the
similarity measure of our clustering algorithm is based on the
Euclidean distance of functional scenario and initial region of
the testcase instances. Fig. 2 demonstrates the concept of this
clustering scheme. Each point in the state space of the system,
with state variables X1 and X2, denotes a target functional
scenario that must be activated by a testcase. Functional
scenario 1, 2 and 3 have a mutual Euclidean distance that
is less than the cutoff threshold C1. Hence all of them are
considered part of the same cluster, A. Cluster size can be
increased by increasing the threshold. This would cause some
nearby functional scenarios to also become part of the same
cluster. In Fig. 2, increasing the cluster cutoff threshold to C2

results in functional scenario 4 and 5 to become part of cluster
A′. Bigger clusters provide increased opportunity for learning.
However, large cluster size may include scenarios that are not
closely related, thus reducing the potential of trajectory match
between cluster members.

B. Test Generation using Learning Techniques

Once clusters are formed, learning can be utilized between
the test generation scenarios in a cluster. For the first mem-
ber of a cluster (cannot learn from anyone), our method
searches the state space using exhaustive search algorithm.
This method is based on existing test generation technique
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Fig. 2: Clustering based on similarity of functional scenarios

[2], [3]. However, for the remaining scenarios in the cluster,
our method exploits learning and searches the state space of
the previously generated tests of that cluster. Our approach has
three important steps: region creation, random goal generation,
and goal adjustment. The first step partitions the state space
of the system in multiple smaller regions. The space can be
partitioned in the direction of multiple system variables and
with an adjustable granularity. Fig. 3 shows an example of
a partitioned state space in the direction of system variable
v1. The next step selects a random node from a dynamically
selected region of a previously generated testcase of the cluster.
The dynamic selection of region influences the direction of goal
generation leading to efficient tree growth. Fig. 3 shows an
example tree growth using a learning-based goal generation.
The goal sample (Grand), for a particular iteration of tree
growth, is selected from one of the nodes of a previous testcase
named TC1 that lies in region 3 of the state space. As a result,
the testcase that is being generated (TC2) grows towards the
selected goal region of previous testcase (TC1) and follows its
trajectory. This learning results in significant reduction in test
generation time for the new testcase.
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Fig. 3: Bias adjustment and goal generation for test generation

II. CASE STUDIES
We demonstrate the applicability of our approach using two

hybrid systems: thermostat and forced pendulum. Thermostat
model has two discrete states namely “on” and “off”. System

variables are the system temperature and the total amount
of time system is in operation. The system is designed to
repeatedly transition between the “on” and “off” states in order
to regulate the temperature between an upper bound and a
lower bound. Forced pendulum is a single discrete state system
whose behavior is described by its oscillation angle and its
angular velocity. Motion of the pendulum depends on it’s mass
and length of swinging arm. A motor at the tip of the pendulum
provides discrete torque values at random time intervals.
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Fig. 4: Number of dots indicate average random exploration of
state space per test generation instance for thermostat.

Fig. 4a shows a cluster of related testcases (TC1−4).
For comparison, Fig. 4b shows one of the testcases of this
cluster (TC1) generated without learning using [3]. Average
exploration of the state space per test generation instance is
represented by the number of dots in both cases. While the
number of random explorations remains the same for TC1 in
Fig. 4a, the other tests of the cluster (TC2−4) use significantly
less random explorations. As a result, the average random
exploration of the state space per testcase reduces significantly
(approx. 4 times reduction).

TABLE I: Test generation time comparison (in seconds)
System Cluster TG time (s) TG time (s) Improv.

Size our method no learning [3] (times)
Thermostat 2 597.98 1158.4 1.94

4 974.57 3055.9 3.14
3 597.43 1681.5 2.81
4 460.01 1728.1 3.76

Average 2.91
Forced 4 101.66 359.61 3.54

Pendulum 2 89.07 169.77 1.91
2 134.69 269.24 1.99
2 115.55 227.99 1.97

Average 2.35

Table I shows the improvement in test generation time
compared to reverse RRT without learning [3] using two case
studies. In each case study, we randomly selected four clusters.
Our results indicate that for a cluster size of four we can reduce
the test generation time up to 3.8 times (average 2.9 times)
using our clustering and learning techniques.
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