
Scalable Test Generation by Interleaving Concrete
and Symbolic Execution

Xiaoke Qin and Prabhat Mishra

Department of Computer and Information Science and Engineering
University of Florida, Gainesville FL 32611-6120, USA

{xqin, prabhat}@cise.ufl.edu

Abstract—Functional validation is widely acknowledged as a
major challenge for System-on-Chip (SoC) designs. Directed tests
are superior compared to random tests since a significantly less
number of directed tests can achieve the same coverage goal.
Existing test generation techniques have inherent limitations
due to use of formal methods. First, these approaches expect
formal specification and do not directly support Hardware
Description Language (HDL) models. Most importantly, the
complexity of real world designs usually exceeds the capacity
of model checking tools. In this paper, we propose a scalable
technique to enable directed test generation for HDL models
by combining static analysis and simulation based validation.
Unlike existing approaches that support a limited set of HDL
features, our approach covers a wide variety of features including
dynamic array references. We have compared our approach with
existing hybrid as well as random test generation techniques
using various fault models. Our experimental results demonstrate
that our proposed technique is scalable, and enables directed test
generation for large designs.

I. INTRODUCTION

Functional verification is very important during the de-
velopment of modern System-on-Chip (SoC) designs. As
the complexity of embedded systems grows exponentially in
recent years, it is becoming increasingly difficult to reach the
desired coverage goal within the time budget using random
or constrained-random tests. Directed tests can be used to
alleviate this problem since the same coverage goal can be
achieved with a significantly less number of directed tests.
However, since most directed tests are written manually by
experienced test engineers for important and corner case sce-
narios, it is hard for testing team to catch up with today’s rapid
development cycles. It is desired to have a fully automated way
to generate directed tests.

Model checking is a promising technique to automatically
generate directed tests [1], [2], [3]. Model checkers usually
accept models presented in special verification languages.
It is not easy to apply them on real implementations. For
example, while the Register Transfer Level (RTL) model of
real processors are commonly written in Verilog or VHDL,
model checking tools like NuSMV only takes SMV models
as input. Thus, real designs must be translated first, which
itself can be an error-prone process. Since model checking is
based on static analysis, the complexity of real world designs

This work was partially supported by National Science Foundation (NSF)
grants CNS-0746261 and CCF-1218629.

usually exceeds the capacity of model checking tools. The
solving process may run out of memory before producing any
useful results for real life designs. On the other hand, random
or constrained-random test generation techniques are suitable
for real designs, because they usually perform little reasoning
on internal design logic. A large amount of random stimuli can
be generated easily and simulated on real designs. However,
random tests are inefficient to activate specific behaviors. It is
therefore desirable to have a test generation approach that can
handle real-life designs, but still able to activate any required
system behavior with a small number of tests.

To bridge the gap between model checking based directed
tests and random tests, we propose a novel test generation
approach based on interleaved concrete and symbolic execu-
tion. Recent approaches [4] demonstrated that concolic testing
[11] can be effectively utilized for hardware designs. However,
existing approaches have major drawbacks e.g., they do not
support dynamic array references. The applicability of the
existing methods is limited to simple designs since dynamic
array references are widely used in modern RTL designs to
implement register files, buffers, caches and memory. Instead
of performing static analysis of the entire design, we compose
an instrumented version of the original design and execute
the instrumented design on a Hardware Description Language
(HDL) simulator. During the simulation, the instrumented
code will produce a trace file, which records all the logical
operations performed by the design. Next, the trace is analyzed
using a constraint solver. In this way, our approach is able to
analyze real hardware designs with dynamic array references
and detect data dependency through array elements.

Our experimental results demonstrate that our approach is
capable of generating directed test efficiently on a variety of
hardware designs. To the best of our knowledge, our approach
is the first attempt to create directed tests for HDL designs with
dynamic array references by interleaving concrete and sym-
bolic simulation. The rest of the paper is organized as follows.
Section II describes related work on test generation techniques.
Section III describes our test generation methodology for real
HDL designs. Section IV presents our experimental results.
Finally, Section V concludes the chapter.

II. RELATED WORK

Simulation based validation is able to handle designs at
different abstraction levels and therefore widely used in

practice. Genesys-Pro test generator [5] from IBM extended
this direction with complex and sophisticated test templates.
Wagner et al. [6] designed the MCjammer tool which can get
higher state coverage than normal constrained random tests.
Due to random nature, it is time consuming for a random test
generator to activate all desired behaviors of the design.

On the other hand, model checking techniques are promising
for automated generation of directed tests [7], [8]. Due to
the state explosion problem, conventional symbolic model
checking approaches are not suitable for large designs. SAT-
based bounded model checking (BMC) is introduced by Biere
et al. [9] as an alternative solution. Chen et al. [1] proposed
directed test generation based on high level specification using
SAT-based BMC. To accelerate the test generation process,
conflict clauses learned during checking of one property are
forwarded to speed up the SAT solving process of other
related properties. These techniques rely on certain language
for system modeling, and cannot take HDL design directly as
input.

Directed test generation tools based on interleaved concrete
and symbolic execution, such as DART [10] and CUTE [11],
are promising in capturing important bugs in large software
systems. STAR and HYBRO [4] are proposed to generate
tests by combining static and dynamic analysis for hardware
validation. Due to the effective utilization of the CFG, HYBRO
[4] demonstrated remarkable improvement over previous path-
based test generation technique. However, since the CFG
and use-define chain is obtained using static analysis, this
technique cannot be applied when dynamic array references
[12] are involved. As a result, the applicability of [4] is
limited to simple designs without dynamic array references,
since dynamic array references are widely used in modern
RTL designs to implement register files, buffers, caches and
memory.

III. DIRECTED TEST GENERATION BY INTERLEAVING
CONCRETE AND SYMBOLIC EXECUTION

The basic idea of our work is to obtain the logic operations
performed by the design on a single concrete execution path,
and perform reasoning on top of it to obtain new test input.
Figure 1 shows the key steps in our proposed approach. To
explore different execution behaviors of the design, we first
instrument the design with trace generation code. We also
define the input variable set I , which present the input to the
design under test (DUT). Next, we repeatedly simulate the
instrumented design as follows:

1) Use I as input to the DUT.
2) Simulate DUT on a simulator. Collect all the operations

performed by the design and activated path constraints
from the trace output.

3) Invoke the constraint solver to check whether the desired
behavior p is on current execution path. If this is the
case, record the assignment of I as a test of p. Otherwise,
negate one of the path constraints and use the constraint
solver to obtain the assignment I ′, which forces the
design to exercise a different execution path.

Generation

Design under test

Design
Instrumented

Instrumentation

Simulation

Constraints
Path

Constraint
Generation

Trace

Generate Testn+1 from Testn

Testn

Testn+1

Test

Fig. 1. The workflow of our approach

We first explain our test generation workflow using a simple
example. Next, we describe the system model of our target
design and several key steps in our workflow. Finally, we
discuss some important optimization techniques to reduce the
overall test generation time.

A. Illustrative Example

In this section, we use a simple example to show the basic
workflow of our approach. The design is a simple counter
module written in Verilog (Figure 2). The test input is the
initial value on line 17. Our goal is to let the module execute
the code on line 12 at clock cycle 2.

1 module c o u n t e r (c lk , r e s e t) ;
2 parameter WIDTH = 8 ;
3 input c lk , r e s e t ;
4 reg [WIDTH−1 : 0] o u t [8] ;
5 reg [2 : 0] i ;
6 wire c lk , r e s e t ;
7 always @(posedge c l k)
8 begin
9 o u t [i +1] <= o u t [i] + 1 ;

10 i <= i +1;
11 i f (o u t [i] == 40)
12 $ d i s p l a y (” A c t i v a t e d ”) ;
13 end
14 always @rese t
15 i f (r e s e t)
16 begin
17 o u t [0] = 0 ; / / i n i t i a l v a l u e
18 i = 0 ;
19 end
20 endmodule

Fig. 2. Counter.v

We first instrument the code and simulate the module for
3 cycles using a random initial value, e.g., out[0] = 0. The
output trace is shown in Figure 3. The trace is produced by
the instrumented code, which performs the same operations as
the original code. In addition, the instrumented code also prints
the performed operation during simulation as a trace file. We
use (out[0],0), (out[0],1), (out[0],2) and (out[0],3) to represent
each out[0] in different cycles. Notice that “IF (out[0],0) ==
40 not taken” statement indicates that the if statement on line

11 is evaluated to be false. Clearly, line 12 is not executed
when the initial value of out[0] is 0.

(o u t [0] , 0) = 0
(i , 0) = 0
(o u t [1] , 1) = (o u t [0] , 0) + 1
(i , 1) = (i , 0) + 1
IF (o u t [0] , 0) == 40 not t a k e n
(o u t [2] , 2) = (o u t [1] , 1) + 1
(i , 2) = (i , 1) + 1
IF (o u t [1] , 1) == 40 not t a k e n
(o u t [3] , 3) = (o u t [2] , 2) + 1
(i , 3) = (i , 2) + 1
IF (o u t [2] , 2) == 40 not t a k e n

Fig. 3. Sample Trace

Since our goal is to let line 12 to be executed at cycle 2,
the variable out[2] must have value 40 at cycle 2. Similarly,
(out[0],0), (out[1],1), (out[2],2) and (out[3],3) must satisfy
constraints in Figure 4. Therefore, we can use constraint
solvers like Yices [13] to solve these constraints, and produce
the satisfiable assignments to all variables. In this case, the
solver determines (out[0],0), (out[1],1), and (out[2],2) should
be 38, 39, and 40, respectively. In other words, the initial value
of (out[0],0) should be 38 in order to activate line 12 at cycle
2. This is the intended directed test.

(o u t [1] , 1) = (o u t [0] , 0) + 1
(o u t [0] , 0) != 40
(o u t [2] , 2) = (o u t [1] , 1) + 1
(o u t [1] , 1) != 40
(o u t [3] , 3) = (o u t [2] , 2) + 1
(o u t [2] , 2) = 40

Fig. 4. Sample Path Constraints

(out[2],2)==40

Taken

Taken

Taken

NotTaken

NotTaken

NotTaken

a

b

Execution Paths
Unreached

(out[0],0)==40

(out[1],1)==40

Fig. 5. Chronological Back Tracking

If we observe the path constraints (Figure 4) obtained from
trace during concrete simulation (Figure 3), it is easy to
see that we are essentially performing a chronological back
tracking in the space of execution paths. By negating the
topmost constraint1 in the trace file ((out[2],2) != 40), we force
the design to switch to a different execution path (transition
“a” in Figure 5). Sometimes, it is also possible that our desired
path constraints (Figure 4) are not satisfiable, i.e., the branch
(out[2],2)==40 in Figure 5 can not be taken. In this case, we
can negate the next topmost constraint ((out[1],1) != 40) and

1Due to use of stack in our implementation, the last path constraint is the
topmost constraint.

use the constraint solver to check whether the branch at node
(out[1],1)==40 can be taken. The process is repeated, until the
desired test is found, or all branches are activated.

It should be noticed that this example also contains dynamic
array reference in line 9 and line 11. In different cycles,
variable “out[i]” refers to different elements in the array “out”.
Therefore, it is difficult for techniques based on static analysis
like [4] to detect such dependency. However, since we replace
the array indices by their concrete values, such dynamic array
references can be easily processed within our framework.

Although this test generation example is performed on a
simple Verilog design, it illustrates the basic idea of our
proposed approach. In the rest of the section, we are going
to discuss how to automate every step during this process,
and generate the entire directed test suite automatically.

B. System Model

Our approach takes Verilog HDL program as input. Our
current implementation supports most common features of
Verilog, such as always@(... sensitive list ...), continuous as-
signment, conditional branches (if, case), and different variable
types (reg, wire). Although our implementation is based on
Verilog, the same working principle can be applied to VHDL
designs, since it also describes concurrent finite state systems.

Our current implementation supports common fault models
such as path activation fault and stuck-at fault. These fault
models describe possible faults that can occur during the
execution of the system. The path activation fault model can
be used to check whether there is any unreachable code in the
design. The stuck-at fault can be used to check whether the
given variable always has the same value. Based on the given
fault model, our test generation technique will generate the
test suite, which can activate all possible faults of the system
under the fault model.

Without loss of generality, we discuss our approach in the
context of single clock domain. We use tuple (name, clk)
to index each variable in every cycle. When multiple clock
domains are used, the clk should be the cycle number in
corresponding clock domain.

C. Instrumentation

The primary purpose of the instrumentation is to use the
simulator to produce a trace file during concrete simulation
of the RTL design. The resultant trace file is crucial to
our test generation framework for two reasons. First, the
trace file records all logic operations performed during the
concrete simulation, which enables us to perform symbolic
simulation and directed test generation. Besides, the trace file
also provides information about different concrete execution
paths. To ensure that each variable is unique, we need to flatten
all module instances before instrumentation.

Table I shows the instrumentation rules. For ease of presen-
tation, we use Verilog syntax for illustration. We use variable
cc to denote the number of clock cycles from the beginning
of the simulation. We use the “display” statement to print
the syntactic objects into the trace file during the simulation
of the instrumented code. For normal arithmetic operations,

TABLE I
VERILOG INSTRUMENTATION CODE

//Continuous assignment always
clkwidth $display((v, cc) = e);

assign v = e; assign v = e;
//Blocking assignment
v = e; $display((v, cc) = e);

v = e;
//Assignment within
//always@(pos/negedge ...) $display((v, cc+ 1) = e);
v <= e; v <= e;
//Assignment within
//other always blocks $display((v, cc) = e);
v <= e; v <= e;
//If
if(p) if(p)

s; begin $display(IF p taken); s; end
else else

s′; begin $display(IF p not taken); s′; end
//Case case(e)

x:
case(e) begin $display(CASE e = x); s; end
x: s; y:
y: s′; begin $display(CASE e = y); s′; end
default: s′′; default:

begin $display(CASE e! = x, y); s′′; end
//Array index
//b[e] is an array reference $display(...b[eval(e)]...);
// in a statement
...b[e]...; ...b[e]...;
//Beginning of a cycle $display(New cycle);

cc = cc+ 1;

the instrumented code just record the exact operation that
is performed by the design. For example, for continuous
assignment (first row in Table I), the original code is

a s s i g n x=y+z ;

The instrumented code is

always
c y c l e $ d i s p l a y ((x , cc)= (y , cc) + (z , cc)) ;
a s s i g n x=y+z ;

which have the same funtionality as the original code and print
(x, cc) = (y, cc) + (z, cc) in every cycle with corresponding
cycle number (cc). In fact, the value of cc are populated
automatically during concrete simulation.

For other assignment statements, the instrumented code also
marks whether the assignment is made within
always@(pos/negedge ...) block. In this way, the trace file
records whether the left hand side variable receives the value
of right hand side expression in the same clock cycle.

Our framework enables natural analysis of arrays. To reason
with dynamic array references, we replace the index expres-
sion of each array elements into its concrete value, and treat
each array element as an independent variable. During the
concrete simulation, the index expression e is evaluated. The
corresponding array element is refereed by concatenating the
concrete results eval(e) to the array name in the trace file.

D. Concrete Simulation
Once the design is flattened and instrumented, we interleave

concrete and symbolic simulation of the design. In each itera-
tion, we perform the concrete simulation of the instrumented

design using a simulator with desired number of cycles. Since
the instrumentation process does not affect the functionality of
the design, the behavior of the instrumented design is identical
to the original design. The instrumented design produces a
trace file, which records every operation performed by the
design in the correct order. This trace file will be used for the
symbolic simulation of the concrete execution path.

E. Path Constraint Generation

In this step, we convert the trace file into a path constraint
file. This step is required for two reasons. First, the continuous
assignments are simulated using always blocks. As a result, the
constraint corresponding to the continuous assignment may be
printed after the trace is produced by the real always block in
the same cycle. To simplify the solving process, we re-arrange
the trace file so that all constraints produced by continuous
assignments are placed before the constraints corresponding
to normal always blocks.

The semantics of a register variable requires that if a
variable is not updated, it should keep its value from the
previous cycle. However, this property is not enforced by
the constraints in the trace file. Thus, we have to examine
that all assignments made during a cycle, and add additional
constraints to ensure that all registers still maintain their values
if they are not updated. The structure of a valid path constraint
file is shown in Figure 6.

... ...
Cycle k Continuous Assignments
Cycle k Additional Constraints
Cycle k Always blocks
Cycle k + 1 Continuous Assignments
Cycle k + 1 Additional Constraints
Cycle k + 1 Always blocks
... ...

Fig. 6. Path constraint file structure

F. Test Generation

First, we discuss the test generation for path activation fault.
Since the goal is to explore unreached execution paths, we
can negate a path constraint and use the constraint solver to
create a new input assignment, which will guide the design
to a different path. Currently, we negate the top most path
constraint. As a result, we are essentially performing a depth
first search.

Algorithm 1 presents our test generation algorithm test gen
for path activation fault in detail. The algorithm takes the path
constraint file constr[0, ..., top] as input, where constr[0] and
constr[top] are the first and last constraints in the file, respec-
tively. Function test gen examines all constraints produced
by branch conditions in the reverse order. For every branch
constraint, we first mark it as covered, then try to find the next
uncovered branch constraint. For IF statement, we just need to
check the negated version of the branch constraint. For CASE
statement, we have to search for the next uncovered case. After
that, the new branch constraint c is added to all previous path
constraints constr[0, ..., i− 1] to form the constraints for the
next test. If it is satisfiable, the assignment I ′ (returned from

Algorithm 1: Test Generation Algorithm
test gen(constr[0, ..., top])

1: for i = top to 0 do
2: if constr[i] is a branch constraint then
3: c = find next(constr[i])
4: while c 6= null do
5: I ′ = satisfy(constr[0, ..., i− 1] ∧ c)
6: if I ′ 6= null then
7: return I ′

8: end if
9: c = find next(constr[i])

10: end while
11: end if
12: end for
13: return null

find next(branch)

1: Add branch into covered
2: if branch is an IF statement then
3: if ¬branch \∈ covered then
4: return ¬branch
5: end if
6: end if
7: if branch is a CASE statement then
8: find and return next uncovered case, if any.
9: end if

10: return null

the constraint solver) will be returned as the next test input.
Otherwise, we examine the next uncovered branch, until all
branches are checked. In this way, it is guaranteed that I ′

will force the design to exercise a different execution path
during the next round of simulation. Recall that the design
is simulated for a fixed number of cycles. Our algorithm
eventually terminates once all reachable branches within the
given number of cycles are explored.

Each branch is uniquely identified by its line number,
flattened instance name, and cycle number. To avoid the
path explosion problem, a covered branch is marked and not
explored again in the following test generation process.

For other fault models (including stuck-at, node, edge,
sequence and interaction fault model), the desired behavior
can be checked during the exploration of different execution
paths. Once we obtain a new execution path, the constraint
solver is employed to check whether the desired behavior is
possible on the path.

G. Constraint Solving Optimization

In our current implementation, we employed Yices [13] as
our constraint solver. Since the path constraint usually contains
a very large number of constraints, it is very important to
reduce time consumption in constraint solving. Currently, we

use three optimization techniques.
Cone-of-influence (COI) reduction: In many designs, a large

number of variables are used for data transfer and not involved
in the control path.In other words, they are not in the cone-of-
influence of any branch constraints in current execution path.
It is therefore safe to remove the constraints involving these
variables from the path constraint file without changing its
satisfiability. This optimization is similar to the CFG unrolling
and UD chain slicing technique proposed in [4]. It should be
noticed that since the variable indices in arrays are replaced
by their concrete values in the trace file, we are able to detect
the data dependency through dynamic array reference.

Early unsatisfiable detection: Some variables, like reset
signal, are used widely across the entire design as switch
variables. As a result, they appear in the path constraint for
several times in every clock cycle. It is enough to negate the
first occurrence of a recurring path constraint, because the
negation of its other occurrence must be unsatisfiable.

Unsatisfiable core detection: Some constraint solver is
capable to return the unsatisfiable core of a unsatisfiable
model. Clearly, if all constraints in the unsatisfiable core
remains in the path constraint file, the model must be still
unsatisfiable.This information can be utilized to reduce the
number of expensive constraint solver calls by skipping the
negation of some path constraints.

IV. EXPERIMENTS

We developed a prototype of our directed test generation
framework. Our test generation tool takes a Verilog design
as input and iteratively produces new tests. We have modified
Icarus Verilog [14] for instrumentation with approximately 500
lines of C++ code. We also implemented a test generation
engine (approximately 2000 lines of C++ code) to perform
concrete simulation on the HDL simulator, analyze the trace
file, generate path constraints and invoke the SMT solver. Our
framework is fully automated and there is no need for manual
intervention at any stage.

In this section, we present the experimental results of our
case studies. We compared our approach with HYBRO [4]
and the random test technique. The experiments are performed
using RTL models from ITC99 and a processor design.
We used Icarus Verilog as parser and simulator. Yices [13]
was employed for constraint solving. All experiments were
performed on 3GHz AMD Opteron Processor with 10GB
memory.

A. Designs without Dynamic Array References

In this section, we compare the performance of our approach
with HYBRO [4]. To make fair comparison, we choose the
same ITC99 RTL models as [4], with same number of unrolled
cycles and the same SMT solver. We only compare the branch
coverage in our experiments, because the assertions used for
functional coverage in [4] is not available.

Table II presents the experimental results. The first two
columns indicates the design name and the number of unrolled
cycles. The next four columns show the branch coverage rate
and the time consumption of HYBRO [4] and our approach,

TABLE II
COMPARISON WITH HYBRO [4]

Bench Unroll HYBRO[4] Our approach
mark Cycles Bran Cov Time Bran Cov Time
b01 10 94.44% 0.07s 96.30% 0.55s
b06 10 94.12% 0.10s 96.30% 0.46s
b10 30 96.77% 52.14s 96.67% 24.61s
b11 10 78.26% 0.28s 81.82% 0.67s
b11 50 91.30% 326.85s 94.44% 270.28s
b14 15 83.50% 301.69s 98.95% 257.59s

respectively. The branch coverage rate is calculated using the
same convention in [4], where unreachable default branches
in “case” statement are also included. The results suggest that
our approach has comparable performance with HYBRO [4]
on these benchmarks. Comparable performance is expected
because the cone-of-influence reduction employed in our ap-
proach is essentially equivalent to the CFG unrolling and UD
chain slicing optimization in HYBRO [4]. Note that there are 8
ITC99 benchmarks that have arrays. Since [4] is not applicable
on dynamic array references, we did not compare with them.

B. Designs with Dynamic Array References

This experiment was performed on Zet processor, which is
an open source implementation of the 16-bits x86 instruction
set architecture. When synthesized using FPGA, Zet processor
can boot MS-DOS 6.22 and run Microsoft Windows 3.0. The
processor is implemented using 5K+ lines of Verilog code, 289
continues assignments, 53 always blocks, 324 register vari-
ables and 666 wire variables. Both main memory and register
file are modeled as arrays and addressed with variables.

Our goal in this experiment is to achieve high branch cov-
erage in source code level. This is important because there are
a large number of conditional branches in the opcode decode
stage. Besides, since x86 instruction set has variable length
binary encoding, it is not easy to invoke all branches in the
design. The primary input of the design is the lowest 4 bytes
of the memory space (0x00000-0x00003). Before executing
the test, the processor only executes a jump instruction (to
0x00000) after reset. The design is simulated for 10 cycles.
We compared with random tests since HYBRO [2] cannot
handle Zet processor that uses dynamic array references.

TABLE III
COMPARISON WITH RANDOM TESTING

Method #Tests Explored Branch Time
Branches Coverage

Random 1000 197 89.95% 366.45s
Random 5000 204 93.15% 1981.73s
Random 10000 208 94.98% 3785.49s
Random 20000 212 96.80% 7386.92s
Random 40000 213 97.26% 14585.83s
Our approach 140 218 99.54% 1320.58s

Table III shows the experimental results. The first five rows
depict the results by using 1000, 5000, 10000, 20000, and
400000 random tests, respectively. The performance of our
approach is shown in the last row. The last column presents
the total time consumptions for test generation and RTL

simulation. It can be seen that due to the random nature,
it is very time consuming to reach 100% branch coverage
even using thousands of random tests. On the other hand, our
directed test generation scheme effectively explored execution
paths by avoiding covered branches. With less than 200 tests,
our framework achieves higher coverage than 40000 random
tests.

V. CONCLUSION

Directed tests generated using model checking are promis-
ing for functional verification, because they require signif-
icantly less number of tests to achieve the same coverage
goal compared to random tests. Unfortunately, model checkers
usually do not accept real hardware designs or support features
such as arrays. Moreover, the real designs usually exceed the
capacity of model checkers due to the complexity of static
analysis. In this paper, we presented a novel test generation
approach that addresses both of these problems using inter-
leaved concrete and symbolic execution. The design is first
simulated to generate an execution trace. The constraint solver
is then applied to find the test inputs which can force the
real design to exercise the desired behavior. Compared with
existing approaches based on combined concrete and symbolic
execution, our approach is capable of analyzing real processor
designs with dynamic array references. The experimental
results demonstrate that our proposed technique is scalable,
and enables directed test generation for real designs.

REFERENCES

[1] M. Chen, X. Qin, H. Koo and P. Mishra, System-Level Validation: High-
Level Modeling and Directed Test Generation Techniques, Springer,
August 2012.

[2] X. Qin and P. Mishra, “Efficient directed test generation for validation
of multicore architectures,” in ISQED, 2011, pp. 1–8

[3] X. Qin, M. Chen and P. Mishra,“Synchronized generation of directed
tests using satisfiability solving,” in VLSI Design, 2010, pp. 351–356

[4] L. Liu and S. Vasudevan, “Efficient validation input generation in RTL
by hybridized source code analysis,” in DATE, 2011, pp. 1–6.

[5] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov,
and A. Ziv, “Genesys-pro: innovations in test program generation for
functional processor verification,” IEEE Design Test of Computers,
vol. 21, no. 2, pp. 84 – 93, 2004.

[6] I. Wagner and V. Bertacco, “Mcjammer: adaptive verification for multi-
core designs,” in Proceedings of DATE, 2008, pp. 670–675.

[7] A. Gargantini and C. Heitmeyer, “Using model checking to generate
tests from requirements specifications,” in Proceedings of the European
Software Engineering Conference, vol. 24, 1999, pp. 146–162.

[8] X. Qin and P. Mishra, Directed Test Generation for Validation of
Multicore Architectures, ACM Transactions on Design Automation of
Electronic Systems, vol. 17, no. 3, article 24, 2012.

[9] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without BDDs,” in Proceedings of International Conference on
Tools and Algorithms for Construction and Analysis of Systems, 1999,
pp. 193–207.

[10] P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed automated
random testing,” in Proceedings of PLDI, 2005, pp. 213–223.

[11] K. Sen and G. Agha, “Cute and jcute: Concolic unit testing and explicit
path model-checking tools,” in Proceedings of ICCAD, 2006, pp. 419–
423.

[12] D. Bernstein, D. Cohen, and D. Maydan, “Dynamic memory disam-
biguation for array references,” in Proceedings of International Sympo-
sium on Microarchitecture, 1994, pp. 105 – 111.

[13] B. Dutertre and L. M. de Moura, “A fast linear-arithmetic solver for
DPLL(T),” in Proceedings of CAV, 2006, pp. 81–94.

[14] S. Williams, Icarus Verilog, Icarus Verilog, 2012. [Online]. Available:
http://iverilog.icarus.com/

