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Abstract—The widespread use of multicore architectures with
decreasing feature size is causing severe increase of on-chip
power dissipation in modern embedded systems. This introduces
both thermal and energy management problems that need to
be addressed during the system level design. In this paper, we
explore the DVS scheduling problem on multicore systems under
both temperature and energy constraints. We present an exact
algorithm as well as a polynomial time approximation scheme,
since this problem is NP-hard. When the original problem
is schedulable, our approximation algorithm is guaranteed to
generate a solution, which will not violate the temperature
constraint, and consume no more time or energy than a specified
approximation bound, e.g., within 1%, of the optimal time
consumption and energy constraints. We evaluate our approach
using both real and synthetic benchmarks mapped on DVS capa-
ble multicore processors. The experimental results demonstrate
that our technique is able to produce schedules close to the
optimal solution with reasonable execution time.

I. INTRODUCTION

Thermal management is becoming more and more important
along with the performance improvement of modern multicore
processors. Due to increasing integration of transistors into the
same chip, the power densities are increasing dramatically.
While the heat flux in desktop microprocessor is rising up to
250W/cm2, the peak power densities in embedded processors
for handheld devices are also getting close to 100W/cm2.
Dynamic voltage scaling (DVS) is a promising technique to
address both the thermal and energy management problem
for embedded systems. By exploiting the fact that the same
task has different time consumption and power profile under
different clock rate/voltage levels, DVS can reduce both peak
temperature and total energy consumption effectively by run-
ning tasks at suitable voltage levels.

In this paper, we study the DVS scheduling problem on mul-
ticore processors under energy and temperature constraints.
Since the task mapping and sequencing are already discussed
in many existing works, in this paper, we focus on how
to assign clock rate/voltage levels to tasks that are already
mapped and sequenced on different cores, so that the total
time consumption is minimized under both temperature and
energy constraints. Our goal is to develop a Temperature and
Energy Constrained Scheduling (TECS) for multicore systems.
To avoid the state explosion problem, we propose an approxi-
mation scheme with polynomial time/space complexity based
on the detailed analysis of the problem. Section II describes
existing research efforts that focus on energy/temperature
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optimization in multicore systems. To the best of our knowl-
edge, there are no prior works that consider both energy and
temperature constraints in multicore systems and are guaran-
teed to produce schedules close to the optimal solution with
reasonable execution time. The primary contribution of this
paper is the development of an approximation scheme, which
generates schedules in polynomial time when the tasks are
schedulable. The resultant schedule is guaranteed to consume
no more time or energy than a specified approximation bound.
We have evaluated the effectiveness of our approach on both
real and synthetic benchmarks.

The rest of the paper is organized as follows. Section II in-
troduces relevant existing research works. Section III describes
our system models. Section IV defines the TECS problem.
Section V and Section VI discuss the optimal algorithm and
our approximation scheme of the TECS problem in detail.
Experimental results are presented in Section VII. Finally,
Section VIII concludes the paper.

II. RELATED WORK

Energy-aware scheduling with DVS has been widely studied
to reduce the total energy consumption for real-time systems.
For example, Aydin et al. [1] discussed the power-aware
scheduling problems of periodic task sets. For multicore pro-
cessors, Yang et al. [11] devised an approximation algorithm
for energy optimized task mapping. Kolpe et al. [4] discussed
efficient power management using clustered DVFS. However,
the peak temperature controlling problem is not addressed by
these techniques.

In recent years, the temperature-aware scheduling in real-
time systems is becoming a quite attractive research topic.
Zhang et al. [13] proved that the performance optimization
problem under temperature constraint is NP-hard. They also
introduced an approximation algorithm for the problem. In
[12], the impact of leakage power are considered for the
temperature constrained DVS problem. Since these approaches
focus only on temperature, the energy constraint is not con-
sidered.

In [8], [9], the DVS scheduling problem under both energy
and temperature constraints are studied in the framework of
model checking, which may encounter the space explosion
problem. Chantem et al. [2] proposed a very flexible frame-
work to model the DVS scheduling problem in multicore
processors using integer programming. They also presented
several heuristics to reduce the constraint solving time. Nev-
ertheless, the optimality of the generated solution is not
guaranteed. In this paper, we propose a polynomial time



approximation scheme, which generates schedules that will not
violate the temperature constraint and consume no more time
or energy than a specified approximation bound, e.g., within
1%, of the optimal time consumption and energy constraints.

III. SYSTEM MODEL

A. Processor Thermal Model

When the execution time of each task is long enough for
the processor to reach the steady state temperature, we can use
the matrix model [10] to calculate the steady state temperature
on each core as

TTT (t) = Tamb ∗ III(t)+CCC ∗PPP(t) (1)

Here, Tamb is the ambient temperature, CCC is a n× n constant
coefficient matrix, and PPP(t) is the power dissipation by each
core under the clock rate assignment at time t.

B. Energy Model

We adopt the energy model proposed in [5]. Processor’s
dynamic power can be represented as Pdyn =α ·C ·V 2

dd · f . Here
Vdd is the supply voltage and f is the operation frequency. C
is the total capacitance and α is the actual switching activity
which varies for different applications. Static power is given
by Psta = Vdd · Isubth + |Vbs| · I j where Vbs, Isubth and I j denote
the body bias voltage, subthreshold current and reverse bias
junction current, respectively. Hence, the overall power P =
Pdyn +Psta.

C. System Model

The system we consider can be modeled as:
• A multicore processor with M cores. Each core supports

L discrete clock rate/voltage levels { f1/v1, f2/v2, ... ,
fL/vL}, where fmin is the lowest clock rate, and fmax is
the highest.

• A set of n tasks, which has already been mapped and
sequenced on different cores. We use τi j to denote the
jth task on core i. Let ci j be the worst-case workload
of τi j, and ki be the total number of tasks mapped on
core i. We also denote the total workload on core i by
wi = ∑

ki
j=1 ci j.

For ease of discussion, the terms task and job refer to the
same entity in the rest of this paper.

IV. PROBLEM FORMULATION

We assume that all tasks are already mapped and sequenced.
A DVS schedule on a multicore system with task set {τi j|1≤
i ≤ M,1 ≤ j ≤ ki} can be represented as a set of tuples
{(ri j, [ti j, t ′i j])|1 ≤ i ≤ M,1 ≤ j ≤ ki}}, where (ri j, [ti j, t ′i j])
means we execute τi j using clock rate ri j during time interval
[ti j, t ′i j]. It is easy to see that clock rate switches always happen
when some task finishes. When all tasks mapped to a core are
finished, a core is turned off.

Given a set of n independent tasks {τi j|1≤ i≤M,1≤ j ≤
ki}, if the safe temperature threshold is CT and the energy
budget is CE , TECS scheduling problem can be defined as
follows.

Definition 1: TECS is formally defined as finding a multi-
core DVS schedule, Ropt , which minimize the total execution
time, i.e., min max

1≤i≤M
t ′iki

subject to

ci j/ri j ≤ t ′i j− ti j

∑
0≤i≤n

P(ri j)∗ (t ′i j− ti j)≤CE

T (t)≤CT ,∀t ≥ 0
t ′i j ≤ ti j+1,∀ j < ki

where P(ri j) is power dissipation of a single core when task τi j
is executing using clock rate ri j. It can be proved that TECS
problem is NP-hard. The proof is omitted due to page limit.
It is available in the technical report [14].

Since the execution time of a typical task is long enough,
the system will reach a steady state temperature. As a result,
the peak steady temperature of cores is expected to occur
only at clock rate switching point. Therefore, we do not
need to calculate the transient temperature between clock rate
switching points.

V. OPTIMAL ALGORITHM FOR TECS

The optimal solution of the TECS problem can be calculated
using dynamic programming. The basic idea is to generate
all possible execution paths of the system from the initial
state. Notice that we consider inter-task DVS, i.e., the voltage
switching is only allowed before the beginning of a new task.
Any execution path of the system is uniquely determined by
the system states at each switching point. Furthermore, since
the number of cycles between two successive possible switch-
ing points can be estimated using remaining task workloads
and clock rates on different cores, the state transition between
different switching points can be performed as follows. Given
a system state, we first identify the next task that is ready to
execute. Next, we compute the system states at next switching
point by executing this task with all possible clock rates.
Finally, we mark the estimated state as a valid new state, if it
does not violate the temperature or energy constraints.

Formally, given a task sequence on core i, at any time
instant t, we define the progress of this task sequence as
pi = w/wi, where wi = ∑ j ci j is the total workload mapped
on core i and w (w ≤ wi) is the completed workload on
this core. The system status can be represented as a tuple
sss = (<p1,r1>, ...,<pM,rM>,E, t), where pi and ri are the
current progress and clock rate of core i, respectively. E and t
are the total energy and time consumption. The temperature of
each core is not explicitly included in the system state tuple,
because they can be calculated using the power of each core
Pm and ambient temperature Tamb using Equation (1).

When some cores in the system are about to start execution
of the next job in their task sequences, we encounter a potential
clock rate switching point, or switching point for short. Since
multiple cores can change clock rate at the same time, e.g., at
t = 0, all possible clock rate assignments for M cores can be
represented by a set of M−dimenional vectors. Formally, we
define the set of possible clock Rate Assignment RA(sss) for
system state sss as the direct product

RA(sss) =
M⊗

i=1


{0} if sss.pi = 1
{ f1, ..., fL} else if Ri(sss.pi) = 0
{sss.ri} otherwise

(2)

where



Ri(pi) =



0 if pi = 0

∑
1
j=1 ci j/wi− pi else if ∑

1
j=1 ci j/wi ≥ pi

∑
2
j=1 ci j/wi− pi else if ∑

2
j=1 ci j/wi ≥ pi

...

∑
ki
j=1 ci j/wi− pi else if ∑

ki
j=1 ci j/wi ≥ pi

(3)

Ri(pi) is the remaining progress until the beginning of next
task on core i. RA(sss) returns a set of possible clock rate
choices, which allows the core to choose from L voltage levels
if it is about to start the next task, i.e., Ri(pi) = 0. If all tasks
on the same core are finished, i.e., pi = 1, we shut down the
core, by assigning clock rate 0. A core does not consume any
more energy at clock rate 0.

In order to calculate the system state at next switching point,
we define the state transition function sss′′′ = FFF(sss,rrr) as

sss′′′.pi = sss.pi + ri ∗δ/wi sss′′′.r′i = ri, 1≤ i≤M

sss′′′.E = sss.E +
M

∑
i=1

P(ri)∗δ sss′′′.t = sss.t +δ

where δ = min
1≤i≤M,pi<1

(Ri(sss.pi +σ))wi/ri

σ is a very small positive number close to 0.

(4)

The state transition function FFF takes the system state at a
switching point sss, and clock rate assignment vector rrr as inputs
and produces the system state at the next switching point.

Algorithm 1 Exact solution to TECS
DPRA

1: S = {sss111}= {(<0,0>, ...,<0,0>,0,0)}
2: while not all states in S are explored do
3: Pick an unexplored state sss from S such that sss contains

at least one incomplete task sequence with the least
progress among all states in S

4: for each rrr ∈ RA(sss) do
5: sss′′′ = FFF(((sss,,,rrr)))
6: if rrr violates temperature constraint CT or sss′′′.E >CE

then
7: continue
8: if ∃sss000 ∈ S s.t. sss000 and sss′′′ agree on all values but time

then
9: if sss000.t ≤ sss′′′.t then

10: continue
11: else
12: S = S −{sss000} /*Remove sss000*/
13: S = S

⋃
{sss′′′} /*Add sss′′′*/

14: Find the state sssopt in S with the least time consumption,
such that all tasks are finished. Construct the correspond-
ing schedlue Ropt by backtracking from sssopt to sss111.

Algorithm 1 shows the Dynamic Programming (DP) algo-
rithm for clock Rate Assignment (DPRA) to obtain the optimal
solution to the TECS problem. Initially, the set of system states
S only contains a single state sss111 = (<0,0>, ...,<0,0>,0,0).
During the DP process, we first pick sss ∈ S , which contains
at least one incomplete task sequence with the least progress
among all states in S . Suppose that there are m task sequences
that are about to start new tasks. We try all possible combina-
tions of clock rate assignments on these m cores, while keeping
the clock rate unchanged on the rest M−m cores. This will

yield a set of assignments RA(sss), which contains Lm elements.
Next, we calculate a system state sss′′′ based on sss and clock rate
assignment rrr ∈ RA(s)}. If sss′′′ does not violate any constraints,
we add it to S . The above process repeats until all states in
S containing incomplete tasks are explored. Now, we need to
find the state which has the least time consumption in S .

( f1, f1)
(<0.5, f1><0.5, f1>,2,1) (<1, f1><1, f1>,4,2)

(<0,0><0,0¿,0,0)

(<0.5, f1><1, f2>,5,1) . . .

( f1, f2)
( f2, f1)

(<1, f2><0.75, f1>,5.5,1.5) . . .

(<0.5, f2><0.25, f1>,2.5,0.5) . . .

( f1, f1)

( f2, f1)

Fig. 1. State exploration in Algorithm 1

EXAMPLE 1: This example illustrates the flow of Al-
gorithm 1 using a processor with M = 2 cores. Each of
them have L=2 different clock rate levels, f1 = 100MHz and
f2 = 200MHz. Their power consumption are P( f1) = 1W and
P( f2)= 4W . There are three tasks τ1,1, τ1,2 and τ2,1 with work-
loads of 106, 106, and 2∗106 cycles, respectively. τ1,1 and τ1,2
are mapped to core 1, while τ2,1 is mapped to core 2. There-
fore, we have c1,1 = c1,2 = 106, c2,1 = 2∗106, w1 = c1,1+c1,2 =
2 ∗ 106 and w2 = c2,1 = 2 ∗ 106. We choose the temperature
constraint such that only one core can run at 200MHz. We also
choose CE = 10J. When we apply Algorithm 1 to such a TECS
instance, S contains only one element sss111=(<0,0>,<0,0>,0,0)
at the beginning. Thus, sss111 is picked by line 3. Since we have
R1(sss111.p1) = R1(0) = 0 and R2(sss111.p2) = 0, the clock rates for
both cores can be changed, i.e., RA(sss111) = { f1, f2}⊗{ f1, f2}=
{( f1, f1),( f1, f2),( f2, f1),( f2, f2)} contains LM = 4 elements,
which represents four possible clock rate assignments. Next,
we compute new states sss′′′ based on these assignments except
( f2, f2), which violate the temperature constraint. If we pick
rrr = ( f1, f1), the new state sss222 = FFF(sss111,rrr) can be computed as
follows. First, we have R1(sss111.p1 + σ) = 0.5, which means
core 1 is 0.5w1 cycles far from the beginning of the next
task τ1,2. Similarly, R2(sss111.p2 +σ) = 1. Therefore, if we use
clock rate rrr = ( f1, f1), which makes both cores to run at
f1 = 100MHz, δ = min(0.5w1/ f1,w2/ f1) = 1sec. In other
words, the next switching point will happen after 1sec. At
that time, the progress values of core 1 and core 2 will be
sss222.p1 = 0+ f1 ∗ 1/w1 = 0.5 and sss222.p2 = 0+ f1 ∗ 1/w2 = 0.5,
respectively. We also compute the energy consumption sss222.E =
0+P( f1)∗1+P( f1)∗1= 2J and time consumption sss222.t = 1sec.
Therefore, the new state is sss222 =(<0.5, f1>,<0.5, f1>,2,1). Since
sss222 and rrr = ( f1, f1) do not violate any constraint, we add sss222
into S . We repeat this procedure until we find a state in
S , within which all tasks are finished with minimum total
time consumption. Through backtracing, we can find the path
that generates it: (<0,0>,<0,0>,0,0)→ (<0.5, f1>,<1, f2>,5,1)→
(<1, f2>,<1, f1>,7,1.5). The corresponding scheduling Ropt is
(< f1,0,1>,< f2,1,1.5>,< f2,0,1>), which means τ1,1, τ1,2 and
τ2,1 should be executed using f1, f2, and f2, respectively. �

The time and space complexity of the exact algorithm is
O(Ln), becuase each of the n tasks can be executed at L
different voltage levels.

VI. APPROXIMATION ALGORITHM FOR TECS
The basic idea of our approximation algorithm is built on

discretization of the state space. The space size is reduced



by rounding up all values in the state vector, and by merging
states that agree on all values after rounding. Unfortunately,
in TECS problem, this method cannot be applied directly to
progress values. Recall that we define the progress of a task
sequence on each core to represent how many instruction or
workload has already been completed. Rounding up progress
values introduces two problems. First, the switching points,
which are defined based on progress values may be skipped,
because they usually do not coincide with the discretized
progress values. Second, the rounding operation essentially
means we skip some instructions without executing them.
Therefore, if we apply the obtained scheduling in reality, the
actual progress will not match with the ones we calculated in
dynamic programming. As a result, the temperature or energy
constraints may be violated.

In this paper, we solve both problems as follows. First,
we view a state sss ∈ S not as a real system state, but a
pessimistic approximation of a real system state. Second, we
insert a suitable “idle time” at each switching point, so that
the difference between the real execution and estimated value
in dynamic programming can be bounded. In this way, we
can obtain an approximated estimation of the actual execution
under any clock rate selections. Before we introduce our
approximation scheme, we first introduce the modified version
of the state transition function and clock rate assignment
function, which are used to build the approximation algorithm.
The modified state transition function sss′′′ = FFF∆t (sss,rrr) is defined
as sss′′′.p′i = sss.pi if ri = fI ; sss.pi + ri ∗δ/wi,otherwise

sss′′′.r′i = sss.ri if ri = fI ; ri,otherwise

sss′′′.E = sss.E +
M

∑
i=1

P(ri)∗ (δ+2∆t)

sss′′′.t = sss.t +δ+2∆t

where δ = min
1≤i≤M,pi<1

Ri(sss.pi +σ)∗wi/ri

σ is a very small positive number close to 0.

(5)

An extra increment (2∆t ) is added, which represents the “idle
time”. RAε(sss) is the modified version of RA(sss), which is
defined as

RAε(sss) =
M⊗

i=1


{0} if sss.pi = 1
{ f1, ..., fL} else if Ri(sss.pi)≤ ∆P

{sss.ri} otherwise
(6)

Algorithm 2 shows the details of our approximation algo-
rithm DPRAε, where hhh in line 9, is a partial rounding up
function sss′′′ = hhh(sss). It is defined as

sss′′′.pi = dsss.pi/∆pe∗∆p sss′′′.ri = sss.ri, i = 1, ...,M
sss′′′.E ′ = dsss.E/∆Ee∗∆E sss′′′.t ′ = sss.t

(7)

We first compute the “step size” ∆E , ∆P and ∆t for each
constraint based on the value of ε. After that, DPRAε parallels
the exact algorithm DPRA except that the progress and energy
values in each new system state sss is rounded up to the
next available discretized value. This is achieved by applying
function hhh, which forces the progress and energy value of
the resultant state to be an integer multiple of ∆P or ∆E . For
example, suppose we have ∆P = 0.1 and ∆E = 0.2, a new state
FFF∆t (sss,rrr))=(<0.5, f2>, <0.25, f1>,1,2.5,0.5) will be recorded as

Algorithm 2 Approximation algorithm of TECS
DPRAε

1: ∆E = ε∗CE/4n
2: µ = max1≤i≤M wi/ fmin
3: ∆P =min(∆E/µPmax,ε∗ fmin/( fmax ∗2n)). Pmax is the max-

imum power dissipation of the entire processor.
4: ∆t = ∆P ∗µ
5: S = {sss111}= {(<0,0>, ...,<0,0>,0,0)}
6: while not all states in S are explored do
7: Pick an unexplored state sss from S such that sss contains

at least one incomplete task sequence with the least
progress among all states in S

8: for each rrr ∈ RA(sss) do
9: sss′′′ = hhh(FFF∆t (sss,rrr))

10: if rrr violates temperature constraint CT or
sss′′′.E > (1+ ε)CE then

11: continue
12: if ∃sss000 ∈ S s.t. sss′′′ and sss000 agree on all values but time

then
13: if sss000.t ≤ sss′′′.t then
14: continue
15: else
16: S = S −{sss000}
17: S = S

⋃
{sss}

18: Find the state sssapx in S with the least time consumption
OPTapx, such that all tasks are finished. Construct the
corresponding schedule Rapx by backtracking from sssapx
to sss111. If a task is skipped due to rounding, it is scheduled
as a part of the previous task on the same core.

hhh(FFF∆t (sss0,rrr)))
=(<d0.5/0.1e*0.1, f2>,<d0.25/0.1e*0.1, f1>,d2.5/0.2e*0.2,0.5)
=(<0.5, f2>,<0.3, f1>,2.6,0.5)

The correctness of our proposed algorithm is guaranteed by
the following theorem.

Theorem 6.1: Given a T ECS instance I, if I is schedulable
with optimal time consumption OPT , DPRAε(I) will return
a schedule in polynomial time, which does not violate the
temperature constraint, while its energy and time consumption
are at most (1+ ε)CE and (1+ ε)OPT , respectively.

To prove the theorem, we need to prove following three
lemmas. First, if DPRAε finds a schedule, it satisfies all the
constraints in any real executions with time consumption at
most OPTapx (Lemma 6.1). Next, if the optimal schedule
exists, DPRAε always returns a schedule, which is close to
the optimal one (Lemma 6.2). Finally, DPRAε is a polynomial
time algorithm (Lemma 6.3).

Lemma 6.1: Given a T ECS instance I, if DPRAε(I) finds
a schedule Rapx with estimated time consumption OPTapx, we
show that Rapx is a feasible schedule of I, whose actual time
consumption does not exceed OPTapx.

Proof: Since Rapx is found by DPRAε(I), S must be a
state sssapx and a path with K states sss111→ ...→ sssK−1→ sssKKK(sssapx).

When Rapx is applied in reality, we apply the clock rate
assignment ssslll .ri at time ssslll .t for 1≤ l ≤ K. When the current
job on a core is finished, we keep the core running idle job
until the switching point, where the next task is scheduled to



start. To prove this lemma, we need to show that 1) all jobs
have enough time to finish, and 2) all constraints are met.

The first statement can be proved by showing that each job
has enough time to run. Suppose a task τ on core i starts
from the lth switching point, i.e., state. If τ finishes at the
mth switching point, i.e., ssslll , the next task on the same core
starts from the mth switching point, i.e., sssmmm, the time allocated
for this task is sssm.t − sssl .t. Since we perform m− l rounds
of computation to obtain sssm from sssl , there can be at most
m− l rounding up during the calculation from ssslll .pi to sssmmm.pi.
Therefore,
sssm.t ≥ sssl .t +(sssm.pi− sssl .pi− (m− l)∆p)∗wi/sssl .ri +2(m− l)∆t

Notice that ∆t = ∆P ∗µ≥ ∆P ∗wi/ri, m > l

sssm.t− sssl .t ≥ (sssm.pi− sssl .pi +(m− l)∆p)∗wi/ri

≥ (sssm.pi− sssl .pi +∆p)∗wi/ri

However, the workload of τ can be at most (sssm.pi− sssl .pi +
∆p)∗wi. For example, suppose the exact progress of task τ is
0.501 to 0.699 and ∆P = 0.1. After rounding, we have sssm.pi =
0.6 and sssl .pi = 0.7. Clearly, the total workload of τ is not more
than (sssm.pi− sssl .pi +∆p)∗wi = 0.2wi. Therefore, all tasks will
have enough time for execution when Rapx is applied.

Now we prove that all constraints are met by considering
the following relations among different succussive states on
path sss1→ sss2→ ...→ sssK−1→ sssK .

sss2 = hhh(FFF∆t (sss1,rrr1))

...

sssK = hhh(FFF∆t (sssK−1,rrrK−1))
(8)

Based on the logic of DPRAε(I), it is easy to see that (1+
ε)CE ≥ sssl .E holds for 1≤ l ≤ K. Let the state transition path
produced by Rapx during a real execution be sss1→ sss′2→ ...→
sss′K−1→ sss′K . Clearly, we have

sss′2 = FFF∆t (sss
′
1,rrr1)

...

sss′K = FFF∆t (sss
′
K−1,rrrK−1)

(9)

Since all components of vector functions hhh are increasing
functions, i.e., xxx ≥ yyy ⇒ hhh(xxx) ≥ hhh(yyy)1, we can verify that
sss2 ≥ sss′2,...,sssK−1 ≥ sss′K−1 and sssapx ≥ sss′K . Therefore,

(1+ ε)CE ≥ sss′k.E

OPTapx = sssapx.t = sssK .t ≥ sss′K .t
(10)

Notice that temperature and energy values change monotoni-
cally between sss′k and sss′k+1 during real execution. Equation (10)
ensures that all constraints are met.

Lemma 6.2: Given a T ECS instance I, if I is schedulable
with optimal time consumption OPT , DPRAε(I) returns a
schedule Rapx with estimated time consumption OPTapx ≤
(1+ ε)OPT .

This lemma ensures if the task set is schedulable, DPRAε(I)
always finds a schedule. Due to the page limit, the proof of
this lemma is available in the technical report [14].

Lemma 6.3: DPRAε is a polynomial time algorithm with
the number of tasks, n.

1xxx ≥ yyy means each component of vector xxx is larger or equal to its
corresponding component in vector yyy

Proof: To verify DPRAε is a polynomial time algorithm,
we first show that the number of states in S is O((n/ε)M+1).
It is easy to see that the energy value is discretized into 4n/ε

different values. For progress values, there are 1/∆P different
values allowed for each core. If ∆E/µPmax < ε∗ fmin/(2n fmax),

1
∆P

= µ
Pmax

∆E
= max

1≤i≤M
wi

4nPmax

εCE fmin

Let the most energy efficient clock rate and the corresponding
power of a single core be fe and P( fe). Clearly, we can safely
assume CE ≥ P( fe)∗max1≤i≤M wi/ fe. Otherwise the workload
max1≤i≤M wi cannot be finished within CE and there is no need
to run DPRAε. Therefore,

1
∆P
≤ 4n fePmax

ε fminP( fe)
≤ 4nM feP( fmax)

ε fminP( fe)

If ∆E/µPmax ≥ ε∗ fmin/(2n fmax),

1
∆P

=
2n fmax

fminε

In either case, 1/∆P is no more than n/ε times a constant.
Both P( fmax)/P( fe) and fmax/ fmin are normally less than 10.
Therefore, there are at most O((n/ε)M+1) states in S . At the
same time, the number of different voltage assignments we
can choose, i.e., the size of RAε(sss), is also no more than (L+
1)M , which is a constant. Therefore, the overall complexity of
DPRAε is O((n/ε)M+1).

VII. EXPERIMENTS

A. Experimental Setup
The experiments were conducted on 2 core, 4 core, and

6 core processors. Each core is abstracted as a 8mm× 8mm
square. The cores are arranged in 2×1, 2×2 and 3×2 meshes,
respectively. We model each core as a DVS-capable processing
unit with three voltage/frequency levels (1.5V-206MHz, 1.1V-
133MHz, and 0.8V-103MHz) like StrongARM [6]. We choose
some tasks from the Mibench and obtain the workload (worst
case cycle numbers) from M5 simulator. We also use synthetic
task sets which are randomly generated with each of them
having execution time in the range of 500 - 5000 milliseconds.
We adopt the approach in [10] to compute the steady state
temperature. The ambient temperature and initial temperature
of the processor are set to 32◦C and 40◦C, respectively. The
exact and approximation algorithms are implemented in C++.
All experiments were performed on 3GHz workstation with
20GB RAM.

B. Results on real benchmarks
We choose 6 jobs from MiBench [3], including algorithms

from communication (FFT, CRC32), security (sha), sound
compression (untoast), and automotive (basicmath, qsort). The
workload of these jobs were in range of 5∗107−3∗108 cycles.
We use the exact algorithm DPRA to schedule these tasks on
2 core processor. CRC32 (τ1,1), qsort (τ1,2), and untoast (τ1,3)
are mapped to core 1. sha (τ2,1), FFT (τ2,2), and basicmath
(τ2,3) are mapped to core 2. We depict the temperature curves
of each core in Figure 2, when different temperature and
energy constraints are applied.

In Figure 2a, the temperature constraint is not violated when
both cores run at 1.5V. DPRA schedules jobs on different
cores to execute using the maximum voltage level at the same
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Fig. 2. Temperature and energy constrained scheduling

time, i.e., task τ1,1 and τ2,2, to minimize the time consumption.
When the energy budget reduces, tasks with large workload
is executed using lower voltage level to save energy as shown
in Figure 2b. As we can see, τ2,2 is executed using 1.1V
instead of 1.5V, when the energy budget reduces to 22000mJ.
Similarly, when the temperature constraint becomes tighter,
less number of tasks are executed using the maximum voltage
level to decrease the peak temperature. As shown in Figure 2c,
two cores no longer run using 1.5V at the same time. Although
the energy budget is still sufficient, the time consumption
increases slightly compared to Figure 2a.
C. Results on synthetic benchmarks

We evaluated the performance of our approximation scheme
using task sets with different sizes. Figure 3a and 3b show
the actual ratio between the approximation results (APX) and
the optimal solution (OPT) for time and energy consumption,
respectively. It can be seen that the actual ratio is usually
smaller than the expected ratio 1+ ε. For example, for ε =
0.02, it is expected to produce results within 2% of the optimal
values. The actual gap between the optimal solution and the
approximation scheduling is significantly less than 2%.
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Fig. 3. Accuracy of DPRAε.

We also evaluated the running time of our approximation
scheme with different ε and number of tasks. The results on
2 core and 4 core systems are shown in Figure 4. Curve
DPRA represents the execution time of the exact algorithm
DPRA, which grows exponentially with the number of tasks.
As expected, DPRAε requires more time for smaller ε or larger
job set size but always significantly smaller than the exact
algorithm DPRA.
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VIII. CONCLUSION

In this paper, we studied task scheduling problem on a
multicore processor with DVS capability under both tem-
perature and energy constraints. We presented a polynomial
time approximation scheme. When the original problem is
schedulable, our approximation algorithm is guaranteed to
generate a solution, which will not violate the temperature
constraint, and consume no more time or energy than a
specified approximation bound, e.g., within 1%, of the optimal
time consumption and energy constraints. We evaluated our
approach using both real and synthetic benchmarks mapped
on real multicore processors. The experimental results demon-
strated that our technique is able to produce schedules close
to optimal solution with reasonable execution time.
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