
Observability-aware Directed Test Generation for
Soft Errors and Crosstalk Faults

Kanad Basu
Syst. and Tech. Dev.

IBM India Private Limited
email: kanbasu2@in.ibm.com

Prabhat Mishra
Comp. and Info. Sc. and Engg.

University of Florida, USA
email: prabhat@cise.ufl.edu

Priyadarsan Patra
Post-Si Validation Architecture

Intel Corporation, USA
email: priyadarsan.patra@intel.com

Abstract—Post-silicon validation has emerged as an important
component of any chip design methodology to detect both
functional and electrical errors that have escaped the pre-silicon
validation phase. In order to detect these escaped errors, both
controllability and observability factors should be considered.
Soft errors and crosstalk faults are two important electrical faults
that can adversely affect the correct functionality of the chip. A
major bottleneck with the existing approaches is that they do not
consider the inter-dependence of the selected trace signals and
test generation. In this paper, we explore the synergy between
trace signal selection and observability-aware test generation
to enable efficient detection of electrical errors including soft
errors and crosstalk faults. Our experimental results demonstrate
that our approach can significantly improve error detection
performance - on an average 58% for crosstalk faults and 48%
for soft errors compared to existing techniques.

I. INTRODUCTION

An Integrated Circuit (IC) must be error free before it
is delivered to a customer. Due to reduced time-to-market
and increasing design complexity, a lot of errors escape the
pre-silicon validation phase and manifest themselves in the
manufactured chip. Post-silicon validation is used to capture
these bugs. An overview of post-silicon validation is shown in
Figure 1. A small set of signals are traced during execution.
During debug, these signal states are used for failure analysis
and error localization.

BufferLOGIC

Signals

Selected

INTEGRATED CIRCUIT

Input
Tests

Offline

Debugger

Signal States

Trace

Fig. 1. Overview of post-silicon validation

Electrical defects manifest as important errors in modern
SoCs. Soft errors and crosstalk faults are two important defects

This work was partially supported by NSF grants CNS-0746261 and CCF-
1218629.

that can adversely affect the correct functionality of the chip.
While soft errors are caused by radioactive effects on design
impurities, crosstalk faults occur due to imperfect coupling
capacitance between two lines in the chip. Soft errors can be
modeled using single stuck-at-faults. Effects of crosstalk can
be represented as glitches and delay faults. Effective directed
test generation strategies need to be employed in order to
detect these faults. The tests should be able to activate the
faults and propagate them towards the observation points, e.g.,
primary outputs or internal trace signals.

The two primary challenges governing efficient error detec-
tion are controllability and observability. During post-silicon
validation, not all the primary outputs of a design block are
visible (since they may be internally connected to some other
components of the design). Also, the number of primary
outputs of a circuit is typically larger than the trace buffer
width, which determines the number of signal states that can
be stored per cycle. Hence, the primary outputs alone can
not be used as observation points. Existing methods [2], [7],
[3] on signal selection assume that the input tests are always
random in nature. However, once the trace signals are known,
Automatic Test Pattern Generation (ATPG) tools can be used
to generate efficient directed tests for error detection if the
probable error locations are available. In modern System-
on-Chip (SoC) design methodology, it is found that regions
where errors are detected during pre-silicon verification are
more likely to be erroneous during post-silicon validation.
Therefore, the pre-silicon engineer can provide information
about the probable erroneous locations or zones for post-
silicon validation. These observations can be utilized for
efficient observability-aware test generation as outlined in
Figure 2.

Our proposed approach takes as input the circuit and the
fault list. In the first step, we perform test generation consid-
ering the primary outputs as observation points to obtain a set
of directed tests for error detection. Next, we use these tests to
determine the profitable trace signals. This process continues
until the fault-coverage reaches 100% or does not improve in
subsequent iterations. The overview of our proposed approach
is shown in Figure 3. To the best of our knowledge, it is the
first attempt to study the synergy between signal selection
and test generation in the context of post-silicon validation

Signal Selection Aware

 Test Generation

Test Generation Aware

Signal Selection

Circuit

Fault List

 +

Fig. 2. Proposed framework

and debug. We have modified existing ATPG techniques to
make them suitable in the presence of selected trace signals,
and vice versa.

Run ATPG tool

to generate tests

Select Trace Signals
Compute Fault Coverage

Fault
Coverage
Improved

?

Trace
Signals

Circuit
Trace Buffer

Error Locations

YN

Fig. 3. Observability-aware test generation flow

The rest of the paper is organized as follows. Section II
presents related work on post-silicon validation and debug.
Section III describes our test-aware signal selection algorithm.
Section IV presents our observability-aware test generation al-
gorithm. Section V presents our experimental results. Finally,
Section VI concludes the paper.

II. RELATED WORK

Limited observability is a primary concern during post-
silicon debug. Once the internal signal states are known, debug
algorithms like failure propagation tracing [4] can be used
to identify the errors in the circuit. Design-for-Debug (DfD)
techniques such as embedded logic analyzer (ELA) [1] have
been used extensively to increase the observability of internal
signals of the circuit. Using ELA, some of the internal signal
states of a circuit are stored in an on-chip trace buffer. Since
the trace buffer size is limited, efficient trace signal selection
techniques [2], [3], [7], [5] are necessary to improve the
overall observability of the SoC.

Soft errors and crosstalk faults are two major electrical
errors found in a fabricated SoC. Effect of soft errors on
memory devices had been studied by May et al. [11]. Over
the years, researchers [6], [12] have studied various aspects of
soft errors. Sanyal et al. [13] have proposed different methods
for directed test generation for soft errors. Crosstalk faults
occur when two lines in a circuit are so near that their mutual
capacitance affects their state. Effects of crosstalk faults on
digital circuits [14], [9] have been studied extensively. There
are various test generation algorithms for crosstalk faults [15],
[10]. These approaches assume that all the output signals

of a logic block are visible. However, during post-silicon
validation, since the chip is fabricated, observing the output
signals of every component may not be feasible since these
components can be embedded in an SoC. The only observ-
able points would be the trace signals. The test generation
algorithms need to be modified to take this into account.

III. TEST-AWARE SIGNAL SELECTION

Traditional ATPG tools generate tests assuming all the
primary outputs as observation points. Once the tests are
determined, a set of trace signals need to be determined to
improve the error detection performance. In general, during
selection of trace signals, the input tests are assumed to be
random. We would like to look at a special case when the
input test sets are known prior to signal selection. Knowledge
of input tests can be used to determine the signals very
efficiently, specially, when the main focus is error detection.
Our signal selection procedure is presented in Algorithm 1.
The remainder of this section describes the three important
steps of the signal selection algorithm.

Algorithm 1: Test-aware signal selection
Input: Circuit, Trace Buffer Width, Test Set T
Output: Trace Signals
for Each Test Vector do

1: Simulate each fault in the circuit.
2: For each signal in the circuit, determine whether it
can detect the fault.

end
3: Compute the error detection ability of each signal.
while Trace buffer width is not reached do

4: Select the signal with the highest error detection
capability.
5: Remove overlap.

end
Return Selected trace signals.

A. Fault Simulation

The best way to know whether a fault can be detected using
a particular observation point and a test vector is to simulate
the fault and notice the state of the observation point. Since
we already have a set of test vectors, the fault simulation is
straightforward. For each test vector, we first do a simulation
of the golden (correct) design and observe the correct states
of the various signals. Now, we perform simulation for every
fault with the same test vector. For each fault, the signal states
of the circuits are observed. If they are different from the ideal
simulation, it is obvious that the fault is propagated to that
signal. This process is repeated for each test case and each
fault. For example, if there are m test vectors and n faults,
there will be a total of m×n simulations. For each signal, we
note the faults that it can detect. This is recorded as a binary
variable Error Propagation Probability (EPP). For example, in
Figure 4, if c can detect an error in a using any of the test
vectors, EPPc,a = 1. On the other hand, since d can never
detect any error in a, EPPd,a = 0.

a

b

c

ed

Fig. 4. Example circuit

B. Error Detection Ability Computation

Error Detection Ability (EDA) of a node (signal) is a
measure of the errors that a particular node can detect. A
node can only detect errors in its fan-in cone. For example, if
we consider Figure 4, any error in c can only propagate to e
and not to a, b or d. Therefore, the only nodes whose errors
c can detect are a and b. EDA of a node is the sum of all the
errors that are detected using fault simulation.

EDAc = EPPc,a +EPPc,b (1)

It should be noted that a node can detect an error using
multiple test cases, however, it should be counted only once.
We enforce this by ensuring that EPP is a Boolean number.
For example, if by simulating 2 test cases, c can detect a
and b in both cases, EDAc would be 2 and not 4. Once EDA
value for each node is computed, the node with the highest
EDA value is selected for tracing. The next section describes
how to remove the overlap of already selected signals before
determining the next profitable signal.

C. Overlap Removal

This part of the signal selection algorithm is used to remove
effects of already selected signals and thus, select appropriate
signals for improved error detection. In order to explain this,
let us re-visit Figure 4. Let us consider node c, which is
the first node to be selected for tracing. If EPPc,a = 1 and
EPPc,b = 1, that is, the errors in a and b can propagate to
c, contributions of EPPe,a and EPPe,b should not be included
while computing EDAe. In this case,

EDAe = EPPe,c +EPPe,d (2)

Thus, overlapping nodes, whose contributions have already
been accounted for, should not be taken into account when
computing the EDA value of a node. The process of signal
selection continues until the trace buffer is full.

IV. OBSERVABILITY-AWARE TEST GENERATION

Once the set of selected signals are known, the next step
would be to generate another set of tests based on these signals
that can maximize the error detection ability. We used Atalanta
[16] as an ATPG tool that generates tests depending on the
fault list and considering the output nodes as observation
points. In order to generate tests based on the selected trace
signals, we modify the netlist to replace the trace signals as
observation points. The ATPG engine will generate the tests
assuming the trace signals as the observation points. The fault
coverage using these new set of tests and the selected signals is
computed. If the coverage does not improve, the set of selected
signals are reported as trace signals. The tests generated using

the ATPG tool are used as directed input tests. If the fault
coverage improves, the process in Section III is repeated to
generate better trace signals and associated tests to further
improve error detection performance. The time and memory
requirements for the test generation process depends on the
performance of the AT PG tool used. The remainder of this
section describes modeling and test generation to detect soft
errors and crosstalk faults.

A. Test Generation for Soft Errors

Soft errors are caused due to ionizing radiations from
radioactive impurities present in a chip during manufacture.
These may result in ionizing radiations like alpha-particles.
When these alpha particles come in contact with a semicon-
ductor, their kinetic energy gets converted to electrical energy
[8], which results in a large number of free electrons and
holes. This leads to a creation of an inversion layer as well
as a voltage glitch on the affected transistor. If the glitch
is of sufficient magnitude, a faulty logic value is introduced
temporarily on a node in the circuit. This is known as Single
Event Transient (SET). If the faulty value is propagated to a
primary output or an observation point, the event is known as
Single Event Upset (SEU). We try to generate directed tests
to detect all SETs resulting in possible SEUs.

The error model that is used for modeling soft-errors is a
simple stuck-at fault model. The nodes affected by radiations
get stuck at certain fixed values depending on the amount of
free electrons or holes created. The effect of soft errors on
a node value depends on output capacitance as well as pull-
up and pull-down networks. A weaker capacitance makes a
node more susceptible to soft errors. Weak pull-up and pull-
down networks can lead to stuck-at-0 and stuck-at-1 faults
respectively.

Detection of soft errors require generation of test cases that
would activate the particular errors and propagate them to the
observation points. As discussed before, during post-silicon
validation, the erroneous values should propagate towards
the traced signals and not to the primary outputs. The test
generation problem should focus on generating a set of test
cases that would activate and propagate a maximal number of
soft errors (if possible, all of them) to the observation points,
that is, the trace signals.

a

b

c

d

e

s−a−0

P

s−a−1
Q

Fig. 5. Example circuit illustrating test generation for soft errors

Let us consider the example in Figure 5 to explain the test
generation problem for soft errors. Consider two error points
P and Q, where the errors can be represented as s− a− 0

and s− a− 1, respectively. We would like to generate tests
that would activate them as well as propagate them to the
observation points. The 5 input signals are < a,b,c,d,e >.
To detect the s− a− 0 fault at P, the input tests should be
< 1,1,1,1,X > whereas the test required to detect the s−a−1
fault at Q, the input tests should be < 1,1,1,1,0>. Therefore,
the test that can detect both faults is < 1,1,1,1,0 >. ATPG
algorithms can be designed to generate tests that would detect
these faults.

Algorithm 2 describes our test generation procedure for
soft-errors. It should be noted that this algorithm is applicable
for test generation when multiple soft errors are present
simultaneously. In the first step, we identify all the internal
signals (gate signals and fan-out branches) in the soft error
affected zone. For each of the signals in the fault list, we
perform test generation for s−a−0 and s−a−1 faults using
ATPG.

Algorithm 2: Test generation for soft error detection
Input: Circuit, Trace signals, Soft-error affected zone Z
Output: Test set to detect the faults
1: Find the signals corresponding to Z.
Signals corresponding to nodes as well as fan-out signals.
2: Create a fault list with stuck-at-0 and stuck-at-1 at
each node.
3: Use ATPG to generate tests for these faults.
Use the trace signals as observation points.
Return the set of tests.

B. Test Generation for Crosstalk Faults
Crosstalk faults are caused by parasitic coupling capaci-

tances between adjacent lines in a chip [9]. With decrease
in feature size, effect of coupling capacitances and hence,
crosstalk faults become more prominent, thus leading to signal
integrity problems [10]. Crosstalk faults are caused when the
coupling capacitance between two lines exceeds a certain
threshold. In such a case, if there are transitions on either
or both the lines, the transition on one will influence the
other and hence, the voltage levels change causing either a
delay or a glitch. The line whose voltage level changes is
known as victim, while the line which changes the voltage
level is called aggressor. We will explain crosstalk glitches and
delays using the example circuit in Figure 6 which has 5 lines
(signals), namely a,b,c,d and e. Let us assume the coupling
capacitances between lines c and d exceed the threshold so
that they can act as probable aggressor-victim pairs.

c

a

b d
e

Fig. 6. Example circuit illustrating crosstalk faults

During crosstalk glitch, the victim line stays at a static state,
while the aggressor undergoes a transition. If the transition

effect is opposite to the state of the victim, a glitch is created.
For example, if the victim is at a state of 0, while the aggressor
has a positive transition, a positive glitch is formed on the
victim line. Similarly, if the victim line is in a state of 1 and
a negative transition is formed on the aggressor line, a negative
glitch is created. Figure 6 has been redrawn in Figure 7(a) to
show that when line c is in a steady state and line d transits,
a positive glitch on line c is formed as shown in Figure 7(b).

c

a

b
d e

(a) Source of crosstalk glitch

c

a

b
d e

(b) Crosstalk glitch

Fig. 7. Positive glitch on c

On the other hand, delays are created when both aggressor
and the victim undergo transition. If the transitions are in the
same direction, the overall delay is reduced. If the transitions
are in opposite direction, the signal propagation delay is
increased. Figure 8(b) shows a positive delay on line c due to
transitions on both lines c and d (Figure 8(a)).

c

a

b
d e

(a) Source of crosstalk delay

c

a

b
d e

(b) Crosstalk delay

Fig. 8. Positive delay on c

It should be noted that both the transitions need to be
simultaneous in order for the delay to take effect. As can be
seen in Figure 9, if the two transitions are not simultaneous,
there will not be any delay.

c

a

b
d e

Fig. 9. Non-simultaneous transitions

The effect of crosstalk fault, that is, delay or glitch will be
propagated to fan-out gates. In case of sequential circuits, if
the glitch duration or delay is less than the clock frequency,
it gets suppressed. However, for combinational circuits, the
effects get propagated to the outputs.

The test generation algorithm for crosstalk faults is shown
in Algorithm 3. The first step of the algorithm is to find all
the aggressor-victim pairs by observing their coupling capaci-
tances. In this case, we consider single aggressor-single victim
pairs only. However, the algorithm can be extended to multiple
aggressors as well. Information on coupling capacitances is
obtained from the layout information of the chip. Once we
have identified all the pairs, the next step would be to generate

Algorithm 3: Test generation for crosstalk fault detection
Input: Circuit, list of coupling capacitances, threshold
Output: Test set to detect the faults
1: Find all the pair of lines that contribute to crosstalk
faults.
2: Duplicate the circuit.
3: Use ATPG to generate tests for these faults.
Return Test set.

tests that would provide transitions on either or both the lines
depending on the desired type of crosstalk effect.

We now explain our algorithm using crosstalk delay, that is,
transitions should be present on both lines. Crosstalk glitches
can be explained in a similar way. Duplication of circuit is
needed to create transitions on both aggressor and victim. For
a combinational circuit, which does not have a clock signal,
in order to emulate a transition, we need to make sure that the
signals on a particular line change in two adjacent time units.
Let us consider the example circuit in Figure 6. Suppose, lines
c and d have been identified as crosstalk pairs. We would like
to generate two sets of tests, such that they fire transitions on
both these lines. If we want to observe the effect of crosstalk
glitch, transition should be enabled on only one line. In order
to generate the transitions, we have duplicated the circuit in
Figure 101. Corresponding to each signal in Figure 6, there
is a corresponding signal in Figure 10. For example, signal
a in Figure 6 will be duplicated as a′ in Figure 10. Thus
all the inputs are duplicated as well. The ATPG tool is used
to generate the tests. In this example, the inputs to a,b,c
correspond to the test in the first time frame, while inputs to
a′,b′,c′ correspond to test in the second time frame. Thus, in
order to generate a transition at line c in Figure 6, the signals
c and c′ should be different in Figure 10. This can be forced
by connecting an exclusive-or gate, whose two inputs are c
and c′. Since an exclusive-or gate will be 1 only when the
two inputs are different, this ensures a transition in line c in
Figure 6. Similarly, d and d′ in Figure 10 are input to another
exclusive-or gate, thus, forcing a transition in d in Figure 6.
We want to generate test cases that would provide transitions
on both lines. This is ensured by connecting an AND gate at
the output of the two XOR gates.

The ATPG tool is then used to generate tests so that the
output o of the AND gate is 1. This ensures transition on both
lines. The ATPG tool can be run with a fault list including the
point o is s−a−0. In this case, the ATPG tool will generate
test to force o to be 1, and hence ensure a transition on both
lines.

We want the delay at the victim to be propagated to the
output. In order to ensure that, o is connected to the fan-out
branch of the victim and thus propagated to an observation
point, or primary output. For example, if d (or d′) is the

1It should be noted that the duplication of the circuit is for test generation
purpose only. There is no extra hardware overhead (since the circuit is not
duplicated in actual hardware) associated with it.

c’

a’

d’

o

a

d
e

b

e’

c

b’

Fig. 10. Duplicated circuit of Figure 6

victim line in Figure 10, which incurs some delay, we add
o to the fan-out cone of d′, in order to ensure that the
delay in d in Figure 6 actually gets propagated to a primary
output e (e′ in this case). The modified circuit is shown in
Figure 11. If we have trace signals, the observation points
(trace signals) are enabled such that the ATPG generates tests
which propagate the delay to these trace signals. Similar test-
generation procedure can be applied for crosstalk glitches, in
which case, the transition should be only along the aggressors.

c’

d’

o

a

d
e

e’

b’

a’

b

c

Fig. 11. Modified circuit of Figure 10

V. EXPERIMENTS

We have applied our proposed approach on the ISCAS ’85
combinational benchmarks. We compare the performance of
our test-aware signal selection algorithm with the existing
signal selection algorithm [7]. We have chosen [7] over the
other trace signal selection algorithms [2], [3], [5] since the
former is found to provide better performance than the others.
A simulation of 1000 cycles is run assuming no error is
present. The input to the circuit is fed with the test sets
generated by Algorithm 2 or Algorithm 3. Then, for each
error, simulation of 1000 cycles are performed assuming the
error is present in the circuit. If any of the traced signal states
during this simulation is different from the perfect simulation,
an error is said to be detected. Error Detection Ratio (EDR)
is chosen for comparing error detection performance. EDR is
defined as:

EDR =
Number o f Errors Detected

Number o f Detectable Errors

We present our results in two categories. First, we compare
our approach with existing methods for soft error detection.
Next, we present results for detection of crosstalk faults.

A. Detection of Soft Errors

First, we consider only soft errors and we applied 250 errors
in each circuit. Random nodes are selected as error points.
Algorithm 2 uses the ATPG tool Atalanta [16] to generate the

directed tests to detect these soft errors. The comparison of
EDR for 5 of the largest ISCAS ’85 benchmarks is shown
in Figure 12. The proposed method column refers to our
proposed test-aware signal selection algorithm. On the other
hand, the existing approaches column refers to existing trace
signal selection algorithm. It should be noted that to make a
fair comparison, we have used the same set of tests in both
scenarios.

As can be seen in Figure 12, our proposed method performs
consistently better than the profile-based signal selection algo-
rithm, with an average improvement of 48.2%. Our algorithm
uses tests as inputs to select signals, which gives a better
insight during error propagation probability computation, and
hence, subsequent selection of trace signals to detect errors.

!"#
$!"#
%!"#
&!"#
'!"#
(!"#
)!"#
*!"#
+!"#
,!"#
$!!"#

-*((%# -)%++# -(&$(# -&('!# -%)*!#

!"
#$

./010234#536704# 89:2;<=#>11/0?-732#@*A#

Fig. 12. Comparison of signal selection methods for soft errors

B. Detection of Crosstalk Faults

Now, we would like to observe the performance of our test-
generation algorithm for crosstalk faults described in Section
IV-B. Similar to Figure 12, we have used the 5 largest ISCAS
’85 benchmarks. The pre-processing step in Algorithm 3
requires manual modification of the circuit in order to insert
the additional AND and XOR gates described in Figure 11.
Hence, we reduced the number of faults from 250 to 10.
Similarly, the trace buffer width is also reduced to 4 instead
of 32, that is, in this case, 4 signals will be stored every
cycle. In order to make fair comparison, the same experiment
is repeated for profile-based signal selection technique using
the same set of parameters. The results are shown in Figure
13. As can be seen, our proposed method provides significant
improvement over the existing technique, with an average
improvement of 58%. The performance of existing method
is very poor for detection of crosstalk faults. The extreme
scenario is for c3540 where existing method could not detect
any of the errors whereas our approach captured all of them.
The reason behind this is the limited number of errors and
limited trace buffer width of 4. These comprise of less than
1% of the total number of signals in the design.

VI. CONCLUSION

Limited observability is a major bottleneck in detecting
errors during post-silicon validation and debug. In this paper,

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

)*++$#)&$''#)+,(+#),+%!#)$&*!#

!"
#$

-./0/123#4256/3# 7891:;<#=00./>)621#?*@#

Fig. 13. Comparison of signal selection methods for crosstalk faults

we presented an efficient observability-aware test genera-
tion technique that selects efficient observation points and
generates corresponding test sets to improve detection of
electrical errors during post-silicon debug. We evaluated the
effectiveness of our approach using ISCAS ’85 benchmarks.
Our approach can provide on an average 58% improvement
in error detection performance for crosstalk faults (48% for
soft errors) compared to existing techniques.

REFERENCES

[1] M. Abramovici et al., “A reconfigurable design-for-debug infrastructure
for socs,” in DAC, 2006, pp. 7–12.

[2] H. F. Ko et al., “Algorithms for state restoration and trace-signal
selection for data acquisition in silicon debug,” IEEE TCAD, vol. 28,
no. 2, pp. 285–297, Feb. 2009.

[3] X. Liu et al., “Trace signal selection for visibility enhancement in post-
silicon validation,” in DATE, 2009, pp. 1338–1343.

[4] O. Caty et al., “Microprocessor silicon debug based on failure propa-
gation tracing,” in ITC 2005, pp.10pp–293.

[5] S. Prabhakar et al., “Using Non-Trivial Logic Implications for Trace
Buffer-based Silicon Debug,” in ATS 2009, pp. 131–136.

[6] P. Shivakumar et al., “Modeling the Effect of Technology Trends on the
Soft Error Rate of Combinational Logic,” in DSN, 2002, pp. 389–398.

[7] K. Basu et al., “Efficient Trace Signal Selection for Post Silicon
Validation and Debug,” in Inter. Conference on VLSI Design, 2011.

[8] P. Dodd et al., “Basic mechanisms and modeling of single-event upset
in digital microelectronics,” in IEEE Trans. on Nuclear Science, 2002,
Vol. 49, No. 6, pp. 3100-3106.

[9] H. Takahashi et al., “A Method for Reducing the Target Fault List of
Crosstalk Faults in Synchronous Sequential Circuits,” 2005, Vol. 24,
No. 2, pp. 252–263.

[10] S. Chun et al.,“ATPG-XP: Test Generation for Maximal Crosstalk-
Induced Faults”, in IEEE TCAD, 2009, Vol. 28, No. 9, pp. 1401–1413.

[11] T.C. May and M.H. Woods, “Alpha-particle-induced soft errors in
dynamic memories”, in IEEE Transactions on Electron Devices, vol. 26,
no. 1, 1979, pp. 2 – 9.

[12] S. Mitra, et al., “Robust system design with built-in soft-error re-
silience”, in IEEE Computer, 2005, pp. 43 – 52.

[13] A. Sanyal et al., “On Accelerating Soft-Error Detection by Targeted
Pattern Generation”, ISQED, 2007, pp. 723 – 728.

[14] R. Anglada and A. Rubio, “Brief communication. Logic fault model
for crosstalk interferences in digital circuits”, in International Journal
of Electronics Theoretical and Experimental, 1989, pp. 423 – 425.

[15] A. Sanyal et al., “Test Pattern Generation for Multiple Aggressor
Crosstalk Effects Considering Gate Leakage Loading in Presence of
Gate Delays”, in IEEE TVLSI, vol. 20, no. 3, 2012, pp. 424 – 436.

[16] H. K. Lee and D. S.Ha, “Atalanta: An efficient ATPG for combinational
circuits”, in EE Technical Report, Department of Electrical Engineering,
Virginia Tech, 1993.

