
Assertion-Based Functional Consistency Checking
between TLM and RTL Models

Mingsong Chen
Shanghai Key Lab of Trustworthy Computing

East China Normal University, Shanghai, China

Email: mschen@sei.ecnu.edu.cn

Prabhat Mishra
Department of Computer & Information Sci. & Eng.

University of Florida, Gainesville, FL, USA

Email: prabhat@cise.ufl.edu

Abstract—Transaction Level Modeling (TLM) is promising
for functional validation at an early stage of System-on-Chip
(SoC) design. However, raising the abstraction level brings a
major challenge - how to guarantee the functional consistency
between TLM specifications and Register Transfer Level (RTL)
implementations? This paper proposes an efficient mechanism
for functional consistency checking using assertion observability.
The experimental results using several industrial designs demon-
strate that our method can automatically check the functional
consistency between different abstraction levels.

Index Terms—assertion, functional consistency, TLM, RTL

I. INTRODUCTION

Maintaining the functional consistency between different

abstraction layers is an important issue during System-on-Chip

(SoC) design. The top-down SoC design flow starts from an

executable SystemC TLM [1] specification. This TLM model

should be thoroughly validated to ensure that it can be used as

a “golden reference model” for the successive refinement [2].

High-level abstraction in TLM models significantly reduces

functional validation effort compared to validation of RTL

models. Once TLM models are verified, these models are

refined into corresponding hardware and software implemen-

tations. In this paper, we focus on the refinement of hardware,

i.e., RTL designs. Traditional simulation based methods can

only guarantee the refinement correctness by enumerating

input tests and comparing primary output results. Significant

difference of internal structure of TLM and RTL designs is of-

ten eclipsed. Therefore, no correlation of the internal structure

can be assumed during the simulation. It is also not feasible

to perform formal consistency checking using conventional

equivalence checkers due to significant difference between the

TLM and RTL models as well as capacity restrictions of the

checkers.
Assertion based validation (ABV) [3] is a promising alter-

native. It can not only increase the design observability during

simulation, but also take advantage of formal techniques for

improving the overall verification quality. An assertion can be

viewed as an observation point in a TLM or RTL design to

monitor the specified functional scenario. For simplicity, we

use the term assertion to indicate both assertion and property.
In this paper, we propose a methodology to check the

functional consistency between TLM and RTL models based

This work was partially supported by NSF CAREER award 0746261,
Natural Science Foundation of China 61202103, Open Project of SW/HW
Co-design Engineering Research Center of MoE 2012002, and State High-
Tech Development Plan of China 2011AA010101.

on the observability of assertions. The basic idea is that

in a TLM specification, if a test can exercise a specified

functional scenario monitored by some assertions, then in its

RTL implementation, the counterpart of the TLM test can

also activate the counterparts of the TLM assertions. During

the TLM-to-RTL functional consistency checking, we need to

address the following three challenges:

1) How to determine a set of TLM assertions for ob-

serving functional scenarios? We propose promising

transaction-level models that can lead to generation of

assertions. The goal is to cover all possible faults in the

fault models using the generated assertions.

2) How to reuse TLM validation effort? We develop the

validation refinement rules which can convert TLM

assertions to their RTL counterparts.

3) How to use the correlation between TLM and RTL asser-

tions for consistency checking? We propose a method to

verify the TLM-to-RTL consistency based on the criteria

of assertion coverage and assertion ordering.

Our proposed approach addresses above challenges and makes

two major contributions: i) presents a framework for auto-

matic TLM-to-RTL assertion refinement, and ii) proposes a

method that utilizes the assertion observability for functional

consistency checking between TLM and RTL models. Since

our work is based on the reuse of TLM validation effort,

there is no extra cost (excludes defining the refinement rules)

for this improved validation methodology. Furthermore, our

method can be fully automated and can be easily scaled for

large designs. Our approach has two synergistic advantages.

It is expected to improve design quality due to functional

consistency checking. It can also reduce the overall validation

cost since TLM validation effort (tests and assertions) is reused

for RTL validation.

The rest of the paper is organized as follows. Section II

presents related works. Section III proposes our consistency

checking framework based on validation reuse. Section IV

presents the experimental results. Finally, Section V concludes

the paper.

II. RELATED WORK

Although ABV is a promising approach for functional

validation in RTL level, it is still a challenging domain for

system level design. To address the issues when incorporating

Property Specification Language (PSL) [4] within SystemC

environments, Lahbib et al. [5] proposed an automated solution

ack

req

VERT
clk

Assertion Checker Assertion Checker

Assertions Assertions

RTL

Refinement

Rules

Assertion Mapping

TLM Validation RTL Validation

RTLTLM

AssertionsAssertions

Tests

TLM RTL

Tests

TLM

Transactor

Consistency Checker

Fig. 1. Our consistency checking framework

which can embed PSL assertions in a SystemC design. Based

on static code analysis and genetic algorithms, Habibi et al.

[6] presented an efficient method to optimize test generation

in order to increase the assertion coverage. Ecker et al. [7]

proposed a transaction-level assertion framework using a new

specialized language. In [8], Pierre described an efficient and

tractable solution for verifying the PSL based properties of

TLM designs during the simulation. However, most researches

are focused on implementing PSL assertions in SystemC

framework, and none of them use assertions for checking the

TLM-to-RTL functional consistency.

To enable the consistency checking, various approaches

[17], [21] are proposed. However, these methods assume strict

timing information to be available, which is not suitable for

TLM designs. The framework in [16] allows the equivalence

checking for Electronic System Level (ESL) design flow from

TLM by analyzing the accesses of user selected variables. In

[9], Kasuya and Tesfaye presented a mechanism to construct

and reuse temporal assertions in various TLM abstraction

levels. Bombieri et al. [10] proposed a transactor-based dy-

namic verification method. By using transactors, the TLM test-

benches can be reused during the TLM-RTL co-simulation. In

[11], Bombieri et al. defined functional consistency based on

event order without timing information. However, their method

applies assertions on TLM specifications only. It monitors

primary input and output signals without investigating RTL

implementation details.

III. ASSERTION-BASED CONSISTENCY CHECKING

Figure 1 shows our consistency checking framework. First,

TLM assertions are derived based on specified fault models

by analyzing TLM specifications. To activate an assertion,

users can use random tests, automated directed tests [12],

[13] or the tests which are manually written by experts.

Next, the refinement process translates the TLM assertions

for RTL validation using our proposed mapping rules. The

refined assertions are instrumented in RTL implementation.

Through a user-defined transactor, the refined TLM tests are

applied on the RTL implementation. The output of the tests

and the activated assertions are monitored by an RTL assertion

checker. Finally, by comparing simulation traces recorded by

TLM and RTL assertion checkers, the consistency checker

reports the results. Our methodology has three important

steps: i) automatic TLM assertion generation, ii) TLM to RTL

assertion/test refinement, and iii) assertion-based consistency

checking. It is important to note that these three steps are

independent of each other. The following subsections discuss

each of these steps in detail.

A. Automatic TLM Assertion Generation

Assertions are used to specify the required functional be-

haviors of a system. To investigate the consistency between

TLM and RTL models, we need to explore as many assertions

as possible. In our method, we define a set of fault models

to achieve a complete set of assertions. Each fault indicates

a required “design behavior” which may be violated during

the system design. For example, when validating a desired

scenario described by a sequence p (sequence is a PSL term

which indicates a sequential expression), we use the following

PSL statement pairs to detect whether the sequence p will

happen finally. The Prop1 1 asserts that the sequence p

must “eventually!′′ hold strongly during the simulation, and

Prop1 2 is used to record the assertion coverage during the

simulation by using verification directive “cover”.

Prop1_1: assert eventually! p;

Prop1_2: cover (p);

SystemC TLM emphasizes the functionality of data trans-

fers instead of actual implementation. Essentially a SystemC

TLM design interconnects a set of processes using transactions

(i.e., C++ function calls) for communication. Each process

does the following tasks: receiving data, processing data and

sending data. Therefore the most important factors in TLM are

transaction data and transaction flow. So during the TLM-to-

RTL synthesis, these factors should be reflected. Inspired by

the fault models based on bit failures and condition failures

proposed in [15], we consider the following two fault models:

data fault model and flow fault model which reflect both the

TLM structure and behavior information.

Transaction data fault model deals with the possible value

assignment for each part of a transaction data. However, for

property generation, due to the large size of value space, trying

all possible values of a data is infeasible. By checking each

bit of a variable (data bit fault) separately, the data content

coverage can be partially guaranteed. The following is an

example of a data fault.

//The second bit of "packet.parity" can be 1.

assert eventually! (packet.parity==2);

cover (packet.parity==2);

Transaction flow fault model handles the controls along a

transaction flow. To ensure transaction flow coverage, one can

cover branch conditions which exist in if-then-else or switch-

case statements. The goal is to check all possible transaction

flows. The following is an example of a transaction flow fault.

//The condition packet.to_chan=1 can be true.

assert eventually! (packet.to_chan==1);

cover (packet.to_chan==1);

It is important to note that the proposed fault models are by

no means “golden”. It can be modified for improvement in our

validation methodology. The order of the assertion activations

plays a key role when verifying functional consistency as

described in Section III-C.

B. Refinement of TLM Assertions/Tests

In our framework, we use SystemC for transaction level

modeling and Verilog for RTL modeling. Since TLM de-

sign is significantly different from its RTL implementation

in port definition, internal structure and timing details, it is

necessary to provide the mapping information. There details

are also needed during the manual or automatic TLM-to-RTL

synthesis. As shown in Figure 1, the Validation Effort Reuse

Tool (VERT) enables TLM-to-RTL refinement by specifying

transformation rules. VERT supports transactor definition for

test refinement. VERT also allows users to provide Assertion

Refinement Specification (ARS) which contains the rules to

guide the assertion refinement. Generally an ARS contains two

parts as follows.

1) Symbol Mapping specifies the name and type mapping

between TLM variables and RTL signals.

2) Assertion Refinement Rules specify patterns and timing

information for RTL assertions.

Due to the naming convention inconsistency between TLM

specification and RTL implementation, during the validation

refinement, it is necessary to have a symbol table which

specifies the name mappings. Each item in the symbol table

defines the correspondence between TLM and RTL variables.

Generally it provides the following information: i) name

mapping, ii) data type mapping, and iii) bit mapping.

In our framework, we use SystemVerilog Assertion (SVA)

[14] for RTL validation. The generated TLM assertions are in

the simple syntax like “assert eventually! p”. Most of them are

temporal assertions involving transaction data only without any

clock and control signal information. However, RTL assertions

generally have such lower level details. Therefore, during the

assertion refinement, we also need to consider clock expression

and control signals. Once these details are available, the

assertion refinement can be done by inserting the timing and

control information as well as by substituting symbols.

SYMBOL_MAPPING

bit[1:0] addr = tmp_packet.to_chan;

......

END_SYMBOL_MAPPING

ASSERTION_SPEC

‘set_clock (posedge clock);

......

‘control

tmp_packet.to_chan

@ $rose(packet_valid);

......

END_ASSERTION_SPEC

An example of ARS specification is shown above for a

packet router with one master node and several slave nodes.

Here, tmp packet.to chan is a TLM variable that denotes the

target address of a packet. From the symbol mapping, we

can figure out the corresponding RTL internal signal is addr

which is a 2-bit register. In the ASSERTION SPEC block, the

directive 8set clock sets the clock expression for the refined

assertions. Because in RTL different value of control signals

may specify different meaning to input data signals, we use

the directive 8control to set the RTL control signals during

the TLM data refinement. The first parameter of 8control is a

TLM variable that appears in the TLM assertion. The second

parameter is the corresponding RTL control signal expression

for the TLM variable. In this example, only when the RTL

signal packet valid rises, the RTL signal addr can indicate

the target slave address. The following example shows the

TLM-to-RTL assertion translation using the above ARS. We

can find that the RTL assertion includes the clock expression.

The VERT substitutes the TLM variable tmp packet.to chan

for its RTL signal addr[1 : 0] accompanied by its control signal

$rose(packet valid).

TLM assertion: cover(tmp_packet.to_chan==1);

RTL assertion: cover property

(@(posedge clock) ($rose(packet_valid)&&

addr[1:0]==2’d1));

C. Assertion-Based Functional Consistency

We define functional consistency based on the assumption

that if a TLM test can trigger a TLM assertion, then its

RTL counterpart will also trigger the corresponding RTL

assertion. It is important to note that our method relies on the

same concept of classical consistency checking (or equivalence

checking) - if two designs are consistent, when same inputs are

used, they will produce the same outputs. However, like white-

box testing, our method also investigates the internal assertion

activation events. Our goal is to increase the confidence

of TLM-to-RTL functional consistency checking under the

monitoring of assertion activations.

1) Assertion-Based Functional Coverage: Since an asser-

tion activation means that a specific functional scenario is

covered, the coverage of the assertions indicates the adequacy

of the functional validation. Let T be a TLM design and R

be an RTL design of T . We generate a set of TLM assertions

Tassertion according to the specified fault models of T , and we

obtain a set of TLM tests Ttest to activate such assertions.

Assume that RTL test set Rtest is a refinement of Ttest , and

RTL assertion set Rassertion is a refinement of Tassertion. When

running Ttest and Rtest on T and R individually, we can get the

assertion coverage defined as follows.

Definition 1: Given a TLM specification T and its RTL

implementation R, by applying Ttest on T and Rtest on R, the

assertion coverage can be calculated as:

Tcoverage =
o f exercised TLM assertions

|Tassertion|

Rcoverage =
o f exercised RTL assertions

|Rassertion|

2) Assertion Ordering: For a TLM or RTL design which

is instrumented with a large number of assertions, during

the simulation, a test may exercise a sequence of assertions.

Simulation using an input test leads to an assertion trace

which reveals the temporal order of checked functions in

a system behavior. For a TLM test and its refined RTL

version, when applying them on the TLM and RTL designs

individually, it is required that the TLM and RTL execution

behaviors are consistent. In other words, the TLM assertions

and corresponding RTL assertions should happen in their

traces in the same order.

Since several assertions may be activated simultaneously,

it is difficult to determine the order of the assertions in an

assertion trace. In addition, the loop structure may further

increase the difficulty in assertion matching. Inspired by the

algorithm proposed by Lamport [18], in our framework, each

assertion activation in a trace is associated with a “timestamp”

to indicate the happens before (marked by ≺) relation. We

use the timed assertion in the form of (a, t) to denote that the

assertion a happens at clock cycle t.

Definition 2: Given two timed assertions (a, t1) and (b, t2)
in an assertion trace. The relation between them are as follows.

• (a, t1) happens before (b, t2) iff t1 < t2.

• if t1== t2, then the two assertions are concurrent, written

(a, t1) || (b, t2)

Definition 2 describes the relation between the timed as-

sertions. The key issue in determining the order is to figure

out the timestamp for an assertion. For RTL design, we can

monitor the simulation at each clock cycle. Therefore, we can

define the timestamp using the clock cycle number. However,

figuring out the assertion order for TLM designs is not trivial

due to multiple abstraction levels.

According to the definitions in [1], there are three TLM ab-

straction layers: Programmer’s View (PV), Programmer’s View

with Time (PVT), and Cycle Accurate (CA). The model in CA

abstraction level is cycle accurate. It is quite similar to the

corresponding RTL model with respect to the notion of time.

For the PVT abstraction level, the model simulates in non-zero

simulation time. In spite of the timing inaccuracy, we can still

judge the assertion order according to the simulation time.

During the simulation, if an TLM assertion is exercised, we

can use the SystemC function sc time stamp() to record the

current simulation time. Such sc time information can be used

to order assertions. The PV abstraction level is untimed. To

determine the order of the interaction between communicating

processes, SystemC provides the delta cycle concept which

adopts the evaluate-update paradigm to interpret zero-delay

semantics. Each tiny delta cycle consists of these evaluate

and update phases without advancing the simulation time.

Therefore the delta cycle can be utilized for ordering the

assertions. In this case, we need to use a global variable as a

counter of delta cycles, which can be used as the timestamp

for assertions. If two assertions happen in the same delta cycle,

then they are concurrent. Otherwise there is a “happen before”

relation between them.
3) Functional Consistency Checking Using Assertions: The

refinement process is described by two functions - AR for

assertion refinement and TR for test refinement as follows.

AR : Tassertion → Rassertion

TR : Ttest → Rtest

We also define the function MTLM and function MRTL to

indicate the relation between tests and assertions, i.e., the set

of assertions that are activated during the simulation by a given

test.
MTLM : Ttest → 2Tassertion

MRTL : Rtest → 2Rassertion

MTLM indicates the set of TLM assertions that are covered by

a given TLM test. Similarly, MRTL indicates the set of RTL

assertions that are covered by a given RTL test. Based on the

above definitions, the definition of TLM-to-RTL consistency

is given as follows.

Definition 3: Given a TLM specification T and its RTL

implementation R, T and R are assertion consistent iff Ttest
can achieve 100% TLM assertion coverage and

∀t ∈ Ttest . MRTL(TR(t))⊇ {AR(a1),AR(a2), . . . ,AR(an)}

where MTLM(t) = {a1,a2, . . . ,an}.

The assertion consistency only defines the assertion cover-

age for each test. In fact, there is a temporal relation between

assertions. If the assertion consistency considers the event

order, we call it strongly assertion consistent.

Definition 4: Given a TLM specification T and its RTL

implementation R, T and R are strongly assertion consistent

iff

• T and R are assertion consistent; and

• ∀t ∈ Ttest , the TLM assertions covered by t and the RTL

assertions covered by TR(t) are activated in the same

order.

Figure 2 illustrates an example of assertion consistency.

Assuming that the TLM specification and RTL implementation

are assertion equivalent and t is a TLM test and t ′ = TR(t),
we can get MTLM(t) = {a1,a2,a3} and AR(MTLM(t)) =

{b1,b2,b3}, where AR(MTLM(t)) is a subset of MRTL(t
′). It

shows that the assertion activation order is not consistent (a2

happens before a1, but b1 happens before b2). Therefore,

in this case, the TLM design and RTL design are assertion

consistent but not strongly assertion consistent.

RTL

TLM
t

t’

a1

a2

a3

b3

b1

b2

Fig. 2. An example of assertion consistency

IV. EXPERIMENTS

This section presents two case studies: a router system and a

simplified version of the pipelined Alpha AXP processor [19].

We developed a prototype tool which can: 1) parse SystemC

designs and automatically generate TLM assertions from the

specified fault models; 2) translate TLM assertions to RTL

assertions according to the provided ARS; and 3) report the

consistency checking result. Currently, we derive one ARS

manually for each design. Although this process needs expert

knowledge of the design, we believe it can be automated when

synthesizable description of TLM models are available in near

future. The experimental results are obtained on a 2.0 GHz

Intel i7 server with 4G RAM using Linux operation system.

get_data

get_data

get_data

Master

put_data
FIFO

FIFO

FIFO

FIFO

Slave 0

Slave 2

route

Router

Slave 1

Fig. 3. The TLM structure of the router

A. A Router Example

Figure 3 shows the structure of the TLM specification of a

router example. It consists of five modules: one master, one

router and three slaves. The main function of the router is to

parse incoming packets and distribute them to target slaves.

By using our tool VERT, 59 TLM assertions and 59 RTL

assertions (55 from data fault model and 4 from flow fault

model) were automatically generated. To achieve 100% TLM

assertion coverage, 1000 random tests were applied on the

TLM design that took less than 3 seconds. For each assertion,

we selected one random test to exercise it. Therefore we

selected 59 random TLM tests. To improve the RTL code

coverage, in the router example we manually created 2 directed

TLM tests (1 tests for FIFO overflow, and 1 test for reset

check). Finally we got 61 TLM tests and 61 RTL tests for

validation purposes.

It is important to note that the generation of TLM asser-

tions/tests and the validation refinement process are indepen-

dent. In other words, TLM assertions and tests can come

from multiple sources. Under the guidance of transactors and

assertion mapping rules, the tool VERT can translate the TLM

tests and TLM assertions to the corresponding RTL tests as

well as RTL assertions in the form of SVA.

TABLE I
RTL COVERAGE FOR THE ROUTER EXAMPLE

Module Line Toggle FSM Condition Assertion

f i f o 100% 100% NA 100% NA
port f sm 95.92% 100% 87.5% 71.88% 100%
router 100% 100% NA NA 100%

* NA stands for “Not Available”. DVE [20] does not provide any
data in these scenarios.

We applied the TLM and RTL tests on the TLM and

RTL levels independently. For the TLM design, we can

get 100% coverage on both code and assertions. The RTL

implementation of the router primarily consists of three kinds

of components: FIFO buffers (fifo), controller (port fsm) and

datapath (router). During the simulation of the RTL design,

we measured various coverage metrics using Synopsys VCS

Discovery Visualization Environment (DVE) tool [20]. Table I

shows the coverage obtained using the refined tests. Due to

some unreachable code and missing “else” statements in RTL

implementation, we cannot obtain 100% coverage in all the

categories. It is important to note that initially the directed

tests can only have 98.3% assertion coverage on the refined

RTL assertions. We investigated the uncovered assertions and

found the reason is that the generated assertions and tests try to

activate the functional scenario to chan = 3 (error scenario),

which is not implemented in the RTL design. So we corrected

the RTL implementation and finally we can get 100% assertion

coverage.

Our result shows that the TLM and RTL designs of the

router example are assertion consistent. Since the TLM design

is timed, by matching the timed assertions on the assertion

trace of each test, it shows that the TLM and RTL designs

of the router example is also strongly assertion consistent.

Moreover, the result shows that our method drastically reduces

the RTL validation effort. By applying the 61 refined random

RTL tests, it only took 4 seconds to achieve 100% RTL

assertion coverage. However, for RTL validation using random

method individually, achieving 100% assertion coverage needs

more than 10000 random RTL tests which took 1057 seconds.

B. A Pipelined Processor Example

Figure 4 shows the structure of the TLM specification of

the Alpha AXP processor. It consists of five stages: Fetch (IF),

Decode (ID), Execute (EX), Memory (MEM) and Writeback

(WB). IF module fetches instructions from the instruction

memory. ID module decodes instructions and fetches the

operand data if necessary. EX module does ALU operations

as well as asserts whether the conditional or unconditional

branch happens. Memory module reads and writes data from

(to) the data memory. Writeback module stores the result in

specified registers.

EX MEM WBIF

Branch DataMem

ID

RegFile

Fig. 4. The TLM structure of the Alpha AXP processor

Our tool generated 163 TLM assertions (117 from data fault

model and 46 from flow fault model). To obtain 100% TLM

assertion coverage, 3000 random TLM tests were needed. We

selected 163 TLM tests (from the 3000 tests) that can activate

all the 163 TLM assertions. Both tests and assertions were

refined for consistency checking using our VERT tool. The

result shows that assertion consistency can be achieved. By

comparing the assertion activation sequence, the result indi-

cates that we can also achieve a strong assertion consistency

by using the derived TLM and RTL tests.

TABLE II
RTL COVERAGE FOR THE ALPHA AXP PROCESSOR

Module Line Toggle FSM Condition Assertion

IF stage 100% 68.82% NA 100% 100%
ID stage 100% 80.00% 60.00% 100% 100%
EX stage 100% 52.94% NA 100% 100%

MEM stage 100% 74.19% NA 100% 100%
WB stage 100% 78.52% NA 100% 100%
reg f ile 100% 71.29% NA 55.56% 100%

* NA stands for “Not Available”. DVE [20] does not provide any data
in these scenarios.

Table II shows various RTL coverage results using the

refined 163 RTL tests, which only required 15 seconds for

simulation. Note that without refinement information from

the TLM counterpart, it is hard to achieve 100% coverage

of refined assertions in the RTL design. For this example,

50000 RTL tests (took 1390 seconds) were needed to achieve

100% assertion coverage. Besides consistency checking, in

this example, our method can efficiently achieve promising

RTL coverage in all categories except for the toggle coverage.

This is because only a small set of directed tests is involved

during the coverage generation. By increasing the test number,

the toggle coverage can be improved. For the regfile module,

since TLM does not consider all kinds of internal forwarding,

the transformed 163 RTL tests can only achieve a 55.56%

condition coverage.

V. CONCLUSIONS

Raising the abstraction level in SoC design flow can sig-

nificantly reduce the overall design effort but introduce two

challenges: i) how to guarantee the functional consistency

between system-level design and low-level implementation,

and ii) how to manage the increasing overall validation effort

among different abstraction levels? To address both problems,

this paper proposed a methodology which reuses TLM-level

validation effort to enable RTL validation as well as assertion-

based functional consistency checking between TLM and

RTL models. Our framework can generate a set of assertions

and corresponding tests to validate all the specified TLM

“faults”. The assertions and tests can be translated to their

RTL counterparts using our proposed framework. During the

simulation, the TLM-to-RTL functional consistency can be

verified based on the assertion coverage and assertion order-

ing. The experimental results using several industrial designs

demonstrated that our approach can simultaneously improve

the design quality and reduce the overall validation effort by

several orders of magnitude.

REFERENCES

[1] OSCI TLM WG Whitepaper. Transaction Level Modeling in SystemC.
http://www.systemc.org.

[2] L. Cai and D.Gajski. Transaction Level Modeling: An Overview. In Proc.

of CODES + ISSS, pages 19–24, 2003.
[3] H. D. Foster, A. C. Krolnik, and D. Lacey. Assertion-Based Design, 2nd

Edition. Kluwer Academic Publishers, Boston, MA, 2004.
[4] Property Specification Language. http://www.eda.org/ieee-1850/.
[5] M. Lahbib, R. Kamdem, M. Benalycherif, and R. Tourki. An Automatic

ABV Methodology Enabling PSL Assertions across SLD Flow for SOCs
Modeled in SystemC. Computers and Electrical Engineering, 31(4):282–
302, 2005.

[6] A. Habibi and S. Tahar. Towards An Efficient Assertion Based Verification
of SystemC Designs. In Proc. of HLDVT, pages 19–22, 2004.

[7] W. Ecker, V. Esen, T. Teininger, M. Velten, and M. Hull. Interactive Pre-
sentation: Implementation of A Transaction Level Assertion Framework
in SystemC. In Proc. of DATE, pages 894–899, 2007.

[8] L. Pierre and L. Ferro. A Tractable and Fast Method for Monitor-
ing SystemC TLM Specifications. IEEE Transactions on Computers,
57(10):1346–1356, 2008.

[9] A. Kasuya and T. Tesfaye. Verification Methodologies in a TLM-to-RTL
Design Flow. In Proc. of DAC, pages 199–204, 2007.

[10] N. Bombieri, F. Fummi, and G. Pravadelli. On the Evaluation of
Transactor-Based Verification for Reusing TLM Assertions and Test-
benches at RTL. In Proc. of DATE, pages 1–6, 2006.

[11] N. Bombieri, F. Fummi, G. Pravadelli, and J. Marques-Silva. Towards
Equivalence Checking Between TLM and RTL Models. In Proc. of

MEMOCODE, pages 113–122, 2007.
[12] M. Chen and P. Mishra. Property Learning Techniques for Efficient Gen-

eration of Directed Tests. IEEE Transactions on Computers, 60(6):852–
864, 2011.

[13] M. Chen, X. Qin, H. Koo and P. Mishra. System-Level Validation: High-
Level Modeling and Directed Test Generation Techniques. Springer, 2012.

[14] SystemVerilog Assertion Homepage. http://www.eda.org/sv-ac/.
[15] F. Ferrandi, F. Fummi, L. Gerli and D. Sciuto. Symbolic Functional

Vector Generation for VHDL Specifications. In Proc. of DATE, pages
442–446, 1999.

[16] D. Große, M. Groß, U. Kühne and R. Drechsler. Simulation-Based
Equivalence Checking Between SystemC Models at Different Levels of
Abstraction. In Proc. of GLSVLSI, pages 223–228, 2011.

[17] S. Vasudevan, J. A. Abraham, V. Viswanath, and J. Tu. Automatic
Decomposition for Sequential Equivalence Checking of System Level
and RTL Descriptions. In Proc. of MEMOCODE, pages 71–80, 2006.

[18] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. Communication of ACM, 21(7):558–565, 1978.

[19] R. L. Sites. Alpha AXP Architecture. Communication of ACM,
36(2):33–44, 1993.

[20] SYNOPSYS VCS Verification Library. http://www.synopsys.com.
[21] M. Chen, P. Mishra, and D. Kalita. Automatic RTL Test Generation

from SystemC TLM Specifications. ACM Transactions on Embedded

Computing Systems (TECS), 11(2):38, 2012.

