
Temperature-aware Task Partitioning for Real-Time
Scheduling in Embedded Systems∗

Zhe Wang, Sanjay Ranka and Prabhat Mishra
Dept. of Computer and Information Science and Engineering

University of Florida, Gainesville, USA
Email: {zhwang, sanjay, prabhat}@cise.ufl.edu

Abstract—Both power and heat density of on-chip systems are in-
creasing exponentially with Moore’s Law. High temperature negatively
affects reliability as well the costs of cooling and packaging. In this
paper, we propose task partitioning as an effective way to reduce the
peak temperature in embedded systems running either a set of periodic
heterogeneous tasks with common period or periodic heterogeneous
tasks with individual period. For task sets with common period,
experimental results show that our task partitioning algorithms is able
to reduce the peak temperature by as much as 5.8oC as compared to
algorithms that only use task sequencing. For task sets with individual
period, EDF scheduling with task partitioning can also lower the peak
temperature, as compared to simple EDF scheduling, by as much as
6oC. Our analysis indicates that the numbers of additional context
switches (overhead) is less than 2 per task, which is tolerable in many
practical scenarios.

I. INTRODUCTION

The power density of on-chip systems has doubled every three
years and this rate is expected to increase as frequencies scale
faster than operating voltages [1]. This makes thermal management
a significant design challenge for microprocessors. Rise in on-chip
temperature directly impacts the performance and time-to-failure of
switching devices. This is accentuated by the fact that the cost of
cooling increases super-linearly with the rise of power consumption
[2]. Also, the cost of cooling and packaging is one of the significant
contributors to computer system [3]. High temperature increases
leakage power of the chip, and thereby potentially lead to thermal
runaway. It has been shown that a reduction in peak temperature of
10-15oC can double the lifetime of the chip [4].

Existing power-aware techniques do not address the temperature
issues in embedded systems. The main reason is that the power
distribution of multiprocessors is not uniform. Localized heating
occurs much faster than chip-wide heating, leading to nonuniform
temperature distribution on the chip with localized high-temperature
hot spots and spatial gradients [5]. Traditional methods to control
the on-chip temperature is to employ better packaging and cooling
techniques (e.g., active fan cooling, water cooling and heat pipe).
These active cooling systems may not always be suitable for
embedded systems because of the space and battery limitations.
Building thermal analysis ability into EDA flow allows the system
to address the impact of temperature on various on-chip parameters
and incorporate effects of non-uniform thermal profiles during IC
design process. However, such technologies are unable to deal with
a variety of runtime situations.

In this paper, we focus on software approaches for thermal
management. These approaches are flexible and do not have some
of the limitations that are described above. The processor thermal
behavior can be effectively modeled using RC model [5]. If the
average power of a processor is P over a time period t, then the
transient temperature T (t) at the end of this period, using this

∗This work was partially supported by NSF grant CCF-0903430 and SRC
grant 2009-HJ-1979.

model, is given by:

T (t) = P ×R+ TA − (P ×R+ TA − Ti)e
−t/RC (1)

where R is the thermal resistance and C is the thermal capacitance,
TA is the ambient temperature and Ti is the initial temperature.

Given a particular chip and its outside environment, ambient
temperature, thermal resistance and capacitance are fixed. Based
on the parameters of Equation (1), there are three major factors
affecting the on-chip transient temperature: average power of the
processor, initial temperature and execution time. Dynamic Voltage
and Frequency Scaling (DVFS) can be used to reduce the power
consumption by lowering the supply voltage and operating fre-
quency, thereby reduce the on-chip temperature [6]–[11]. However,
DVFS faces a serious problem in time-constrained applications.
Temperature aware task sequencing algorithm, which reduces the
initial temperature, developed in [12] can reduce peak temperature
compared to a random sequence. However, temperature aware task
sequencing fails to reduce temperature in cases when one or more
of the “hot” 1 tasks are long. The algorithm to defer execution of
hot tasks [13] fails to reduce temperature in the same situation. This
is because when the execution time of a “hot” task is too long, it
can lead to a high steady-state temperature irrespective of the initial
temperature.

We propose to partition the “hot” tasks into multiple subtasks
and interleave these subtasks with “cool” tasks to reduce the overall
maximum temperature (see Figure 2). The focus of this paper is to
use this technique effectively to reduce the maximum temperature.
To the best of our knowledge, our work is the first attempt to
develop efficient task partitioning algorithms to demonstrate sig-
nificant temperature reduction. In this paper, we propose a heuristic
task partitioning algorithm using “cool” tasks to interleave “hot”
tasks for a periodic set of tasks with common period. We also
propose another heuristic task partitioning algorithm for a periodic
set of tasks with individual period. Finally, we provide a thorough
evaluation and comparison to show how task partitioning can assist
in thermal-aware management problems. Experimental results show
that our algorithm outperforms the task sequencing algorithm [12]
by reducing the peak temperature by as much as 6oC.

The rest of the paper is organized as follows. Section II describes
the background of thermal aware analysis. Section III introduces the
problems of periodic tasks with common and individual period, and
proposes heuristic task partitioning algorithms to solve them. Sec-
tion IV compares these algorithms with task sequencing algorithm
and EDF algorithm, respectively. Section V concludes the paper.

II. PRELIMINARIES

In this section, we briefly describe three related concepts. First,
we discuss how to measure the thermal profile of a task. Next,

1We define “hot” tasks as tasks with higher average power consumption,
and “cool” tasks as tasks with lower average power consumption.



we present how to analyze the thermal profile of a task sequence.
Finally, we define the peak temperature of a task sequence.

A. Thermal profile of individual tasks

The basic thermal equation has already been introduced in
Equation (1). By letting t → ∞ in Equation (1), we can get the
steady-state temperature:

TS = P ×R+ TA (2)

Based on our experiments, it takes less than 1 second to
reach steady-state temperature for a 1.5GHz processor with
product of thermal resistance and thermal capacitance to be
0.2053 Joules/Watt.

B. Thermal profile of task sequences

Consider a periodic set of heterogeneous tasks (i.e., tasks with
different thermal profiles), with the execution time of these tasks
given by c1, c2, ..., cN . The periods of these tasks are given by
p1, p2, ..., pN . The average power consumption during execution
time is given by P1, P2, ..., PN . Suppose these tasks are ordered in
a particular sequence S =< τ1, ..., τN >. The hyper-period of these
tasks is defined by LCMN

i=1{pi}, where LCM stands for the least
common multiple. By executing these tasks in a hyper-period for a
larger number of iterations (they are periodic tasks), the temperature
of these tasks will rise from initial temperature and reach a final
temperature, where the thermal profile of the hyper-period exhibits
a recurring pattern [12]. We call this steady-state the hyper-period
steady-state. Using the above arguments, we can analyze the thermal
profile of one hyper-period sequence, other hyper-period sequences
will have exactly the same thermal profile as this one.

C. Peak temperature of task sequences

Using the above simplifications, we have the final temperature of
each task as follows:

T1 = Pi ×R+ TA − (Pi ×R+ TA − TN )e−c1/RC

· · ·
TN = Pi ×R+ TA − (Pi ×R+ TA − TN−1)e

−c1/RC (3)

As we can see, the temperature in Equation (1) is a monotonic
function, when Pi×R+TA > Ti, the temperature of the processor
increases during the task execution time and vice versa. Therefore,
either Ti or T (t) is the maximum temperature during the execution
time of the task. Thus, we define the maximum final temperature of
tasks in one hyper-period as the peak temperature of the sequence.

peak temperature = max{T1, T2, · · · , TN} (4)

III. TASK PARTITIONING ALGORITHMS

There are two major challenges developing algorithms that use
task partitioning to reduce peak temperature:

1) Number of Partitions: A task can be partitioned into a
large number of very small pieces. However, this may result
in significant overhead of preemption and restart. Choosing
the right number of partitions that carefully tradeoffs the
number of partitions and the resultant temperature reduction
is important.

2) Sequencing of Subtasks: A reordering of “hot” and “cool”
tasks has to ensure that the subtasks of a given task maintain
the sequential order. For example if a task A is decomposed
into subtasks A1, A2 and A3. A1 should always be executed
before A2, and A2 should always be executed before A3.

Besides the obvious novelty of proposing a partitioning approach for
addressing the thermal issues, the paper develops novel algorithms
to address the following two broad scenarios:

1) A periodic set of tasks with common period. All the tasks
have the same arrival time and deadline.

2) A set of periodic tasks with individual period. Each task may
have different arrival time and deadline.

In this section, we first give an illustrative example showing that
the peak temperature of task partitioning algorithm is less than that
of task sequencing algorithm [12]. Assume that two tasks, τ1 and
τ2, have average power consumption P1 and P2, respectively. Their
execution times are t1 and t2, t1, t2 > 0. Without loss of generality,
we assume P1 < P2. Therefore, τ1 is a “cool” task and τ2 is a
“hot” task. Based on the task sequencing algorithm [12], as Figure 1
shows, the “hot” task is followed by a “cool” task. The temperature
at time t is denoted as T (t), t ∈ [0, t1 + t2]. Thus, the initial
temperature is T (0). The ambient temperature is TA.

��������	�
��


�������������
�


����������� ����������

�
��

�

�
��

�
�� �

��
�
��

�
��

�
�

�
�

�
��

�
��

�
��

�
��

Fig. 1. An example of the task sequencing and task partitioning. There
are two tasks in task sequencing: a “cool” task τ1 followed by a “hot” task
τ2. The execution time of τ1 and τ2 are t1 and t2, respectively. These
two tasks are partitioned into four subtasks in task partitioning. The (task,
execution time) sequence is (τ11, t11), (τ21, t21), (τ12, t12), (τ22, t22),
where t1 = t11 + t12, t2 = t21 + t22.

We also introduce the task partitioning. We assume that both
task τ1 and τ2 are partitioned into two subtasks. By interleaving
the subtasks, the (task, execution time) sequence is (τ11, t11), (τ21,
t21), (τ12, t12), (τ22, t22) (see Figure 1). Figure 2 shows the transient
temperature of task sequencing and task partitioning. We can see
that task partitioning can achieve lower peak temperature because
the “cool” task absorbs the heat generated by the “hot” task.

����������	
�	�
������������	�	�

Fig. 2. Transient temperature comparison between the task sequencing and
task partitioning. In task sequencing, the temperature after τ1 finishes is
T (t1). The temperature after τ2 finishes is T (t1+ t2). In task partitioning,
the temperature after τ11 finishes is Tp(t11). The temperature after τ21
finishes is Tp(t11+t21). The temperature after τ12 finishes is Tp(t1+t12).
The temperature after τ22 finishes is Tp(t1 + t2).



A. Periodic tasks with common period

Consider a periodic set of N heterogenous tasks L, let Pi be the
average power consumption during the execution time ci of task τi.
The goal is to find a sequence of these tasks using task partitioning
to minimize the peak temperature. Due to the fact that all the tasks
have the same common period, each task can be moved freely within
the period. Furthermore, we need to analyze only one period, other
periods will be the same as this one.

Methods that only reorder the sequence of tasks (such as TSA
[12]) fail to further reduce the peak temperature when some “hot”
tasks of long enough execution time can reach close to its steady-
state temperature and this temperature is relatively independent of
the initial temperature. We propose a task partitioning algorithm to
reduce the temperature using preemption. The main idea of task
partitioning algorithm is to partition the “hot” tasks into several
subtasks and interleaving them with “cool” tasks to absorb the heat
generated by “hot” subtasks. To partition “hot” tasks into more
subtasks and generate enough “cool” subtasks to interleave with
them, we divide the tasks into categories based on their power
profile. The tasks in higher categories are partitioned into more
subtasks. The subtasks in lower categories act as “cool” tasks
and interleave with subtasks in higher categories. Details of the
algorithm is shown in Algorithm 1.

Algorithm 1 Task Partitioning Algorithm (TPA)
1: Sort the tasks based on the power profile from coolest to hottest
2: Group the sorted tasks into k categories with equal number of

tasks. These categories are numbered from 1 to k.
3: Partition tasks in category j, 2 ≤ j ≤ k, into 2i−1 equal

subtasks. Partition tasks in category 1 into 2 equal subtasks.
4: for i = 1 to k − 2 do
5: Interleave tasks of ith category with tasks of i+1th category

to form the new i+ 1th category
6: end for// Now only two categories are left. The first one is

category k and the second one is a new category k−1 derived
by combining category 1 through k − 1.

7: Insert the subtasks in new category k − 1 into the intervals of
tasks in category k.

First, we sort the tasks based on their power consumption from
coolest to hottest. In the second step, we group the sorted tasks
into k categories from category 1 to category k. Category 1 is
the category of coolest n/k tasks, and category k is the category
of hottest n/k tasks. The reason that we divide the tasks into
different categories is that we need to partition “hotter” tasks
into more subtasks to reduce the peak temperature. We also need
enough “cooler” subtasks to separate the “hot” subtasks (see Figure
3). By having different categories of tasks, we can achieve both
targets simultaneously. In this paper, we assume that when a task is
partitioned into several small subtasks, the subtasks have the same
average power consumption as the original task. We used Wattch
[14] to compute average power of the subtasks. As expected, these
numbers are comparable with the average power of the original tasks
in our benchmark set.

In the next step, we partition tasks in category j, 2 ≤ j ≤ k into
2j−1 equal subtasks. The tasks in category 1 are partitioned into 2
equal subtasks. After recursively interleaving tasks in ith category
with tasks in i+1th category, there are only two categories left. The
first one corresponds to category k and the second one is derived by
combining category 1 through k−1. For the sake of convenience, we
call this combined set as new category k−1. We now have n/k·2k−1

��������	
��

��������	
���

��������	
���

��

��

��

�� �� �� ��

�� ��

�� ��

Fig. 3. Task Partitioning Algorithm (Step 1): Sort the tasks based on
the power consumption, group the tasks into 3 categories. Task in category
3 is the hottest and task in category 1 is the coolest. Partition tasks into
subtasks. Task in category 3 is partitioned into 23−1 = 4 equal subtasks.
Task in category 2 is partitioned into 22−1 = 2 equal subtasks. Task in
category 1 is partitioned into 2 equal subtasks.

tasks in category k, and n/k ·2k−1 intervals between these subtasks.
We also have n/k · (2 + 2+ 4+ ...+2k−2) = n/k · 2k−1 tasks in
new category k−1. Therefore, we have enough tasks from category
k − 1 to interleave with the tasks in category k (see Figure 4). In
the last step, we insert the tasks of new category k − 1 into the
intervals of category k (see Figure 5).

�� �� �� ��

�� ��

�� ��

��

��

��

�� �� �� ��

�� ���� ��

��

���

Fig. 4. Task Partitioning Algorithm (Step 2): Interleave subtasks of category
1 with subtasks of category 2 as the new category 2. Now we have enough
subtasks from category 2 to interleave with the subtasks of category 3.

�� �� �� ���� �� �� ��

�� �� �� ��

�� ���� ��

��

����

Fig. 5. Task Partitioning Algorithm (Step 3): We insert subtasks of new
category 2 into intervals of subtasks of category 3 to get final sequence.

B. Periodic tasks with individual period

Consider a set of periodic N heterogeneous tasks in a set L where
each task has its own period pi. The arrival time ai is equal to the
start time of its period and the deadline di is equal to the end time
of its period. Recall that the temperature profile of one hyper-period
is identical to that of other hyper-periods. We only need to analyze
the task instances within one hyper-period.

Theoretically, each periodic task corresponds to an infinite se-
quence of identical activities, called instances. The first instance of
each periodic task arrives at time 0. Let Pi be the average power
consumption during the execution time ci of task τi. The goal is to
find a sequence of these tasks using task partitioning to minimize
the peak temperature.

The algorithm developed in the previous section does not apply
to this scenario as the arrival and deadline constraints have to be
carefully addressed. This additional constraint limits the task order-
ing that can be used. In this section, we develop a novel algorithm
that integrates task partitioning technique into EDF scheduler2. We
first use the EDF scheduler to schedule the tasks to get an initial

2Earliest-Deadline-First (EDF) [15] is a dynamic scheduling algorithm
that schedules the tasks according to their absolute deadlines. Tasks with
earlier deadlines will be executed at higher priorities.



sequence Si. Based on the initial sequence, we can use Equation (3)
to get the thermal profile of the task sequence. Using this thermal
profile, let the task instance where peak temperature occurs be called
“hot” task instance, denoted by τh.

The peak temperature is reduced by partitioning τh into several
subtask instances interleaved by other “cool” task instances. Because
the “hot” task instance τh cannot move before its arrival time or
after its deadline, we only need to analyze the interval between
the arrival time and deadline of τh, represented as aτh and dτh ,
called hot interval. All other task instances except the “hot” task
instance in the hot interval are called “cool” task instances, denoted
by τc. It is worth noting that this definition of “hot” and “cool”
tasks is substantially different as compared to the previous section
that considered periodic tasks with common period. A high level
description of the EDF scheduling with our task partitioning is given
in Algorithm 2.

Algorithm 2 EDF with task partitioning
1: Use EDF scheduler to get the initial schedule of these tasks
2: while loop for M times do
3: Calculate the thermal profile of task sequence, find the “hot”

task instance τh where peak temperature occurs.
4: Partition the task instances whose execution period overlap

with the arrival time or deadline of the “hot” task instance.
5: In the hot interval, remove all the subparts of τh and calculate

the available slack for each “cool” task instance.
6: while there are parts of τh unassigned and some “cool” task

instance has available slack do
7: for each “cool” task instance τci in the hot interval do
8: if slacki > 0 then
9: Append one unit of τh into τci and update the slack

for all “cool” task instances
10: end if
11: end for
12: end while
13: If there is still some subparts of τh unassigned, scan the hot

interval and assign them uniformly into the idle time.
14: end while

There are two major steps that are required for the Algorithm 2
and are as follows:

a) Partition the task instances whose execution period overlaps
with the arrival time and/or deadline of the “hot” task instance:
After finding the task instance τh, we can limit our analysis to the
hot interval. It is likely that some task instances are across either
aτh or dτh . We partition such task instances across these time lines
using the following equation. If some task τk across the time line
(either aτh or dτh ) γ, that is, sτk < γ < eτk , where sτk and eτk
are the start time and end time of τk, respectively. We have:

τk|[sτk , eτk ] → τ ′
k|[sτk , γ], τ ′′

k |[γ, eτk ] (5)

Where τ ′
k|[aτk , γ] means task τ ′

k starts executing at sτk and will
finish at γ.

The task instance τk is partitioned into at most 2 subtask
instances, τ ′

k and τ ′′
k based on the time line. We limit our further

analysis to the subtask instance that is in the hot interval.
b) Slack allocation: EDF, in general, can break up a task

into many subtasks to ensure the arrival and deadline constraints.
In particular, “hot” task instance may have been decomposed into
multiple subtasks. Thus there may exist more than one part of “hot”
task instance τh in the hot interval.

���

����� ������� �� �� �� ��

��� ���

	
���
��
�����


���

���

�� �� �� ����

���

��

��� ���

���������

����� �����

Fig. 6. First portion of the slack allocation step in the EDF based
partitioning algorithm. Peak temperature occurs at task instance τh. aτh
and dτh are the arrival time and deadline of τh, respectively. There are two
parts of τh: τh1

, τh2
. Both τh1

and τh2
are removed from the sequence.

Then other “cool” tasks instances (τc1 - τc5) in the hot interval have
more flexibility. Therefore, the slacks of these “cool” task instances can be
calculated (For ease of presentation in this limited space, only τc2’s arrival
time aτ2 , deadline dτ2 and slack are shown).

We first scan the hot interval and remove all the parts of the
“hot” task instances from hot interval and combine them into one
task (see Figure 6). Due to this step, other “cool” task instances in
the hot interval will have more flexibility in time constraints. The
extent of flexibility available under time constraints is quantified
by the slack. Slack is defined by the difference between Earliest
Start Time (EST) and Latest Start Time (LST). The definition of
the EST, LST and slack of “cool” task instance τi can be computed
as follows:

ESTi = max(aτh , aτi , ESTpredi + cpredi)

LSTi = min(dτh , dτi , LSTsucci)− ci

slacki = LSTi − ESTi (6)

where predi is the predecessor of τi defined by EDF schedule,
succi is the successor of τi defined by EDF schedule. Here, aτi and
dτi are the arrival time and deadline of task instance τi, respectively,
and ci is the execution time of τi.

���

����� ������� �� �� �� ��

��� ���

	
���
��
�����


���

���

�� �� �� ����

���
��

��� ���

���������

����������

Fig. 7. Second portion of the slack allocation step in the EDF based
partitioning algorithm. Calculating the slacks of all the tasks in the hot
interval. For each task τci, append one unit of τh into τci at a time and
update the slacks. When no slacks left and there are still some parts of τh
unassigned, scan the hot interval and assign them uniformly into the idle
time.

After the available slacks have been calculated for all the “cool”
task instances, we insert the “hot” task instance back into these
slacks as uniformly as possible. This is done by appending one unit
slack of τh to each “cool” task instance at a time (one unit slack is a
small constant representing a small period of time). If there is still
some subparts of τh unassigned, there must exist some idle time
that no “cool” task instance can have slack on it. The remaining
part of the τh is uniformly decomposed into these idle times (see



Figure 7).
The above process corresponds to a single iteration of the

algorithm. This process is applied iteratively for several iterations.
In each iteration, a potentially new “hot” task instance is chosen
based on the thermal profile. The number of iterations or loops that
should be iterated over can be fixed or chosen based on the level of
improvement achieved. For our experiments, we found that 10-15
iterations are sufficient for deriving most of the benefits.

IV. EXPERIMENTAL RESULTS

We used a platform that is based on ARM Cortex A8 [16]: 2-
width in-order issue, 32KB instruction and data caches for evalu-
ating our algorithms. The clock speed was set to 1.5GHz. Using
default thermal configurations in HotSpot [17] and the floorplan
and silicon area of ARM Cortex A8, the thermal resistance and
capacitance can be computed as 1.83oC/Watt and 0.112J/oC,
respectively [12]. The ambient temperature was set at 45.15oC. We
used the architecture-level power simulator Wattch [14] to obtain
the power consumption of tasks.

A. Tasks with Common Period

For tasks with common period, synthetic tasks are generated to
find the profitable number of categories to achieve a lower peak
temperature and real benchmarks are generated to compare the
performance between task sequencing algorithm (denoted by TSA
[12]) and our task partitioning algorithm (denoted by TPA). For
tasks with individual period, real benchmarks are generated.

1) Synthetic Tasks: Tasks were generated to compare the thermal
reduction achieved by our task partitioning algorithm with different
number of categories. The numbers of clock cycles of tasks are uni-
formly distributed in [1.5×108, 1.45×109], the power consumption
of these jobs are uniformly distributed in [5, 25] Watt. The numbers
of jobs tested are 32, 64, 128, 192, 256. The numbers of categories
in task partitioning are 2, 3, 4, 5.

 80

 81

 82

 83

 84

 85

 86

 87

2 3 4 5

Pe
ak

 T
em

pe
ra

tu
re

 (
C

el
si

us
)

Number of Categories

TPA

Fig. 8. Peak temperature comparison between different number of cate-
gories.

Figure 8 shows the peak temperature comparison using different
number of categories for the task partitioning algorithm. The number
of tasks used in this scenario is 64. Recall from the task partitioning
algorithm, different number of categories will lead to different
number of partitioning within each categories. It is necessary to
find a profitable number of categories to achieve a lower peak
temperature. The results show that 3 categories are enough to
achieve most of the benefits for reducing the peak temperature.
In fact using larger number of categories may result in slightly
higher temperature. This is because when the number of categories
is large, the number of tasks in the highest category is fewer. Some
tasks originally in the highest category will be pushed into the
second highest category. These tasks, who are already very hot,

are treated as “cooler” tasks to interleave with tasks in the highest
category. However, these tasks cannot absorb enough heat from the
“hot” tasks. This can lead to the algorithm effectively not able to
reduce the temperature significantly. Our experiments suggest that
3 categories should be ideal for most practical scenarios.

2) Real Benchmarks: We use Mibench [18] and Mediabench [19]
to form four sets of the benchmark tasks. The characteristics of these
benchmarks are shown in Table I.

TABLE I
THE FOUR SETS OF BENCHMARK TASKS WITH COMMON PERIOD

set1 patricia, adpcm, rijndael, susan, crc, FFT, dijkstra, epic
set2 patricia, djpeg, adpcm, sha, FFT, rijndael, susan, rijndael
set3 sha, djpeg, FFT, rijndael, dijkstra, epic, rijndael, susan
set4 rijndael, dijkstra, FFT, gsm, sha, patricia, pegwit, djpeg

 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92

Set 1 Set 2 Set 3 Set 4
Pe

ak
 T

em
pe

ra
tu

re
 (

C
el

si
us

)
Set of Tasks

TSA
TPA

Fig. 9. Peak temperature comparison between task sequencing algorithm
and task partitioning algorithm on real tasks. Number of categories is 3.

Figure 9 shows the peak temperature comparison between task
sequencing algorithm and our task partitioning algorithm on real
tasks for 3 categories. The task partitioning algorithm reduces
the peak temperature by as much as 5.8oC compared with task
sequencing algorithm. Given the above results, a choice of 3
categories should generally provide a good tradeoff between low
context switching overhead and high reduction in peak temperature
as discussed in Section IV-C.

B. Tasks with Individual Period

For tasks with individual period, we also use Mibench [18] and
Mediabench [19] to form four sets of the benchmark tasks. These
benchmarks are shown in Table II. Each periodic task has individual
periods. We set the deadline of all tasks to be the end of its own
period. Also, we assume that arrival time of the first instance of all
tasks is 0.

 78

 80

 82

 84

 86

 88

 90

 92

Set 1 Set 2 Set 3 Set 4

Pe
ak

 T
em

pe
ra

tu
re

 (
C

el
si

us
)

Set of Tasks

EDF
EDFp

Fig. 10. Peak temperature comparison between EDF and EDFp (M = 15).

We compare our approach with EDF that does not directly address
thermal issues. Figure 10 shows the peak temperature comparison



TABLE II
THE FOUR SETS OF BENCHMARK TASKS WITH INDIVIDUAL PERIOD

Set Number Benchmark Execution Time
(Clock Cycles)

Period (Clock
Cycles)

set1 patricia 1.32× 108 7.2× 108

adpcm 1.81× 107 1.35× 108

susan 1.48× 107 2.66× 108

crc 2.13× 108 9.73× 108

dijkstra 2.9× 107 1.74× 108

set2 pegwit 2.12× 107 2.72× 107

gsm 6.35× 106 9.52× 107

epic 3.21× 107 1.44× 108

crc 2.13× 108 9.73× 108

patricia 1.32× 108 7.2× 108

set3 gsm 6.35× 106 9.52× 107

patricia 1.32× 108 7.2× 108

susan 1.48× 107 2.66× 108

djpeg 1.57× 107 9.42× 107

adpcm 1.81× 107 1.35× 108

set4 rijndael 4.5× 107 3.6× 108

susan 1.48× 107 2.66× 108

FFT 1.54× 108 1.1× 109

sha 4.8× 107 2.7× 108

adpcm 1.81× 107 1.35× 108

between EDF and our approach, called EDFp. The experimental
results show that the EDFp outperforms EDF by as much as 6oC.

C. Context Switching Overhead

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

2 3 4 5

A
ve

ra
ge

 C
on

te
xt

 S
w

itc
he

s

Number of Categories

TPA

Fig. 11. Average number of context switches per task of task partitioning
algorithm for various number of categories.

We first analyze the context switching overhead introduced by
partitioning the tasks with common period. Figure 11 shows the
number of context switch per task for task partitioning algorithm
using variable number of categories. For task partitioning algorithm
with 3 categories (which is shown most profitable in Figure 8), the
number of context switches is about 1.8 per task, which is tolerable
in many practical scenarios 3.

Second, we analyze the context switching overhead for tasks with
individual periods. Figure 12 shows the average number of context
switches per task between EDF and EDFp for various sets of tasks.
The overhead for EDFp (less than 2 context switches per task) is
tolerable for most practical scenarios.

V. CONCLUSION

Both power and heat density of on-chip systems are increasing
exponentially with Moore’s Law. High temperature negatively af-
fects reliability as well the costs of cooling and packaging. In this
paper, we propose task partitioning as an effective way to reduce

3Context switch time on ARM cpu can be less than 10us [20]

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

Set 1 Set 2 Set 3 Set 4

A
ve

ra
ge

 C
on

te
xt

 S
w

itc
he

s

Set of Tasks

EDF
EDFp

Fig. 12. Average number of context switches per task comparison between
EDF and EDFp for various sets of tasks.

the peak temperature in the embedded systems. We developed novel
algorithms that address two broad scenarios: (1) a set of periodic
tasks with common period and (2) a set of periodic tasks with
individual period. Experimental results show that our first algorithm
outperforms the task sequencing algorithm [12] by reducing the
peak temperature by as much as 6oC. For task sets with individual
period, EDF scheduling with task partitioning can lower the peak
temperature, as compared to simple EDF scheduling, by as much as
6oC. Our analysis indicates that the number of additional context
switches (overhead) is less than 2 per task, which is tolerable in
many practical scenarios. These results are promising and clearly
demonstrate that task partitioning is an effective way to reduce the
peak temperature in embedded systems.

REFERENCES

[1] K. Skadron et al., “Temperature-aware computer systems: Opportuni-
ties and challenges,” IEEE Micro, vol. 23, no. 6, pp. 52–61, 2003.

[2] S. Gunther et al., “Managing the impact of increasing microprocessor
power consumption,” Intel Technology Journal, 5(1), pp. 1–9, 2001.

[3] S. Gunther et al., “Managing the impact of increasing microprocessor
power consumption,” Intel Technology Journal, vol. 1, pp. 1–9, 2001.

[4] Failure mechanisms and models for semiconductor devices, jedec.org.
[5] K. Skadron et al., “Temperature-aware microarchitecture: Modeling

and implementation,” TACO, vol. 1, no. 1, pp. 94–125, 2004.
[6] D. Brooks and M. Martonosi, “Dynamic thermal management for high-

performance microprocessors,” in HPCA, 2001, p. 0171.
[7] R. Rao and S. Vrudhula, “Efficient online computation of core speeds

to maximize the throughput of thermally constrained multi-core pro-
cessors,” in ICCAD, 2008, pp. 537–542.

[8] M. Kadin and S. Reda, “Frequency planning for multi-core processors
under thermal constraints,” ISLPED, 2008, pp. 213–216.

[9] S. Murali et al., “Temperature control of high-performance multi-core
platforms using convex optimization,” in DATE, 2008, pp. 110–115.

[10] T. Ebi et al., “Tape: thermal-aware agent-based power economy for
multi/many-core architectures,” ICCAD, 2009, pp. 302–309.

[11] R. Ayoub and T. Rosing, “Predict and act: dynamic thermal manage-
ment for multi-core processors,” in ISLPED, 2009, pp. 99–104.

[12] R. Jayaseelan and T. Mitra, “Temperature aware task sequencing and
voltage scaling,” in ICCAD, 2008, pp. 618–623.

[13] J. Choi et al., “Thermal-aware task scheduling at the system software
level,” in ISLPED, 2007, pp. 213–218.

[14] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework
for architectural-level power analysis and optimizations,” Computer
Architecture News, vol. 28, no. 2, p. 94, 2000.

[15] P. Pillai and K. Shin, “Real-time dynamic voltage scaling for low-
power embedded operating systems,” in SOSP, 2001, p. 102.

[16] ARM, www.arm.com/products/processors/cortex-a/cortex-a8.php.
[17] University of Virginia, http://lava.cs.virginia.edu/HotSpot/.
[18] M. Guthaus et al., “Mibench: A free, commercially representative

embedded benchmark suite,” in WWC, 2001, pp. 3–14.
[19] C. Lee, M. Potkonjak, and W. Mangione-Smith, “Mediabench: a

tool for evaluating and synthesizing multimedia and communicatons
systems,” in MICRO, 1997, pp. 330–335.

[20] SEGGER, http://www.segger.com/cms/context-switching-time.html.


