
Intra-Task Dynamic Cache Reconfiguration
*

Hadi Hajimiri, Prabhat Mishra
Department of Computer & Information Science & Engineering

University of Florida, Gainesville, Florida, USA

{hadi, prabhat}@cise.ufl.edu

ABSTRACT

Optimization techniques are widely used in embedded systems design

to improve overall area, performance and energy requirements. Dy-

namic cache reconfiguration (DCR) is very effective to reduce energy

consumption of cache subsystems. Finding the right reconfiguration

points in a task and selecting appropriate cache configurations for each

phase are the primary challenges in phase-based DCR. In this paper,

we present a novel intra-task dynamic cache reconfiguration technique

using a detailed cache model, and tune a highly-configurable cache on

a per-phase basis compared to tuning once per application. Experi-

mental results demonstrate that our intra-task DCR can achieve up to

27% (12% on average) and 19% (7% on average) energy savings for

instruction and data caches, respectively, without introducing any

performance penalty.1

1. INTRODUCTION
Energy conservation has been a primary optimization objective in

designing embedded systems. Several studies have shown that

memory hierarchy accounts for as much as 50% of the total energy

consumption in many embedded systems [1]. Unlike desktop-based

systems, embedded systems are designed to run a specific set of well-

defined applications (tasks). Moreover, different applications require

highly diverse cache configurations for optimal energy consumption in

the memory hierarchy. Thus it is possible to have a cache architecture

that is tuned for those applications to have both increased performance

as well as lower energy consumption. Traditional dynamic cache re-

configuration (DCR) techniques reduce cache energy consumption by

tuning the cache to applications need during runtime on task-by-task

basis. For each task only one cache configuration is assigned to the

task, and it is not changed during the task execution. These techniques

are referred as inter-task DCR. Studies have shown that inter-task

DCR can achieve significant energy savings [2].

Due to task-level granularity, inter-task DCR loses the energy savings

opportunity that can be achieved by increasing the reconfiguration

granularity. A modern processor executes billions of instructions per

second and a program’s behavior can change many times during that

period. The behavior of some programs changes drastically, switching

between periods of high and low performance, yet system design and

optimization typically focus on average system behavior. Instead of

assuming average behavior, it is highly beneficial to model and opti-

mize phase-based program behavior. Intra-task tuning techniques

tweak system parameters for each application phase of execution.

Parameters are varied during execution of an application, as opposed

to keeping fixed as in an application-based (inter-task) tuning method-

ology. Furthermore, inter-task DCR is not beneficial in a single-task

environment (or in a multi-task environment where execution time of

one task is dominant) because the cache configuration is determined

on a per task basis. Since many small-size embedded-mobile applica-

tions are based on a single-task model, inter-task DCR cannot provide

the best possible energy savings for such systems.

These limitations lead to the idea of intra-task DCR where a given task

is partitioned into several phases, and different cache configurations

1 * This work was partially supported by NSF grant CCF-0903430 and

SRC grant 2009-HJ-1979.

are assigned for each phase. There have been limited attempts [3] [4]

for developing an intra-task DCR but they provide no systematic

methodology of selecting the best program locations where DCR can

be applied (phase detection). Furthermore, these approaches either

perform exhaustive exploration (can be infeasible in many scenarios)

or select suboptimal cache configurations. In this paper, we propose an

intra-task DCR approach based on static analysis of a target applica-

tion achieving significant improvements in energy consumption. It

also can be applied to a single-task environment since it reconfigures

the cache within each task. We propose a phase detection technique

that fully exploits drastic changes in program behavior and finds

boundaries between phases of high and low performance. In addition,

we propose a dynamic programming based cache assignment algo-

rithm that finds the optimal cache solution and reduces the time com-

plexity of design space exploration.

The rest of the paper is organized as follows. Section 2 provides an

overview of related research activities. Basic notations, cache and

energy model are described in Section 3. Our proposed intra-task DCR

methodology is presented in Section 4. Experimental results are dis-

cussed in Section 5. Finally, Section 0 6 concludes the paper.

2. RELATED WORK
DCR has been extensively studied in several works [5] [6] [7]. The

problem is to determine the best cache configuration for a particular

application. Most such methods configure cache size, line size, and

associativity for only a single level of cache. Existing techniques can

be classified into dynamic and static analysis. By dynamic analysis

different cache configurations are evaluated on-line (i.e., during

runtime) to find the best configuration. However, it introduces signifi-

cant performance/energy overhead which may not be feasible in many

embedded systems with real-time constraints. During static analysis,

variety of cache options can be explored thoroughly and the best cache

configuration is chosen for each application [5]. Regardless of the

tuning method, the predetermined best cache configuration can be

stored in a look-up table or encoded into specialized instructions [5].

The reconfigurable cache architecture proposed by Zhang et al. [8]

determines the best cache parameters by using Pareto-optimal points

trading off energy consumption and performance. Chen and Zou [9]

introduced a novel reconfiguration management algorithm to efficient-

ly search the large space of possible cache configurations for the op-

timal one.

Peng and Sun [3] introduced a phase-based self-tuning algorithm,

which can automatically manage the reconfigurable cache on a per-

phase basis. Their method used dynamic profiling of applications and

limited to only four choices of cache configurations for L1 cache.

Gordon-Ross et al. [4] proposed an intra-task DCR where each task is

partitioned into fixed-length timeslots. It [4] shows limited improve-

ments in the energy reduction (only 3% on average). Moreover, it

provides no systematic methodology for selecting the best program

locations where DCR can be profitable (programs divided into equal

phases). These techniques solved the cache assignment either by per-

forming exhaustive exploration (can be infeasible in many scenarios)

or selecting suboptimal cache configurations. Our methodology out-

performs existing approaches using novel phase detection and cache

selection algorithms.

3. BACKGROUND AND MOTIVATION

3.1 Inter-task versus Intra-task DCR

Fig. 1 illustrates how energy consumption can be reduced by using

inter-task (application-based) cache reconfiguration in a simple system

supporting three tasks. In application-based cache tuning, dynamic

cache reconfiguration happens when a task starts its execution or it

resumes from an interrupt (either by preemption or when execution of

another task completes). Fig. 1 (a) depicts a traditional system and Fig.

1 (b) depicts a system with a reconfigurable cache. For the ease of

illustration let’s assume cache size is the only reconfigurable parame-

ter of cache (associativity and line size are ignored). In this example,

Task1 starts its execution at time P1. Task2 and Task3 start at P2 and

P3, respectively. In a traditional approach, the system always executes

using a 4096-byte cache. We call this cache as the base cache

throughout the paper. This cache is the best possible cache configura-

tion (in terms of energy consumption) for this set of tasks. In Fig. 1(b),

Task1, Task2, and Task3 execute using 1024-byte cache starting at P1,

8192-byte cache starting at P2, and 4096-byte cache starting at P3,

respectively.

Although inter-task DCR provides significant energy savings com-

pared to using only the base cache, it has several practical limitations

as discussed in Section 1. Hence it may be more efficient in terms of

energy consumption to utilize different cache configurations in differ-

ent phases of a task. Fig. 1 (c) depicts intra-task DCR where reconfig-

uration can be done per phase basis. A task may need larger cache size

for only a small phase of execution. Increasing the cache size for this

phase would boost performance and decrease both cache misses and

energy consumption. However, in some of the program phases the

application may need a lower cache size thus the cache size can be

reduced without loss of performance to produce savings in energy

consumption. In these cases, intra-task DCR is able to fulfill cache

needs of application perfectly while minimizing the energy consump-

tion.

3.2 Energy Model

In this subsection, we describe the energy model for the reconfigura-

ble cache. We assume that DCR is available in the target system. Spe-

cifically, we have a highly configurable cache architecture, with re-

configurable parameters including cache size, line size and associativi-

ty, which can be tuned to m different configurations C = {c1, c2, c3, ... ,

cm}. Cache energy consumption consists of dynamic energy

and static energy
 [10]:

 . The number

of cache accesses num_accesses, cache misses num_misses and clock

cycles CC are obtained from simulation using SimpleScalar [11] for

any given task and cache configuration. Let and denote

the energy consumed per cache access and miss, respectively. There-

fore, we have:

Where
 is the static power consumption of cache. We collect

 and
 from CACTI [12] for all cache configurations and

adopt and other numbers for other parameters from [8].

4. INTRA-TASK DCR
We define a phase as a set of intervals (or time slices) within a pro-

gram’s execution that has similar behavior. The key observation for

discovering phases is that the cache behavior of a program changes

greatly during execution. We can find this phase behavior and classify

it by examining the number of cache misses in each interval. We col-

lect this information through static profiling of the program. We begin

the analysis of phases with an illustrative example of the time-varying

behavior of epic-encode from MediaBench [13]. To characterize the

behavior of this program, we have simulated its execution using a

1024-byte cache with one-way associativity and 32-byte line size. Fig.

2 shows the cache behavior of the program, measured in terms of

cache miss statistics using two cache configurations (C1 and C2).

Fig. 2: Instruction cache miss for epic-encode benchmark

Each point on the graph represents the frequency of instruction cache

misses taken over 100,000 instructions of execution (an interval). Two

important aspects can be observed from this graph. First, average be-

havior does not sufficiently characterize a program’s behavior in all

phases of execution. For example, in epic-encode the number of in-

struction cache misses varies by several orders of magnitude. Second,

the program can exhibit stable behavior for millions of instructions

and then suddenly change. As a result, epic-encode’s behavior alter-

nates greatly between phases. These two aspects, imply that signifi-

cant energy savings can be achieved by accurately reconfiguring the

cache to satisfy long-term execution behavior.

For epic-encode benchmark, we first need to find cache miss statistics

in order to find potential reconfiguration points. Note that the least

energy cache configuration for epic-encode benchmark is a 2048-byte

cache with associativity of 1 and line size of 32 (cache C2 in Fig. 2)

chosen by inter-task cache configuration method. From Fig. 2, it can

be observed that up to point A (around the dynamic instruction 12

million) miss rates are nearly the same for both caches C1 and C2.

Starting from A to point B the miss rates are greatly different. We find

0

2000

4000

6000

8000

3 6 10 13 16 19 22 25 29 32 35 38 41 44 C
ac

h
e

 m
is

se
s

Dynamic instructions (millions)

Cache C1: size:1024-byte, associativity: 1-way, line size: 32-byte

A DCB

0

2000

4000

6000

8000

3 6 10 13 16 19 22 25 29 32 35 38 41 44 C
ac

h
e

 m
is

se
s

Dynamic instructions (millions)

Cache C2: size: 2048-byte, associativity: 1-way, line size: 32-byte

A B DC

Fig. 1: DCR for a system with three tasks

1024

2048

4096

ca
ch

e
si

ze
 (

b
y
te

s)

Task1 Task2 Task3

8192

1024

2048

4096

8192

b) A system with inter-task DCR

a) A traditional system
P1 P2 P3

P1 P2 P3

ca
ch

e
si

ze
 (

b
y
te

s)

1024ca
ch

e
si

ze
 (

b
y
te

s)

2048

4096

8192

c) A system with intra-task DCR
P1 P2 P3

A and B as potential reconfiguration points for this example. For the

ease of illustration, let’s assume only configurations C1 and C2 are

available. Since C2 is larger than C1, C2 is beneficial for performance

and dynamic energy but detrimental for leakage energy compared to

C1. To reduce energy consumption we can run the program using con-

figuration C1 up to A then reconfigure the cache and use configuration

C2 from A to B and then again reconfigure the cache back to C1.

In this paper, with the aim of energy optimization, we present a meth-

od to enable automatic partitioning of a program’s execution into a set

of phases that will quantify the changing behavior over time. The goal

is that after finding phases, each phase would use a specific cache

configuration suitable for that phase to reduce energy consumption

without performance loss. We define the following terms that we will

use in the rest of the paper:

 An interval is a section of continuous execution, a time slice,

within a program. We chose intervals of equal length, as meas-

ured by the number of instructions executed during program exe-

cution. In this paper we choose 100,000 instructions as the length

of intervals2.

 A phase is a set of consecutive intervals within a program’s exe-

cution that have similar and stable behavior. Boundaries of each

phase are determined by reconfiguration points. For example,

Fig. 2 has three phases; start of execution to A, A to B, and B to

end of execution.

 A potential reconfiguration point is a point in the execution of a

program at which a noticeable and sudden change in program be-

havior happens going from one phase to another phase. For ex-

ample, A and B are potential reconfiguration points.

 The profitability of a reconfiguration point is a metric that shows

how well a reconfiguration point can distinguish two different

phases of a program. We use this metric for building a spectrum

of energy savings while the number of reconfigurations is lim-

ited. We describe this metric in Section 4.1.

Fig. 3 shows an overview of our intra-task DCR approach. Our ap-

proach has two major steps (represented by ovals): phase detection

and cache assignment. During a program’s lifetime it can execute

millions or billions of instructions each of which can be a reconfigura-

tion point. The challenge is to choose a small number of profitable

points from these millions of points. Moreover, the reconfiguration

overhead is not constant and is different based on the point where the

reconfiguration happens and can be found by actually reconfiguring

and flushing the cache at that point during simulation. Thus finding

the best set of reconfiguration points that is capable of separating pro-

gram phases and guarantees energy savings is a difficult problem. We

instead, find a set of potential reconfiguration points. Next, we choose

if reconfiguring the cache is feasible at each point and if yes to what

cache configuration. In order to find the potential reconfiguration

points we compare frequency of misses in each interval. In addition,

the energy consumption of a phase using a particular cache can vary

depending on whether the previous phase has executed using the same

cache (reconfiguration is needed if the cache is different). These are

the main challenges we address in our approach. In the remainder of

this section we explain each of these steps in detail.

4.1 Phase Detection

A phase is a set of consecutive intervals determined by two reconfigu-

ration points (starting interval and ending interval). Finding best pos-

sible set of potential reconfiguration points is the objective of this step.

First, we generate cache miss statistics (using simulation) for all pos-

sible cache configurations and find frequency of misses in each inter-

val. Next, we compute the difference of frequency of misses (for all

2 We chose the interval length to be small (100,000 instructions) to increase

granularity of cache miss information.

possible pairs of cache configurations) to discover the potential recon-

figuration points. The statistics for data and instruction caches are

gathered separately. Miss data is then used to calculate the frequency

of cache misses in each interval of 100,000 dynamic instructions.

We use the example in Fig. 2 to explain our phase detection algorithm.

Fig. 2 shows the miss frequency of the application epic-encode using

cache configurations C1 and C2. Every point in the chart represents the

frequency of misses (in thousands) in an interval. For example, the

frequency of misses at A, for cache configuration C1 is 6000 while it is

nearly zero using C2. We compare frequency of misses for cache con-

figurations C1 and C2 to discover potential reconfiguration points. We

include the edge of the regions in which the magnitude of the differ-

ence is greater than the threshold (we choose threshold to be 1000 in

this example) into the set of reconfiguration points. For example, the

magnitude of the difference in intervals A to B is greater than 1000 so

we take the edge points of this region (the first instruction in A and the

last instruction in B) as potential reconfiguration points. Considering

the edge points of A to B as our potential reconfiguration points will

create the phases, Pstart (start of execution to A), P2 (A to B), and so on.

Analyzing a miss frequency by itself may not necessarily lead to find-

ing reasonable reconfiguration points since changes in cache miss

frequencies may happen for all caches due to the cache behavior of a

program. For instance, in Fig. 2, at the interval C to D we observe a

significant change in cache misses. However this change is nearly the

same in both cases. Since both cache configurations have the same

behavior these points are not good candidates for a reconfiguration

point. We find reconfiguration points as phase boundaries so that we

would reconfigure the cache and use a different cache configuration. If

all of the caches exhibit the same behavior this means program can

continue with the same cache it was executing before. For this reason

we compare miss frequencies of different cache configurations instead

of scrutinizing frequencies solely.

Algorithm 1 outlines our heuristic to find a set of reconfiguration

points. We compare frequency of misses (f1 and f2) for all pairs of

cache configurations using a dynamic threshold to find potential re-

configuration points with their profitability. Every element in arrays f1

and f2 keeps the frequency of misses in an interval (for example f1k

represents the number of misses in the kth interval). We treat the fre-

quency of misses as a pattern (a time-varying quantity). So basically

we use (compare) the intersection of two patterns and exploit their

differences to discover potential reconfiguration points. The array

Profitability (in Algorithm1) is determined by the magnitude of the

differences between two frequencies of misses and is used as a metric

that represents effectiveness of a point in discovering boundaries of

Fig. 3: Overview of our intra-task DCR

Executable Application + Inputs

Reconfiguration points + Profitability

Cache solutions for each phase

Simulate application and find

potential reconfiguration points

Cache assignment algorithm

phases (for instance A and B in Fig. 2). We include a point, pok, (start-

ing point of the kth interval) into the set of reconfiguration points only

if the profitability of this interval, Profitabilityk, is greater than the

threshold. Note that these points are potential reconfiguration points

and reconfiguration may not actually happen at these points.

Finding potential reconfiguration points may seem simple; however,

there are several challenges in finding points that are beneficial in

practice. First, the absolute number of misses can be significantly

different for each cache configuration not because of changes in inter-

actions between cache and program but due to the difference in

cache/line size. For example total number of misses for a 1024-byte

cache may be several orders of magnitude greater than number of

misses for an 8192-byte cache. This makes comparison of frequencies

unfair and biased towards the smaller cache. Second, since the length

of intervals is relatively small, reconfiguration points may be chosen

very close to each other (with a distance of one interval). Reconfigur-

ing cache after such a short period of time does not seem reasonable

due to the reconfiguration overhead. Third, when a program is not in a

stable phase it may have a chaotic cache behavior; many ups and

downs will be present in the miss frequencies. Thus comparison of

miss patterns is prone to fluctuation from glitches in frequency of

misses that will result in numerous unnecessary reconfiguration points

that are ineffective in separating program phases.

To cope with these challenges we carried out several improvements to

the algorithm. First, in order to perform an unbiased comparison be-

tween frequencies we normalize them before comparing so that the

sum of number of misses over all program execution is a constant

value for all caches. This way we ignore the absolute number of miss-

es while we keep the information about the behavior of cache. Second,

we limit the minimum distance between two reconfiguration points to

be at least 500,000 instructions. This will be the minimum length of a

phase that is reasonable to reconfigure the cache. This length is mainly

determined by the reconfiguration overhead. Therefore, if there are

multiple reconfiguration points that are close to each other (in the

minimum distance range) we choose the one with the highest profita-

bility. Third, we ignore the short-term fluctuations in frequency of

misses (cache behavior) when comparing cache miss patterns.

4.2 Cache Assignment Algorithm

Finding the best cache configuration for each program phase using

potential reconfiguration points from the previous step is the goal of

this step. We call this problem as cache assignment since we are as-

signing a cache for each of the program phases. In this step we employ

a dynamic programming based algorithm for optimal cache assign-

ment which significantly reduces the time complexity of cache selec-

tion. Solution for instruction cache can affect the energy of data cache

by increasing/decreasing the execution time of a phase. This will

change the static energy of the chosen cache. However, according to

simulation results reconfiguration overhead for data/instruction caches

mostly consist of dynamic energy hence we can solve the cache selec-

tion problem for data and instruction cache independently.

After finding the potential reconfiguration points we need to find the

exact energy consumption and the execution time for each phase for

all possible cache configurations. We use simulation to obtain cache

statistics (time and energy) for the possible 18 cache configurations3.

We modified SimpleScalar [11] to reconfigure and flush the cache at

the reconfiguration points. Reconfiguration overhead for all phases

and for instruction and data caches are computed separately. For phase

Pi we find energy/time for each of the two cases. Case1 is when the

chosen cache for the phase is the same as the selected cache for phase

Pi-1. In this case the cache is not flushed and will keep the data (no

reconfiguration). Case2 is when the chosen cache for this phase is

different from the selected cache for phase Pi-1, where reconfiguration

takes place and the cache should be flushed. Therefore simulation

starts this phase with an empty cache (accounts for reconfiguration

overhead).

Table 1: Notations

Symbol Representing

 Energy consumption of phase Pi using cache Cj

while Pi-1 also used Cj (no reconfiguration)

 Energy consumption of phase Pi using cache Cj

starting with a flushed cache (includes reconfigu-
ration overhead), i.e., Pi-1 does not use Cj.

The most profitable solution for the set of con-

secutive phases Pstart to Pi assigning
 to

Pstart,…,
to Pi-1 and Cj to Pi, i.e., the last

phase uses Cj

 Energy consumption of solution

 (for phases

Pstart to Pi)

We present a recursive approach to find the optimal solution for each

of the phases. Table 1 includes a set of notations we use in the rest of

this section. In our recursive approach, in the general case, when there

are m phases and n available cache configurations, we can find the

best cache configuration for the phases Pstart to Pi using the following

formula:

{

 (Eq. 1)

with the initial state: {

We observe that storing all possible cache combinations is not needed

(for finding the optimal solution) in each iteration. We only need to

keep the one with the lowest energy consumption from all possible

solutions ending with a particular cache. All other combinations end-

ing with the same cache can be discarded.

3 In our work we use a 4KB L1 cache architecture proposed in [16]. Since the

reconfiguration of associativity is achieved by way concatenation, 1KB L1

cache can only be direct-mapped as three of the banks are shut down. For the

same reason, 2KB cache can only be configured to direct-mapped or 2-way
associativity. Therefore, there are 18 (=3+6+9) configuration candidates for

L1.

Algorithm 1: Finding potential reconfiguration points

Input: Cache miss statistics for each cache configuration

Output: List of potential cache configuration points

Begin

 th = the starting threshold;

 n = number of intervals;

 li = an empty list to store potential reconfiguration points;

 for i=0 to 17 do

 for j=i to 17 do

 f1 = array of frequency of misses for cache Ci for all intervals

 f2 = array of frequency of misses for cache Cj for all intervals

 Profitability = differences of f1 and f2;

 for k=0 to n do

 if (Profitabilityk > th) then

 add the pair (pok , Profitabilityk) to li;

 end for

 end for

 end for
 return li;

end

Algorithm 2 shows an iterative implementation of our cache assign-

ment approach. In each iteration, we evaluate C1 for the phase Pi con-

sidering all of the solutions found from Pstart to Pi-1 in the last iteration.

By comparing these solutions we find the best solution for phases Pstart

to Pi ending with cache C1. For each of the possible cache configura-

tions we find the minimal energy option ending with that cache (cho-

sen for Pi) and keep it for next iteration discarding the other solutions.

Similar computation is done for caches C2 to Cn. For our final least

energy cache solution we use:

 (Eq. 2)

In the general case, suppose m is the number of phases (number of

potential reconfiguration points) and n is the number of possible cache

configurations (18 in our case). Having n different cache options for

each phase we can count the total number of possible solutions for

cache assignment:

 ⏟

Therefore, finding the optimal cache assignment in a brute force man-

ner (trying all possible solutions), takes the time complexity of

 . In our approach,
, …,

are computed in m itera-

tions starting with the initial state. Computing (Eq. 1) in each iteration

needs n×n comparisons. Therefore, in the recursive approach we re-

duce the time complexity of finding the optimal solution to .

It should be noted that since the length of each phase is relatively long

we can assume that reconfiguration (flushing) at the beginning of

phase Pi only has an impact on the energy/time of phase Pi and will

fade out for the next phase. In other words, if no reconfiguration oc-

curs at the beginning of phase Pi+1 we can assume no reconfiguration

has happened prior to phase Pi+1 in estimating time/energy of this

phase. Therefore, energy/time of a cache for phase Pi+1 is only de-

pendent on the cache selected for the previous phase, Pi. Reconfigura-

tion should be done when the selected caches for two consecutive

phases are different and reconfiguration overhead should be account-

ed.

5. EXPERIMENS

5.1 Experimental Setup

In order to quantify effectiveness of our approach, we examined cjpeg,

djpeg, epic (encode and decode), adpcm (rawcaudio and rawdaudio),

pegwit, g.721 (encode) benchmarks from the MediaBench [13] and

dijkstra, crc32, bitcnt from MiBench [14] compiled for the PISA [11]

target architecture. All applications were executed with the default

input sets provided with the benchmarks suites.

We utilized the configurable cache architecture developed by Zhang et

al [8] with a four-bank cache of base size 4 KB, which offers sizes of

1 KB, 2 KB, and 4 KB, line sizes ranging from 16 bytes to 64 bytes,

and associativity of 1-way, 2-way, and 4-way. The reconfigurable

cache was reported to have negligible performance and energy over-

head compared to non-configurable cache [8]. For comparison pur-

poses, we used the base cache configuration set to be a 4 KB, 2-way

set associative cache with a 32-byte line size, a common configuration

that meets the average needs of the studied benchmarks [8].

To obtain cache hit and miss statistics, we modified the SimpleScalar

toolset [11]. The modified version was able to dump dynamic instruc-

tions of cache misses as well as energy and time statistics for each

program phase for both cases of starting with a flushed cache or a

cache keeping previous data. The reconfiguration overhead (ener-

gy/time) is computed by flushing the cache at the reconfiguration

points. Note that flushing the data cache requires all dirty blocks to be

written back to main memory whereas flushing the instruction cache

will just reset the valid bits for all cache blocks. The reconfiguration

overhead also includes memory access latency/energy of bringing the

data/instructions (that were previously in the cache) back to the cache.

We applied the same energy model used in [8], which calculates both

dynamic and static energy consumption, memory latency, CPU stall

energy, and main memory fetch energy.

5.2 Energy versus Performance

Fig. 4 shows energy consumption using our intra-task DCR for all

benchmarks normalized to the energy consumption for the least-

energy cache found by inter-task DCR. Note that inter-task DCR is

shown to achieve up to 53% cache subsystem energy savings in stud-

ies [10]. Our intra-task DCR approach achieves up to 27% (12% on

average) energy savings compared to inter-task DCR for instruction

cache. Energy savings of up to 19% (7% on average) is gained for data

cache subsystem using our approach. It should be noticed that only

nominal modifications are needed to make a working system using

inter-task DCR to benefit from our intra-task DCR.

Fig. 5 demonstrates the execution time for all benchmarks normalized

to the execution time for the least-energy cache configuration found

by inter-task DCR. It is important to note that intra-task DCR intro-

duces nearly no performance loss compared to the conventional inter-

Fig. 4: Energy consumption normalized to the best cache configu-

ration found by inter-task DCR

Algorithm 2: Finding Cache Assignment

Input: Cache energy and time for all caches for each phase

 /* m = total number of phases */

Output: Cache configuration for each phase

Begin

 S = a 2-dimentional list to store the best caches found;

 for phase j=0 to m do

 for cache i=0 to 17 do

 Find the best cache assignment from phase Pstart up to Pj for

cache configuration i using (Eq. 1);

 Update Si;

 end for

 end for

 return the minimal energy solution in S using (Eq. 2);

end

Fig. 5: Execution time normalized to the least-energy cache config-

uration found by inter-task DCR

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

En
e

rg
y

C
o

n
su

m
p

ti
o

n

Instruction cache Data Cache

0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1
1.02

Ex
e

cu
ti

o
n

 T
im

e

Instruction Cache Data Cache

task DCR. Less than 1% performance loss observed using intra-task

DCR for instruction cache. However, in some cases it actually

achieves better performance (10% in the case of pegwit benchmark).

Interestingly, incorporating intra-task DCR for data cache gains per-

formance by 2% on average (up to 6% using cjpeg benchmark). We

observed that intra-task DCR does not achieve energy savings com-

pared to inter-task DCR in some applications. By further analysis it

turned out that these applications have nearly the same cache behavior

(either stable or chaotic) throughout their entire execution. This means

that these applications cannot be separated into phases based on their

cache behavior. In other words, they consist of only one phase. As

expected, our intra-task DCR chooses only one cache configuration in

this case which is same as inter-task DCR.

5.3 Overhead versus Energy Savings

The reconfiguration overhead is higher for data cache compared to

instruction cache since by flushing the data cache all dirty blocks are

needed to be written back to main memory whereas flushing the in-

struction cache only resets the valid bits for all cache blocks. Depend-

ing on the behavior of application in a particular phase, number of

dirty blocks can be very high. When number of dirty blocks is rela-

tively high, flushing the cache would result in high ener-

gy/performance overhead. Our cache assignment algorithm does not

reconfigure cache at the reconfiguration point for a phase starting with

high number of dirty blocks. Nonetheless, applications happen to

show significant changes in cache requirements that can be exploited

using intra-task DCR to compensate for the reconfiguration overhead.

In a given system, if it allows only a limited number of cache recon-

figurations, we study the effect of our approach by constructing a

spectrum of energy savings. We limit the number of potential recon-

figuration points to l (using profitability) so that at most l number of

reconfigurations can happen. Note that this does not mean that recon-

figuration will happen at exactly l points. Fig. 6 illustrates the number

of reconfiguration points – energy savings tradeoffs using pegwit

benchmark (we observed similar pattern for other benchmarks as

well). As we increase l, higher energy savings can be achieved. Inter-

estingly, execution time has an inverse relation to energy savings. In

other words, increasing l increases energy savings and decreases exe-

cution time (improves performance). This is expected since one of the

best ways to reduce energy consumption is to shrink execution time.

Intra-task DCR can reduce execution time by reducing cache misses

through assigning larger caches in the cache intensive phases of pro-

grams. There are number of saturation points in the graph where in-

creasing the number of potential reconfiguration points (l) does not

change the result of our intra-task DCR. This is due to the fact that the

newly added reconfiguration point is not a good choice (effective

phase delimiter) to do the reconfiguration and is ignored by our cache

assignment algorithm.

6. CONCLUSION
Optimization techniques are widely used in embedded systems design

to improve overall area, energy and performance requirements. Dy-

namic cache reconfiguration is very effective to reduce energy con-

sumption of cache subsystem. In this paper we presented a intra-task

dynamic cache reconfiguration approach using novel phase detection

and cache selection algorithms. Our experimental results demonstrated

up to 27% reduction (12% on average) and 19% (7% on average) in

overall energy consumption of instruction and data cache, respective-

ly, compared to existing inter-task DCR techniques.

REFERENCES

1 A. Malik, B. Moyer, and D. Cermak. A low power unified cache

architecture providing power and performance flexibility. ISLPED (2000).

2 H. Hajimiri, K. Rahmani, P. Mishra. Synergistic integration of dynamic

cache reconfiguration and code compression in embedded systems.
International Green Computing Conference (IGCC) (2011).

3 M. Peng, J. Sun, Y. Wang. A Phase-Based Self-Tuning Algorithm for

Reconfigurable Cache. (), ICDS 07.

4 A. Gordon-Ross, J. Lau, B. Calder. Phase-based Cache Reconfiguration For

a Highly-Configurable Two-Level Cache Hierarchy. GLSVLSI 08.

5 Gordon-Ross et al. Fast configurable-cache tuning with a unified second
level cache. ISLPED (2005).

6 P. Vita. Configurable Cache Subsetting for Fast Cache Tuning. DAC

(2006).

7 D. H. Albonesi. Selective Cache Ways: On-Demand Cache Resource

Allocation (2000).

8 C. Zhang, F. Vahid, W. Najjar. A highly-configurable cache architecture for

embedded systems. ISCA (03).

9 L. Chen, X. Zou, J. Lei, Z. Liu. Dynamically Reconfigurable Cache for

Low-Power Embedded System. ICNC (2007).

10 W.Wang and P. Mishra. Dynamic Reconfiguration of Two-Level Caches in
Soft Real-Time Embedded Systems. ISVLSI (2009).

11 Burger et al. Evaluating future microprocessors: the simplescalar toolset.

University of Wisconsin-Madison, Technical Report CS-TR-1308 (2000).

12 CACTI. HP Labs, CACTI 4.2, http://www.hpl.hp.com/.

13 Lee et al. MediaBench: A Tool for Evaluating and Synthesizing Multimedia

and Communications Systems. Micro. (1997).

14 Guthaus et al. MiBench: A free, commercially representative embedded

benchmark suite. WWC (2001).

15 A. Gordon-Ross, F. Vahid, N. Dutt. Automatic tuning of two-level caches

to embedded applications. DATE (2004).

Fig. 6: Energy savings and execution time spectrum for instruction

cache using pegwit benchmark

0.86

0.88

0.9

0.92

0.94

0.96

0.98

0%

5%

10%

15%

20%

25%

4 9 14 19 24 29 34 39 44 49 54 59 64 69 74 79 84 89 94 99

Ex
ec

u
ti

o
n

 t
im

e
n

o
rm

al
iz

ed
 t

o
 b

es
t

ca
ch

e
fo

u
n

d
 b

y
in

te
r-

ta
sk

 D
C

R

En
e

rg
y

sa
vi

n
gs

 n
o

rm
al

iz
e

d
 t

o
 b

e
st

 c
ac

h
e

fo

u
n

d
 b

y
in

te
r-

ta
sk

 D
C

R

max number of reconfiguration points (constraint)

Instruction Cache Energy Savings Execution Time

