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ABSTRACT 

Optimization techniques are widely used in embedded systems design 

to improve overall area, performance and energy requirements. Dy-

namic cache reconfiguration (DCR) is very effective to reduce energy 

consumption of cache subsystems. Finding the right reconfiguration 

points in a task and selecting appropriate cache configurations for each 

phase are the primary challenges in phase-based DCR. In this paper, 

we present a novel intra-task dynamic cache reconfiguration technique 

using a detailed cache model, and tune a highly-configurable cache on 

a per-phase basis compared to tuning once per application. Experi-

mental results demonstrate that our intra-task DCR can achieve up to 

27% (12% on average) and 19% (7% on average) energy savings for 

instruction and data caches, respectively, without introducing any 

performance penalty.1 

1. INTRODUCTION 
Energy conservation has been a primary optimization objective in 

designing embedded systems. Several studies have shown that 

memory hierarchy accounts for as much as 50% of the total energy 

consumption in many embedded systems [1]. Unlike desktop-based 

systems, embedded systems are designed to run a specific set of well-

defined applications (tasks). Moreover, different applications require 

highly diverse cache configurations for optimal energy consumption in 

the memory hierarchy. Thus it is possible to have a cache architecture 

that is tuned for those applications to have both increased performance 

as well as lower energy consumption. Traditional dynamic cache re-

configuration (DCR) techniques reduce cache energy consumption by 

tuning the cache to applications need during runtime on task-by-task 

basis. For each task only one cache configuration is assigned to the 

task, and it is not changed during the task execution. These techniques 

are referred as inter-task DCR. Studies have shown that inter-task 

DCR can achieve significant energy savings [2]. 

Due to task-level granularity, inter-task DCR loses the energy savings 

opportunity that can be achieved by increasing the reconfiguration 

granularity. A modern processor executes billions of instructions per 

second and a program’s behavior can change many times during that 

period. The behavior of some programs changes drastically, switching 

between periods of high and low performance, yet system design and 

optimization typically focus on average system behavior. Instead of 

assuming average behavior, it is highly beneficial to model and opti-

mize phase-based program behavior. Intra-task tuning techniques 

tweak system parameters for each application phase of execution. 

Parameters are varied during execution of an application, as opposed 

to keeping fixed as in an application-based (inter-task) tuning method-

ology. Furthermore, inter-task DCR is not beneficial in a single-task 

environment (or in a multi-task environment where execution time of 

one task is dominant) because the cache configuration is determined 

on a per task basis. Since many small-size embedded-mobile applica-

tions are based on a single-task model, inter-task DCR cannot provide 

the best possible energy savings for such systems.  

These limitations lead to the idea of intra-task DCR where a given task 

is partitioned into several phases, and different cache configurations 
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are assigned for each phase. There have been limited attempts [3] [4] 

for developing an intra-task DCR but they provide no systematic 

methodology of selecting the best program locations where DCR can 

be applied (phase detection). Furthermore, these approaches either 

perform exhaustive exploration (can be infeasible in many scenarios) 

or select suboptimal cache configurations. In this paper, we propose an 

intra-task DCR approach based on static analysis of a target applica-

tion achieving significant improvements in energy consumption. It 

also can be applied to a single-task environment since it reconfigures 

the cache within each task. We propose a phase detection technique 

that fully exploits drastic changes in program behavior and finds 

boundaries between phases of high and low performance. In addition, 

we propose a dynamic programming based cache assignment algo-

rithm that finds the optimal cache solution and reduces the time com-

plexity of design space exploration. 

The rest of the paper is organized as follows. Section  2 provides an 

overview of related research activities. Basic notations, cache and 

energy model are described in Section  3. Our proposed intra-task DCR 

methodology is presented in Section  4. Experimental results are dis-

cussed in Section  5. Finally, Section  0 6 concludes the paper. 

2. RELATED WORK 
DCR has been extensively studied in several works [5] [6] [7]. The 

problem is to determine the best cache configuration for a particular 

application. Most such methods configure cache size, line size, and 

associativity for only a single level of cache. Existing techniques can 

be classified into dynamic and static analysis. By dynamic analysis 

different cache configurations are evaluated on-line (i.e., during 

runtime) to find the best configuration. However, it introduces signifi-

cant performance/energy overhead which may not be feasible in many 

embedded systems with real-time constraints. During static analysis, 

variety of cache options can be explored thoroughly and the best cache 

configuration is chosen for each application [5]. Regardless of the 

tuning method, the predetermined best cache configuration can be 

stored in a look-up table or encoded into specialized instructions [5]. 

The reconfigurable cache architecture proposed by Zhang et al. [8] 

determines the best cache parameters by using Pareto-optimal points 

trading off energy consumption and performance. Chen and Zou [9] 

introduced a novel reconfiguration management algorithm to efficient-

ly search the large space of possible cache configurations for the op-

timal one. 

Peng and Sun [3] introduced a phase-based self-tuning algorithm, 

which can automatically manage the reconfigurable cache on a per-

phase basis. Their method used dynamic profiling of applications and 

limited to only four choices of cache configurations for L1 cache. 

Gordon-Ross et al. [4] proposed an intra-task DCR where each task is 

partitioned into fixed-length timeslots. It [4] shows limited improve-

ments in the energy reduction (only 3% on average). Moreover, it 

provides no systematic methodology for selecting the best program 

locations where DCR can be profitable (programs divided into equal 

phases). These techniques solved the cache assignment either by per-

forming exhaustive exploration (can be infeasible in many scenarios) 

or selecting suboptimal cache configurations. Our methodology out-

performs existing approaches using novel phase detection and cache 

selection algorithms. 



3. BACKGROUND AND MOTIVATION 

3.1 Inter-task versus Intra-task DCR 

Fig. 1 illustrates how energy consumption can be reduced by using 

inter-task (application-based) cache reconfiguration in a simple system 

supporting three tasks. In application-based cache tuning, dynamic 

cache reconfiguration happens when a task starts its execution or it 

resumes from an interrupt (either by preemption or when execution of 

another task completes). Fig. 1 (a) depicts a traditional system and Fig. 

1 (b) depicts a system with a reconfigurable cache. For the ease of 

illustration let’s assume cache size is the only reconfigurable parame-

ter of cache (associativity and line size are ignored). In this example, 

Task1 starts its execution at time P1. Task2 and Task3 start at P2 and 

P3, respectively. In a traditional approach, the system always executes 

using a 4096-byte cache. We call this cache as the base cache 

throughout the paper. This cache is the best possible cache configura-

tion (in terms of energy consumption) for this set of tasks. In Fig. 1(b), 

Task1, Task2, and Task3 execute using 1024-byte cache starting at P1, 

8192-byte cache starting at P2, and 4096-byte cache starting at P3, 

respectively.  

Although inter-task DCR provides significant energy savings com-

pared to using only the base cache, it has several practical limitations 

as discussed in Section 1. Hence it may be more efficient in terms of 

energy consumption to utilize different cache configurations in differ-

ent phases of a task. Fig. 1 (c) depicts intra-task DCR where reconfig-

uration can be done per phase basis. A task may need larger cache size 

for only a small phase of execution. Increasing the cache size for this 

phase would boost performance and decrease both cache misses and 

energy consumption. However, in some of the program phases the 

application may need a lower cache size thus the cache size can be 

reduced without loss of performance to produce savings in energy 

consumption. In these cases, intra-task DCR is able to fulfill cache 

needs of application perfectly while minimizing the energy consump-

tion.  

3.2 Energy Model 

In this subsection, we describe the energy model for the reconfigura-

ble cache. We assume that DCR is available in the target system. Spe-

cifically, we have a highly configurable cache architecture, with re-

configurable parameters including cache size, line size and associativi-

ty, which can be tuned to m different configurations C = {c1, c2, c3, ... , 

cm}. Cache energy consumption consists of dynamic energy       
   

 

and static energy       
      [10]:              

   
       

    . The number 

of cache accesses num_accesses, cache misses num_misses and clock 

cycles CC are obtained from simulation using SimpleScalar [11] for 

any given task and cache configuration. Let         and       denote 

the energy consumed per cache access and miss, respectively. There-

fore, we have: 

      
   

                                          

      
           

               

Where       
     is the static power consumption of cache. We collect 

        and       
     from CACTI [12] for all cache configurations and 

adopt       and other numbers for other parameters from [8]. 

4. INTRA-TASK DCR 
We define a phase as a set of intervals (or time slices) within a pro-

gram’s execution that has similar behavior. The key observation for 

discovering phases is that the cache behavior of a program changes 

greatly during execution. We can find this phase behavior and classify 

it by examining the number of cache misses in each interval. We col-

lect this information through static profiling of the program. We begin 

the analysis of phases with an illustrative example of the time-varying 

behavior of epic-encode from MediaBench [13]. To characterize the 

behavior of this program, we have simulated its execution using a 

1024-byte cache with one-way associativity and 32-byte line size. Fig. 

2 shows the cache behavior of the program, measured in terms of 

cache miss statistics using two cache configurations (C1 and C2).  

 

Fig. 2: Instruction cache miss for epic-encode benchmark 

Each point on the graph represents the frequency of instruction cache 

misses taken over 100,000 instructions of execution (an interval). Two 

important aspects can be observed from this graph. First, average be-

havior does not sufficiently characterize a program’s behavior in all 

phases of execution. For example, in epic-encode the number of in-

struction cache misses varies by several orders of magnitude. Second, 

the program can exhibit stable behavior for millions of instructions 

and then suddenly change. As a result, epic-encode’s behavior alter-

nates greatly between phases. These two aspects, imply that signifi-

cant energy savings can be achieved by accurately reconfiguring the 

cache to satisfy long-term execution behavior.  

For epic-encode benchmark, we first need to find cache miss statistics 

in order to find potential reconfiguration points. Note that the least 

energy cache configuration for epic-encode benchmark is a 2048-byte 

cache with associativity of 1 and line size of 32 (cache C2 in Fig. 2) 

chosen by inter-task cache configuration method. From Fig. 2, it can 

be observed that up to point A (around the dynamic instruction 12 

million) miss rates are nearly the same for both caches C1 and C2. 

Starting from A to point B the miss rates are greatly different. We find 
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Fig. 1: DCR for a system with three tasks 
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A and B as potential reconfiguration points for this example. For the 

ease of illustration, let’s assume only configurations C1 and C2 are 

available. Since C2 is larger than C1, C2 is beneficial for performance 

and dynamic energy but detrimental for leakage energy compared to 

C1. To reduce energy consumption we can run the program using con-

figuration C1 up to A then reconfigure the cache and use configuration 

C2 from A to B and then again reconfigure the cache back to C1. 

In this paper, with the aim of energy optimization, we present a meth-

od to enable automatic partitioning of a program’s execution into a set 

of phases that will quantify the changing behavior over time. The goal 

is that after finding phases, each phase would use a specific cache 

configuration suitable for that phase to reduce energy consumption 

without performance loss. We define the following terms that we will 

use in the rest of the paper: 

 An interval is a section of continuous execution, a time slice, 

within a program. We chose intervals of equal length, as meas-

ured by the number of instructions executed during program exe-

cution. In this paper we choose 100,000 instructions as the length 

of intervals2. 

 A phase is a set of consecutive intervals within a program’s exe-

cution that have similar and stable behavior. Boundaries of each 

phase are determined by reconfiguration points. For example, 

Fig. 2 has three phases; start of execution to A, A to B, and B to 

end of execution. 

 A potential reconfiguration point is a point in the execution of a 

program at which a noticeable and sudden change in program be-

havior happens going from one phase to another phase. For ex-

ample, A and B are potential reconfiguration points. 

 The profitability of a reconfiguration point is a metric that shows 

how well a reconfiguration point can distinguish two different 

phases of a program. We use this metric for building a spectrum 

of energy savings while the number of reconfigurations is lim-

ited. We describe this metric in Section  4.1. 

Fig. 3 shows an overview of our intra-task DCR approach. Our ap-

proach has two major steps (represented by ovals): phase detection 

and cache assignment. During a program’s lifetime it can execute 

millions or billions of instructions each of which can be a reconfigura-

tion point. The challenge is to choose a small number of profitable 

points from these millions of points. Moreover, the reconfiguration 

overhead is not constant and is different based on the point where the 

reconfiguration happens and can be found by actually reconfiguring 

and flushing the cache at that point during simulation. Thus finding 

the best set of reconfiguration points that is capable of separating pro-

gram phases and guarantees energy savings is a difficult problem. We 

instead, find a set of potential reconfiguration points. Next, we choose 

if reconfiguring the cache is feasible at each point and if yes to what 

cache configuration. In order to find the potential reconfiguration 

points we compare frequency of misses in each interval. In addition, 

the energy consumption of a phase using a particular cache can vary 

depending on whether the previous phase has executed using the same 

cache (reconfiguration is needed if the cache is different). These are 

the main challenges we address in our approach. In the remainder of 

this section we explain each of these steps in detail. 

4.1 Phase Detection 

A phase is a set of consecutive intervals determined by two reconfigu-

ration points (starting interval and ending interval). Finding best pos-

sible set of potential reconfiguration points is the objective of this step. 

First, we generate cache miss statistics (using simulation) for all pos-

sible cache configurations and find frequency of misses in each inter-

val. Next, we compute the difference of frequency of misses (for all 

                                                                 

2 We chose the interval length to be small (100,000 instructions) to increase 

granularity of cache miss information. 

possible pairs of cache configurations) to discover the potential recon-

figuration points. The statistics for data and instruction caches are 

gathered separately. Miss data is then used to calculate the frequency 

of cache misses in each interval of 100,000 dynamic instructions. 

We use the example in Fig. 2 to explain our phase detection algorithm. 

Fig. 2 shows the miss frequency of the application epic-encode using 

cache configurations C1 and C2. Every point in the chart represents the 

frequency of misses (in thousands) in an interval. For example, the 

frequency of misses at A, for cache configuration C1 is 6000 while it is 

nearly zero using C2. We compare frequency of misses for cache con-

figurations C1 and C2 to discover potential reconfiguration points. We 

include the edge of the regions in which the magnitude of the differ-

ence is greater than the threshold (we choose threshold to be 1000 in 

this example) into the set of reconfiguration points. For example, the 

magnitude of the difference in intervals A to B is greater than 1000 so 

we take the edge points of this region (the first instruction in A and the 

last instruction in B) as potential reconfiguration points. Considering 

the edge points of A to B as our potential reconfiguration points will 

create the phases, Pstart (start of execution to A), P2 (A to B), and so on.  

Analyzing a miss frequency by itself may not necessarily lead to find-

ing reasonable reconfiguration points since changes in cache miss 

frequencies may happen for all caches due to the cache behavior of a 

program. For instance, in Fig. 2, at the interval C to D we observe a 

significant change in cache misses. However this change is nearly the 

same in both cases. Since both cache configurations have the same 

behavior these points are not good candidates for a reconfiguration 

point. We find reconfiguration points as phase boundaries so that we 

would reconfigure the cache and use a different cache configuration. If 

all of the caches exhibit the same behavior this means program can 

continue with the same cache it was executing before. For this reason 

we compare miss frequencies of different cache configurations instead 

of scrutinizing frequencies solely. 

Algorithm 1 outlines our heuristic to find a set of reconfiguration 

points. We compare frequency of misses (f1 and f2) for all pairs of 

cache configurations using a dynamic threshold to find potential re-

configuration points with their profitability. Every element in arrays f1 

and f2 keeps the frequency of misses in an interval (for example f1k 

represents the number of misses in the kth interval). We treat the fre-

quency of misses as a pattern (a time-varying quantity). So basically 

we use (compare) the intersection of two patterns and exploit their 

differences to discover potential reconfiguration points. The array 

Profitability (in Algorithm1 ) is determined by the magnitude of the 

differences between two frequencies of misses and is used as a metric 

that represents effectiveness of a point in discovering boundaries of 

 

Fig. 3: Overview of our intra-task DCR 
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phases (for instance A and B in Fig. 2). We include a point, pok, (start-

ing point of the kth interval) into the set of reconfiguration points only 

if the profitability of this interval, Profitabilityk, is greater than the 

threshold. Note that these points are potential reconfiguration points 

and reconfiguration may not actually happen at these points. 

Finding potential reconfiguration points may seem simple; however, 

there are several challenges in finding points that are beneficial in 

practice. First, the absolute number of misses can be significantly 

different for each cache configuration not because of changes in inter-

actions between cache and program but due to the difference in 

cache/line size. For example total number of misses for a 1024-byte 

cache may be several orders of magnitude greater than number of 

misses for an 8192-byte cache. This makes comparison of frequencies 

unfair and biased towards the smaller cache. Second, since the length 

of intervals is relatively small, reconfiguration points may be chosen 

very close to each other (with a distance of one interval). Reconfigur-

ing cache after such a short period of time does not seem reasonable 

due to the reconfiguration overhead. Third, when a program is not in a 

stable phase it may have a chaotic cache behavior; many ups and 

downs will be present in the miss frequencies. Thus comparison of 

miss patterns is prone to fluctuation from glitches in frequency of 

misses that will result in numerous unnecessary reconfiguration points 

that are ineffective in separating program phases.  

To cope with these challenges we carried out several improvements to 

the algorithm. First, in order to perform an unbiased comparison be-

tween frequencies we normalize them before comparing so that the 

sum of number of misses over all program execution is a constant 

value for all caches. This way we ignore the absolute number of miss-

es while we keep the information about the behavior of cache. Second, 

we limit the minimum distance between two reconfiguration points to 

be at least 500,000 instructions. This will be the minimum length of a 

phase that is reasonable to reconfigure the cache. This length is mainly 

determined by the reconfiguration overhead. Therefore, if there are 

multiple reconfiguration points that are close to each other (in the 

minimum distance range) we choose the one with the highest profita-

bility. Third, we ignore the short-term fluctuations in frequency of 

misses (cache behavior) when comparing cache miss patterns. 

4.2 Cache Assignment Algorithm 

Finding the best cache configuration for each program phase using 

potential reconfiguration points from the previous step is the goal of 

this step. We call this problem as cache assignment since we are as-

signing a cache for each of the program phases. In this step we employ 

a dynamic programming based algorithm for optimal cache assign-

ment which significantly reduces the time complexity of cache selec-

tion. Solution for instruction cache can affect the energy of data cache 

by increasing/decreasing the execution time of a phase. This will 

change the static energy of the chosen cache. However, according to 

simulation results reconfiguration overhead for data/instruction caches 

mostly consist of dynamic energy hence we can solve the cache selec-

tion problem for data and instruction cache independently. 

After finding the potential reconfiguration points we need to find the 

exact energy consumption and the execution time for each phase for 

all possible cache configurations. We use simulation to obtain cache 

statistics (time and energy) for the possible 18 cache configurations3. 

We modified SimpleScalar [11] to reconfigure and flush the cache at 

the reconfiguration points. Reconfiguration overhead for all phases 

and for instruction and data caches are computed separately. For phase 

Pi we find energy/time for each of the two cases. Case1 is when the 

chosen cache for the phase is the same as the selected cache for phase 

Pi-1. In this case the cache is not flushed and will keep the data (no 

reconfiguration). Case2 is when the chosen cache for this phase is 

different from the selected cache for phase Pi-1, where reconfiguration 

takes place and the cache should be flushed. Therefore simulation 

starts this phase with an empty cache (accounts for reconfiguration 

overhead). 

Table 1: Notations 

Symbol Representing 

      
 Energy consumption of phase Pi using cache Cj 

while Pi-1 also used Cj (no reconfiguration) 

      

 
 Energy consumption of phase Pi using cache Cj 

starting with a flushed cache (includes reconfigu-
ration overhead), i.e., Pi-1 does not use Cj. 

     
  

        
      

     

The most profitable solution for the set of con-

secutive phases Pstart to Pi assigning        
 to 

Pstart,…,      
to Pi-1 and Cj to Pi, i.e., the last 

phase uses Cj 

      
 Energy consumption of solution      

 (for phases 

Pstart to Pi) 
 

We present a recursive approach to find the optimal solution for each 

of the phases. Table 1 includes a set of notations we use in the rest of 

this section. In our recursive approach, in the general case, when there 

are m phases and n available cache configurations, we can find the 

best cache configuration for the phases Pstart to Pi using the following 

formula: 

{

      
              

       
            

       

 
 

 

      
              

       

 
            

       
 

 (Eq. 1) 

with the initial state: {

          
           

 

 

          
           

 
 

We observe that storing all possible cache combinations is not needed 

(for finding the optimal solution) in each iteration. We only need to 

keep the one with the lowest energy consumption from all possible 

solutions ending with a particular cache. All other combinations end-

ing with the same cache can be discarded. 

                                                                 

3 In our work we use a 4KB L1 cache architecture proposed in [16]. Since the 

reconfiguration of associativity is achieved by way concatenation, 1KB L1 

cache can only be direct-mapped as three of the banks are shut down. For the 

same reason, 2KB cache can only be configured to direct-mapped or 2-way 
associativity. Therefore, there are 18 (=3+6+9) configuration candidates for 

L1. 

Algorithm 1: Finding potential reconfiguration points 

Input: Cache miss statistics for each cache configuration 

Output: List of potential cache configuration points  

Begin 

    th = the starting threshold; 

    n = number of intervals; 

    li = an empty list to store potential reconfiguration points; 

    for i=0 to 17 do 

        for j=i to 17 do 

            f1 = array of frequency of misses for cache Ci for all intervals 

            f2 = array of frequency of misses for cache Cj for all intervals 

           Profitability = differences of f1 and f2; 

           for k=0 to n do 

                if (Profitabilityk > th) then 

   add the pair (pok , Profitabilityk) to li; 

           end for 

        end for 

    end for 
    return li; 

end 



Algorithm 2 shows an iterative implementation of our cache assign-

ment approach. In each iteration, we evaluate C1 for the phase Pi con-

sidering all of the solutions found from Pstart to Pi-1 in the last iteration. 

By comparing these solutions we find the best solution for phases Pstart 

to Pi ending with cache C1. For each of the possible cache configura-

tions we find the minimal energy option ending with that cache (cho-

sen for Pi) and keep it for next iteration discarding the other solutions. 

Similar computation is done for caches C2 to Cn. For our final least 

energy cache solution we use: 

       
              

           
  (Eq. 2) 

In the general case, suppose m is the number of phases (number of 

potential reconfiguration points) and n is the number of possible cache 

configurations (18 in our case). Having n different cache options for 

each phase we can count the total number of possible solutions for 

cache assignment: 

          ⏟        
       

 

Therefore, finding the optimal cache assignment in a brute force man-

ner (trying all possible solutions), takes the time complexity of 

     . In our approach,         
, …,         

are computed in m itera-

tions starting with the initial state. Computing (Eq. 1) in each iteration 

needs n×n comparisons. Therefore, in the recursive approach we re-

duce the time complexity of finding the optimal solution to       . 

It should be noted that since the length of each phase is relatively long 

we can assume that reconfiguration (flushing) at the beginning of 

phase Pi only has an impact on the energy/time of phase Pi and will 

fade out for the next phase. In other words, if no reconfiguration oc-

curs at the beginning of phase Pi+1 we can assume no reconfiguration 

has happened prior to phase Pi+1 in estimating time/energy of this 

phase. Therefore, energy/time of a cache for phase Pi+1 is only de-

pendent on the cache selected for the previous phase, Pi. Reconfigura-

tion should be done when the selected caches for two consecutive 

phases are different and reconfiguration overhead should be account-

ed. 

5. EXPERIMENS 

5.1 Experimental Setup 

In order to quantify effectiveness of our approach, we examined cjpeg, 

djpeg, epic (encode and decode), adpcm (rawcaudio and rawdaudio), 

pegwit, g.721 (encode) benchmarks from the MediaBench [13] and 

dijkstra, crc32, bitcnt from MiBench [14] compiled for the PISA [11] 

target architecture. All applications were executed with the default 

input sets provided with the benchmarks suites. 

We utilized the configurable cache architecture developed by Zhang et 

al [8] with a four-bank cache of base size 4 KB, which offers sizes of 

1 KB, 2 KB, and 4 KB, line sizes ranging from 16 bytes to 64 bytes, 

and associativity of 1-way, 2-way, and 4-way. The reconfigurable 

cache was reported to have negligible performance and energy over-

head compared to non-configurable cache [8]. For comparison pur-

poses, we used the base cache configuration set to be a 4 KB, 2-way 

set associative cache with a 32-byte line size, a common configuration 

that meets the average needs of the studied benchmarks [8].  

To obtain cache hit and miss statistics, we modified the SimpleScalar 

toolset [11]. The modified version was able to dump dynamic instruc-

tions of cache misses as well as energy and time statistics for each 

program phase for both cases of starting with a flushed cache or a 

cache keeping previous data. The reconfiguration overhead (ener-

gy/time) is computed by flushing the cache at the reconfiguration 

points. Note that flushing the data cache requires all dirty blocks to be 

written back to main memory whereas flushing the instruction cache 

will just reset the valid bits for all cache blocks. The reconfiguration 

overhead also includes memory access latency/energy of bringing the 

data/instructions (that were previously in the cache) back to the cache. 

We applied the same energy model used in [8], which calculates both 

dynamic and static energy consumption, memory latency, CPU stall 

energy, and main memory fetch energy.  

5.2 Energy versus Performance 

Fig. 4 shows energy consumption using our intra-task DCR for all 

benchmarks normalized to the energy consumption for the least-

energy cache found by inter-task DCR. Note that inter-task DCR is 

shown to achieve up to 53% cache subsystem energy savings in stud-

ies [10]. Our intra-task DCR approach achieves up to 27% (12% on 

average) energy savings compared to inter-task DCR for instruction 

cache. Energy savings of up to 19% (7% on average) is gained for data 

cache subsystem using our approach. It should be noticed that only 

nominal modifications are needed to make a working system using 

inter-task DCR to benefit from our intra-task DCR. 

Fig. 5 demonstrates the execution time for all benchmarks normalized 

to the execution time for the least-energy cache configuration found 

by inter-task DCR. It is important to note that intra-task DCR intro-

duces nearly no performance loss compared to the conventional inter-

 

Fig. 4: Energy consumption normalized to the best cache configu-

ration found by inter-task DCR 

Algorithm 2: Finding Cache Assignment 

Input: Cache energy and time for all caches for each phase 

            /* m = total number of phases */ 

Output: Cache configuration for each phase 

Begin  

    S = a 2-dimentional list to store the best caches found; 

   for phase j=0 to m do 

        for cache i=0 to 17 do 

             Find the best cache assignment from phase Pstart up to Pj for 

cache configuration i using (Eq. 1); 

             Update Si; 

        end for 

    end for 

    return the minimal energy solution in S using (Eq. 2); 

end 

 

Fig. 5: Execution time normalized to the least-energy cache config-

uration found by inter-task DCR 
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task DCR. Less than 1% performance loss observed using intra-task 

DCR for instruction cache. However, in some cases it actually 

achieves better performance (10% in the case of pegwit benchmark). 

Interestingly, incorporating intra-task DCR for data cache gains per-

formance by 2% on average (up to 6% using cjpeg benchmark). We 

observed that intra-task DCR does not achieve energy savings com-

pared to inter-task DCR in some applications. By further analysis it 

turned out that these applications have nearly the same cache behavior 

(either stable or chaotic) throughout their entire execution. This means 

that these applications cannot be separated into phases based on their 

cache behavior. In other words, they consist of only one phase. As 

expected, our intra-task DCR chooses only one cache configuration in 

this case which is same as inter-task DCR. 

5.3 Overhead versus Energy Savings 

The reconfiguration overhead is higher for data cache compared to 

instruction cache since by flushing the data cache all dirty blocks are 

needed to be written back to main memory whereas flushing the in-

struction cache only resets the valid bits for all cache blocks.  Depend-

ing on the behavior of application in a particular phase, number of 

dirty blocks can be very high. When number of dirty blocks is rela-

tively high, flushing the cache would result in high ener-

gy/performance overhead. Our cache assignment algorithm does not 

reconfigure cache at the reconfiguration point for a phase starting with 

high number of dirty blocks. Nonetheless, applications happen to 

show significant changes in cache requirements that can be exploited 

using intra-task DCR to compensate for the reconfiguration overhead.  

In a given system, if it allows only a limited number of cache recon-

figurations, we study the effect of our approach by constructing a 

spectrum of energy savings. We limit the number of potential recon-

figuration points to l (using profitability) so that at most l number of 

reconfigurations can happen. Note that this does not mean that recon-

figuration will happen at exactly l points. Fig. 6 illustrates the number 

of reconfiguration points – energy savings tradeoffs using pegwit 

benchmark (we observed similar pattern for other benchmarks as 

well). As we increase l, higher energy savings can be achieved. Inter-

estingly, execution time has an inverse relation to energy savings. In 

other words, increasing l increases energy savings and decreases exe-

cution time (improves performance). This is expected since one of the 

best ways to reduce energy consumption is to shrink execution time. 

Intra-task DCR can reduce execution time by reducing cache misses 

through assigning larger caches in the cache intensive phases of pro-

grams. There are number of saturation points in the graph where in-

creasing the number of potential reconfiguration points (l) does not 

change the result of our intra-task DCR. This is due to the fact that the 

newly added reconfiguration point is not a good choice (effective 

phase delimiter) to do the reconfiguration and is ignored by our cache 

assignment algorithm. 

6. CONCLUSION 
Optimization techniques are widely used in embedded systems design 

to improve overall area, energy and performance requirements. Dy-

namic cache reconfiguration is very effective to reduce energy con-

sumption of cache subsystem. In this paper we presented a intra-task 

dynamic cache reconfiguration approach using novel phase detection 

and cache selection algorithms. Our experimental results demonstrated 

up to 27% reduction (12% on average) and 19% (7% on average) in 

overall energy consumption of instruction and data cache, respective-

ly, compared to existing inter-task DCR techniques. 
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Fig. 6: Energy savings and execution time spectrum for instruction 

cache using pegwit benchmark  
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