
Dual Code Compression for Embedded Systems∗
Kartik Shrivastava and Prabhat Mishra

Department of Computer and Information Science and Engineering
University of Florida, Gainesville, Florida, 32611-6120, USA

kshrivas@cise.ufl.edu, prabhat@cise.ufl.edu

Abstract—Computer architects aim to make embedded sys-
tems more powerful and space efficient. Code compression is
traditionally used to reduce the code size by compressing the
instructions with higher static frequency. However, it may intro-
duce decompression overhead. Performance-aware compression
techniques try to improve performance through reduction of
cache misses by utilizing the dynamic instruction frequency, but
it sacrifices code size. We propose a dual compression scheme
that aims to simultaneously optimize both code size reduction
and performance improvement. Experimental results show that
our approach can simultaneously achieve best of both scenarios
- achieves up to 40% compression efficiency and an average
performance improvement of 50%.

I. INTRODUCTION

Embedded systems have a wide variety of applications to-
day, from multipurpose handheld PDAs to dedicated real-time
control systems. Embedded systems are resource constrained
i.e., they generally have limited memory and computational
capabilities and there is a driving need to extract as much
space efficiency and performance from the available resources
as possible. Code compression addresses both of these require-
ments.

Compressing the application binary and decompressing it
at runtime helps us better utilize the limited memory space
in embedded systems. Figure 1 shows an overview of code
compression in embedded systems. The compressed code is
placed in the main memory and/or in the instruction cache,
thus increasing their effective sizes by enabling them to hold
more number of instructions. During runtime, compressed
code is fetched, decompressed and sent to the next memory
level or to the processor. Decompression introduces certain
overhead which may increase the number of cycles for each
fetch, which in turn may reduce the program’s execution rate.
However, a reduced binary size of a compressed application
has some features which can improve its performance. If the
compressed code is stored in the main memory, filling up
a cache line on a cache miss will require fewer cycles on
average, in effect reducing the average latency to fetch an
instruction block from the memory. Moreover, placing the
compressed code in the cache means that it can hold more
instructions, hence increasing the effective cache size and
causing a reduction in the miss rate.

Compression Ratio is widely accepted as the metric for
measuring the efficiency of compression algorithms and is
defined as: Compression Ratio = (Compressed Code Size /

∗This work was partially supported by NSF grant CNS-0915376.

MemoryProcessor

Compression

Decompression

Offline
Stage

Embedded System

Application
Program

Fig. 1. Overview of Code Compression

Original Code Size). Good compression ratio can be achieved
by compressing the instructions that occur most frequently
in the code, whereas, a speedup is achieved by compressing
the instructions that are fetched most often. Most frequent
static instructions may not be the most executed dynamic
instructions and vice versa, hence, a binary compressed to
maximize one benefit may not provide the best results in the
other scenario. There are some mixed profile based compres-
sion schemes [1] which attempt to achieve both code size
reduction and performance improvement. In these schemes,
the dictionary consists of instructions from both sets of in-
structions by selectively combining both static and dynamic
frequencies. This approach can lead to a trade-off but cannot
achieve the best of both worlds.

In this paper, we describe a novel dual compression scheme
which aims to simultaneously maximize the reduction in both
the overall execution cycles and the binary size. In dual
compression scheme, first the code is compressed on the basis
of its execution profile and then second compression is done
to reduce the binary size, based on the static occurrences
of the instructions after the first compression. During exe-
cution, decompression is first done between the cache and
the memory and then between the processor and cache. We
present a detailed description of compression algorithm and
decompression system with performance results and analysis.
The framework is implemented in the SimpleScalar simulator
and validated using MediaBench and MiBench benchmarks.

Rest of the paper is organized as follows. Section II surveys
related work on code compression for both size reduction
and performance improvement. Section III presents our dual
code compression scheme, followed by experimental results
in Section IV. Finally, Section V concludes this paper.

II. RELATED WORK

Code compression techniques were first developed for em-
bedded systems by Wolfe and Channin [2]. Lekatsas and Wolf

used Arithmetic coding for code compression [3], whereas,
Larin and Conte devised a Huffman based compression on
embedded systems in [5]. Tunstall coding was used by Xie
et al. [6] to perform variable to fixed length compression.
Usage of variable sized block was further exploited by Lin
et al. [7], when they proposed LZW compression scheme for
code compression of embedded processors. Code compression
techniques were applied on variable length instruction set
processors by Das et al. [8]. Seong et al. [9] improves
dictionary-based compression by remembering mismatches
using bitmasks. Bitmask based compression [9] has been
successfully applied in various domains including manufac-
turing test compression [13] and FPGA bitstream compression
[12]. All these works emphasize on reducing the size of the
application at the cost of potential performance degradation.

There has also been some work on code compression
based on dynamic frequency profiling to increase performance
efficiency. Benini et al. [10] proposed a technique of selective
compression to reduce the energy required by the program
to execute on embedded systems. They compressed the most
commonly fetched instructions to reduce the energy dissipated
in memory accesses. Lekatsas et al. [11] proposed a dictionary
based technique for code compression, which takes advantage
of compressing words with higher frequencies. However code
size reduction is not targeted by these methods.

Netto et al. described [1] a multi-profile based compression
technique where they proposed an approach to mix static
and dynamic instruction profiling to effectively exploit size-
performance trade-off. Like our approach, they too used
word-sized sets of indices, removing any compressed word
misalignments, giving a faster decompression. However, their
work uses a single compression scheme. Therefore, for any
combination of instructions from their dynamic and static
profiles, it cannot achieve both best possible code size and
performance at the same time. Our dual code compression
can simultaneously achieve best possible code size reduction
as well as best possible performance improvement.

III. DUAL CODE COMPRESSION

Dual code compression targets to optimize both system per-
formance and code size reduction. Figure 2 show the overview
of our framework. The difference between our approach and
existing compression methods is that compression and decom-
pression are done twice, first for performance improvement
and then for size reduction, based on frequencies of dynamic
and static instructions respectively. Therefore, there should
be a synergy between the two steps. The output of the first
compression step should be a valid input for the second.
Moreover, dynamic decompression for the two steps should
be done in such a way that the overhead is minimal.

To achieve a speedup we must reduce the cache miss
ratio which is possible by placing compressed code in the
cache. Holding the most frequently executed instructions in
compressed form will greatly enhance cache usage and cor-
respondingly improve system performance as the cache miss-
rate will reduce. The main memory utilization is enhanced
by holding statically compressed code with minimal code

Application

Program

Static FrequencyDynamic Frequency
based

Compression (DFC)
based

Compression (SFC)

Memory

Processor
Decompression

Instruction

Cache

Compressed

Application Program

OFFLINE COMPRESSION

RUNTIME DECOMPRESSION

SFC

DFC

Decompression

Fig. 2. Overview of Dual Code Compression

size. Figure 2 has four important steps: dynamic frequency
based compression (DFC), static frequency based compression
(SFC), SFC decompression and DFC decompression. The
remainder of this section describes these steps in details.

A. Dynamic Frequency based Compression (DFC)

Algorithm 1 outlines the steps in DFC. The first step is
profile creation, which involves identifying all the basic blocks
of code in the program and the relative frequencies with which
they are fetched and then creating a dictionary based on the
most frequently fetched blocks. The second step efficiently
compresses the code in a manner which best exploits the
locality of the most frequently fetched instructions in the basic
block.

Algorithm 1 Dynamic Frequency based Compression
1: Create profile P of most executed basic blocks
2: Create a dictionary D1 based on P.
3: Compress each 32-bit vector using D1 to produce C1.
4: Generate Basic Block Mapping Table BBM
5: return C1, D1, BBM

1) Profile creation: The first step in profile creation is
the identification of basic blocks1 and their relative access
frequencies of being fetched. To identify the basic blocks and
their respective frequencies we generate an execution trace
of the program and calculate the frequency with which each
instruction is fetched along with all the jump targets. The basic
blocks are those sequences of instructions which have the same
frequency of execution and no instruction as a jump target
except the first one.

The next step in profile creation is selecting the most
frequently fetched basic blocks for compression and creating
a dictionary from them. Compressing the most frequently
fetched basic blocks has the following advantages. Firstly,
keeping the most frequently executed instructions in the cache
in compressed form will help us better utilize its space and
reduce the number of cache misses. If a basic block is

1A basic block is a code with one entry point, one exit point and no jump
instructions contained in it. It is a sequence of instructions which are all
executed if the first one in the sequence is executed. The starting instruction
of the block may be jumped to from any location, but none of the other
instructions can be branch targets.

0.4

0.6
Pr

ob
ab

ab
ilit

y D
ist

.

0

0.2

1 10001 20001 30001Pr
ob

ab
ab

ilit
y D

ist
.

Instruction Addresses

Fig. 3. Probability distribution of instruction fetches (cjpeg)

compressed it will take less number of fetches to bring it
from the memory, therefore it saves a certain number of cycles
for each fetch. Moreover, higher the frequency of that block
being fetched, more the cycles we save cumulatively over the
entire execution. By analyzing the profiles of our benchmarks,
we see that they follow the 90-10 rule, i.e., 90% of program
execution time is spent on 10% of the code. Figure 3 shows a
distribution of the instructions executed for cjpeg. Therefore,
a small dictionary is sufficient. Figure 4 shows the percentage
of fetches to the instructions in the dictionary for different
dictionary sizes. For example, in epic benchmark, 256 most
frequently fetched instructions makeup for 96.9% of the total
number of fetches.

80
90

100

40
50
60
70
80

Co
ve

rag
e (

%)

128
256

10
20
30
40

Co
ve

rag
e (

%)

256
512
1024

0
10

epic djpeg cjpeg rawcaudio rawdaudio bitcnts crc32
BenchmarksBenchmarks

Fig. 4. Execution frequency of dictionary entries for various dictionary sizes.

2) Compression Mechanism: To compress the code we
replace the instructions with their respective indices in the
dictionary. As the target instruction set architecture here is
Alpha, the instruction size is 32 bits i.e., 4 bytes. By selecting
a dictionary size of 256, the index size would be one byte.
Unlike bit-masking or dictionary based compression, a fixed
block encoding is used to better facilitate compression and
decompression of the basic blocks. Groups of words belonging
to a basic block are compressed together to form a single word.
The main advantage of this approach is that the compressed
code does not get misaligned, so only a single fetch is required
to obtain an instruction. Moreover, fetching a compressed word
aligned to the word boundary is faster and can enable parallel
decompression [14].

Figure 5 illustrates the compression mechanism. Instructions
{1, 2, 3, 4, 5} and {8, 9, 10} are the basic blocks to be
compressed in the program and each instruction is of size
32 bits. Due to the chosen dictionary size of 256, the index
size will be 8 bits. Instructions 1, 2, 3 and 4 are replaced
to form one word consisting of their respective dictionary
indices. Instruction 5 is put as an index in the next word
and the remaining space is filled up with padding. Similarly,
instructions 8, 9 and 10 are put as indices and the remaining
space is padded. The idea behind such compression is that
whenever the first instruction of a basic block is called, the

0 0x47FF041F

1 0x01020304

2 0x01FFFFFF

3 0xA7FE0001

4 0x27BA2000

5 0x050600FF

ADDRESS
END

1

8

STARTING
ADDRESS

5

10

ADD.
NEW

5

1

DICTIONARY

1 0xA75E0000

4 0xB53E0008
5 0xA55E0010

 0 0x23DEFFF0

2 0x6B5B4000
3 0x27BB2000

6 0xA75E0000

BBM TABLE

0 0x47FF041F

4 0xB53E0008
5 0xA55E0010
6 0xA7FE0001
7 0x27BA2000
8 0xA55E0010
9 0xA75E0000
10 0x23DEFFF0

1 0xA75E0000

ORIGINAL TEXT

2 0x6B5B4000
3 0x27BB2000

COMPRESSED TEXT

Fig. 5. Dynamic Frequency based Compression Mechanism

next few instructions are fetched along with it.
As the words do not contain any information as to whether

it is compressed or not, a Basic Block Mapping (BBM) table
is required. Each entry in the table consists of information
about a basic block, such as the address of the first instruction
of the block, the address of the last instruction and its address
mapped to the compressed form. BBM table eliminates the
necessity of flag bits/bytes that indicate whether the instruction
is compressed or not. The flag bits/bytes (used in existing
methods) spanned over the entire binary adds on to the size
of the compressed binary. Moreover, the processing speed is
also negatively impacted since even uncompressed instructions
need to be flagged in existing methods. The size of the BBM
table itself is very small as it only contains information about
the most frequently fetched basic blocks. It also eliminates the
requirement of Line Address Tables (LAT) as it is easy to map
the jump target using the BBM table due to fixed encoding.

B. Static Frequency based Compression (SFC)

Compression schemes used in optimizing code size can be
complex and their dynamic decompression can have significant
decompression latency. Dynamic decompression for SFC is
done before the cache, thus decompression is invoked only
when there is a cache miss. The fact that the decompressor
is not in the critical path of execution, i.e., the decompressor
is not invoked for each fetch by the processor gives us the
freedom to use efficient compression mechanisms. The com-
pression mechanism used for SFC is based on the work done
by Seong et al. [9] that uses a bit-mask based compression
scheme which gives a high compression efficiency and enables
single cycle decompression. Compression is performed on
the DFC compressed code. As mentioned earlier, the word
boundaries in DFC are maintained, hence, direct application

of bit-mask based compression is possible to perform SFC.
The compression mechanism is outlined in Algorithm 2.

It is useful to consider larger dictionary sizes when the
current dictionary size cannot accommodate all the instructions
with frequency value above certain threshold. (e.g., above 5
is profitable). However, there are certain disadvantages of in-
creasing the dictionary size. The cost of using larger dictionary
is more since the dictionary index becomes bigger. The cost
increase is balanced only if most of the dictionary is full of
high frequency vectors. Most importantly, a bigger dictionary
increases access time and thereby reduces decompression
efficiency. A standard dictionary size of 2048 is used in our
implementation.

Algorithm 2 Static Frequency based Compression
1: Create Dictionary D2 using the most frequent words in

C1 (produced by Algorithm 1) as well as bit-mask based
savings.

2: Compress C1 using D2 to produce C2.
3: Handle and adjust branch targets in C2.
4: return Compressed code and dictionary.

C. Decompression Architecture

As shown in Figure 2, DFC needs to be completed before
SFC during compression (offline). Therefore, SFC decom-
pression needs to be done before DFC decompression during
runtime. Figure 2 shows the most beneficial placement of
decompression units. There are various other combinations of
placement of DFC and SFC decompression possible but they
are less efficient. Placing both DFC and SFC decompression
between cache and processor will negatively impact instruc-
tion fetch latency. Similarly placing them together between
cache and memory would mean that the cache would hold
uncompressed instructions, and therefore loose opportunities
for improved cache hits, which is possible if cache contains
compressed instructions. The details of SFC and DFC decom-
pression mechanisms are discussed in the following sections.

1) SFC Decompression: We use the decompression archi-
tecture for bitmask-based compression developed by Seong
et al. [9]. Unlike [9], we have placed the decompression
engine for SFC before between cache and main memory.
Thus, decompression is invoked at each cache miss to fill a
cache line. As the code in the main memory is in compressed
form, intuitively it will require less number of fetches to the
main memory on the average to fill a cache line. Compressed
blocks are fetched from the memory on cache misses, which
are then decompressed and placed in the cache. The number
of blocks fetched from the memory should be sufficient to
fill up the cache line after decompression. The rest is stored
in decompressor’s buffer. As the number of blocks fetched
from the main memory to fill up the cache line would be
less compared to regular execution of uncompressed code, a
speedup is expected.

2) DFC Decompression: Decompression for DFC is done
between cache and processor to enable increase in cache
utilization by making it hold the most frequently executed

instructions in compressed form. This way, the effective size
of the cache increases and the total number of cache misses
reduces. As decompressor is invoked for each instruction fetch,
it has to be fast enough to decompress a compressed word and
provide it to the processor’s fetch unit in a single clock cycle.
In this case, each compressed word holds four instructions,
the cache size effectively increases four times. This increase
in effective cache size is the reason of the expected speedup.
A larger cache means less number of overall fetches from the
main memory.

0 0x47FF041F
1 0x01020304
3 0x01FFFFFF
4 0x27BA2000
5 0x050600FF

0xA75E0000

0x27BB20000
0xB53E0008

0x6B5B40000

FETCHING PC 3
I−CACHE

DECOMPRESSOR

PROCESSOR

Fig. 6. Decompression of DFC compressed code for PC = 3

The runtime decompression unit uses the BBM table to see
which instructions are compressed and to map the instructions
to their correct addresses. When the decoder fetches a com-
pressed word, it gets decompressed using the dictionary and
sends back the required instruction to the processor and stores
the rest in its buffer. As the word boundaries are maintained
even after compression, fetching words from the cache is
fast and simple. Figure 6 shows an example. Here we are
fetching the instruction with the original PC 3. By looking at
the BBM table, address 3 is shown to be in the basic block
{1,2,3,4,5} which starts from address 1 in the compressed
code which will contain instructions {1,2,3,4}. After mapping
PC, the compressed word at address one is fetched by the
decompressor, the instructions are extracted from it and kept
in the decompressor’s buffer and the required instruction is
sent to the processor for execution.

Uncompressed instructions are also mapped to the correct
address and fetched. Consider another example where PC is
not part of the BBM table, for example PC 6. In this case
the basic block which is before 6 is {1,2,3,4,5}. We need to
divide the basic block size by 4 (right shift by 2) to obtain
the number of compressed words and add it to the offset from
the last word of the compressed block, i.e., new address for
current PC = new address for the block above+((block size-1)
>> 2)+(current PC-last address of the block). In this case,
new address for PC 6 will be 1+(5-1) >> 2)+(6-5)=3.

The simple mapping and decompression mechanism enables
the decoder to fetch a compressed word, decompress it and
store uncompressed words in its buffer. The processor fetches
the instructions from the buffer in the next cycle. Thus,
fetching four instructions from a compressed basic block takes
five cycles. Fetching an instruction which is not compressed
will take two cycles, one for the decompressor to fetch it from
the cache and one for the processor to fetch it from the buffer.
We can reduce the number of cycles further by pipelining
the fetches by the decompressor, i.e., by the prefetching
instructions. A fetch by the decoder takes two cycles only
if the instruction to be fetched is a jump target, otherwise all

the instructions will take just a single cycle. Cycle time to
fetch an instruction from the decoder’s buffer would be very
small compared to that from an L1 cache.

IV. EXPERIMENTS

Experiments were performed in SimpleScalar performance
simulator for MIPS uniprocessor architecture using a selection
of benchmarks from MediaBench and MiBench compiled for
Alpha ISA. The benchmark programs employed were epic,
cjpeg and djpeg image compression utility, adpcm-encode and
decode voice compression programs (rawcaudio, rawdaudio),
bitcnts from MiBench’s automotive suite, and crc32 from
telecom suite. The simulation system consisted of a Super
Scalar MIPS Processor, a decompressor each for DFC and
SFC, an instruction cache with a line size of 16 bytes, and
memory access time of 64 cycles. Table IV shows a description
of the number of static and dynamic instructions for each
benchmark used.

TABLE I
PROFILE OF SELECTED BENCHMARKS.

Benchmark Dynamic Instructions Static Instructions
epic 59494631 47124
cjpeg 19025567 49896
djpeg 5887958 53852
rawcaudio 7610111 27256
rawdaudio 6309300 27248
bitcnts 5276065 23284
crc32 5108304 28392

A. Code Size Reduction

Figure 7 shows the code size reduction achieved in the code
by SFC. The implementation of bit-mask based compression
for a dictionary size of 2048 entries give compression ratios
from 0.60 to 0.65. These numbers are similar to the results in
[9]. As expected, there is almost no size reduction in the DFC
stage, therefore, SFC is exclusively responsible for overall
code size reduction.

0.62
0.64
0.66

Co
mp

re
ssi

on
 ra

tio

0.58
0.6

0.62

epic djpeg cjpeg rawcaudio rawdaudio bitcnts crc32

Co
mp

re
ssi

on
 ra

tio

Benchmarks

Fig. 7. Compression ratios for the benchmarks, using SFC

B. Performance Improvement

Table II shows the performance of the uncompressed and
compressed binary in terms of the number of clock cycles
taken to execute using a range of cache sizes and the cor-
responding misses for each benchmark. For each benchmark
there is an increasing trend in performance improvement as
the size of the cache decreases. The reason for this trend
lies in the fact that the difference in the cache misses be-
tween uncompressed and compressed code decreases with
an increase in cache size. Therefore, the ratio of reduction
in cycles will reduce with cache size increase. The greatest

performance improvement is observed for cache size of 128
bytes. Embedded systems generally use small caches and our
technique is beneficial in such environments.

TABLE II
EXECUTION CLOCK CYCLES FOR VARIOUS CACHE SIZES.

Benchmarks Cache(bytes) Clock Cycles
Original Compressed

epic

128 291288151 125664394
256 144591613 94542719
512 94687156 81393578

1024 80951000 67085506
2048 63696412 51322191

djpeg

128 86863373 25427322
256 46942406 19158549
512 24810547 14050627

1024 17415100 11420931
2048 9579240 7054849

cjpeg

128 237649522 104696109
256 113684344 90706713
512 77921692 67695685

1024 59294358 56290566
2048 40666875 29184203

rawcaudio

128 83493514 4454026
256 4584825 4429282
512 4479397 4395664

1024 4360331 4344856
2048 4334726 4339501

rawdaudio

128 83493514 4454026
256 4584825 4429282
512 4479397 4395664

1024 4360331 4344856
2048 4334726 4339501

bitcnt

128 55195281 16122581
256 30083364 9716254
512 16747278 9728918

1024 10459757 5248356
2048 5338534 5220950

crc32

128 3697698 3574271
256 3697698 3574271
512 3662466 3601606

1024 3576362 3538366
2048 3535711 3513130

Performance improvement is more for benchmarks whose
critical code (the most frequently executed instructions) is
much larger than the cache. This could be seen for djpeg which
has fairly large critical code size. There is a huge increase
in the percentage reduction in the number of cycles, which
decreases steadily with increase in cache size. For benchmarks
whose critical code fits easily in the cache, the difference
between the performance of compressed and uncompressed
code is negligible. For example, there is minor change in
the number of cache misses for rawcaudio and crc32 if we
increase the cache size beyond 256 bytes, which implies that
the cache easily accommodates the entire critical code, even in
uncompressed form. Therefore, compressing the code in that
cache configuration would not decrease the number of cache
misses, hence no performance improvement is seen. In case of
bitcnts, no performance improvement for cache size 2K was
observed, as 2K cache holds the whole critical code. Moreover,
its performance is equal to that seen for compressed code using
1K cache. This is because compressed version of the critical
code fits entirely in a 1K cache but not in the uncompressed
form which results in a performance improvement of two times
in this case.

Figure 8 summarizes the trends in reduction in cache-

0.150.20.25
Cache Miss Ra
tio 12825600.050.1

epic djpeg cjpeg rawcaudio rawdaudio bitcnts crc32Cache Miss Ra
tio

Benchmarks
25651210242048

Fig. 8. Miss ratios for various cache sizes

misses with increase in cache size for various benchmarks.
The decrease in the cache miss-ratio for the benchmarks for
different cache sizes and reduction in the number of cycles due
to compression follows a similar trend as shown in Figure 9.
In Figure 9, performance improvement = (original execution
time - execution after compression)/original execution time.

0.60.811.2
Performance I
mprovement 128256

00.20.40.6
epic djpeg cjpeg rawcaudio rawdaudio bitcnts crc32Performance I

mprovement

Benchmarks
25651210242048

Fig. 9. Performance improvement for various cache sizes.

As discussed earlier, SFC may produce a slight speedup as
the total number of fetches made to the memory is expected
to decrease due to reduced binary size. As a corollary to this,
combining DFC with SFC should give a better speedup than
DFC alone. Figure 10 and 11 show the number of cycles
(for djpeg and rawcaudio, respectively) for four cases, namely
running an uncompressed binary, a binary compressed using
SFC only, compressed using DFC only and compressed using
both DFC and SFC. Running uncompressed code requires the
most number of cycles, followed by SFC only code, DFC
only code, and SFC and DFC combined. The improvement
due to SFC is more apparent in smaller caches. A smaller
cache means a greater miss rate, which results in more number
of accesses to the main memory. If the main memory holds
compressed code each memory access will effectively bring
in more instructions. Thus, less number of memory accesses
is required during the entire execution.

60
80

100

Cy
cle

s in
 M

illi
on

s

Uncompressed

0
20
40
60

128 256 512 1024 2048

Cy
cle

s in
 M

illi
on

s

SFC only
DFC only
SFC+DFC

Fig. 10. Cycles for djpeg

Figure 10 shows the performance trend for djpeg. Figure 11
shows a similar trend for rawcaudio. The performance im-
provement is more apparent in case of djpeg because its critical

code is large hence have more cache misses. Critical code is
fairly small in the case of rawcaudio which easily fits in a
cache of size 256 bytes if the binary is not compressed using
DFC. When compressed, critical code of rawcaudio also fits in
a cache of 128 bytes. Therefore, no improvement is apparent
for cache sizes larger than 128 bytes for rawcaudio.

60
80

100

Cy
cle

s in
 M

illi
on

s

Uncompressed

0
20
40
60

128 256 512 1024 2048

Cy
cle

s in
 M

illi
on

s

SFC only
DFC only
SFC+DFC

Fig. 11. Cycles for rawcaudio

V. CONCLUSIONS

Code compression is promising in embedded systems to
improve code size and performance. Existing approaches can
either target the best compression ratio or the best performance
or make a trade-off. Our dual code compression method can
simultaneously achieve both the benefits. Our results demon-
strated that DFC reduces cache misses significantly for small
caches which gives an average speed up of 50%. We have used
a bit-mask based approach as SFC which gives compression
ratio from 60-65%. DFC and SFC improve performance and
code size respectively, they also complement each other. DFC
itself reduces the code size slightly which gives an even better
compression ratio than SFC alone. On the other hand reduced
code size reduces the number of main memory accesses which
further enhances the overall performance.

REFERENCES

[1] E. Netto, R. Azevedo, P. Centoducatte and G. Araujo, “Multi-profile
based code compression,” 244–249, DAC 2004.

[2] A. Wolfe and A. Chanin, “Executing compressed programs on an
embedded RISC architecture,” MICRO, 1992, pp. 81–91.

[3] H. Lekatsas and W. Wolf, “SAMC: A code compression algorithm for
embedded processors,” IEEE Trans. on CAD, 18(12), 1689–1701, 1999.

[4] Nam et al., “Improving dictionary-based code compression in VLIW
architectures,” IEICE Trans. Fundamentals, E82-A(11), 2318–2324,
1999.

[5] S. Larin and T. Conte, “Compiler-driven cached code compression
schemes for embedded ILP processors,” MICRO, 1999, pp. 82–91.

[6] Xie et al., “Code compression for VLIW processors using variable-to-
fixed coding,” ISSS, 2002, pp. 138–143.

[7] Lin et al., “LZW-based code compression for VLIW embedded sys-
tems,” DATE, 2004, pp. 76–81.

[8] Das et al., “Dictionary based code compression for variable length
instruction encodings,” VLSI Design, 2005, pp. 545–550.

[9] S. Seong and P. Mishra, “Bitmask-based code compression for embedded
systems,” IEEE Trans. on CAD, 27(4), pp. 673–685, 2008.

[10] Benini et al., “Hardware-assisted data compression for energy minimiza-
tion in systems with embedded processors,” DATE, 2002, pp. 449–453.

[11] Lekatsas et al., “Design of an one-cycle decompression hardware for
performance increase in embedded systems,” DAC, 2002, pp. 34–39.

[12] X. Qin, C. Murthy and P. Mishra, “Decoding-aware Compression of
FPGA Bitstreams,” IEEE Transactions on VLSI, 2010.

[13] K. Basu and P. Mishra, “Test Data Compression using Efficient Bitmask
and Dictionary Selection Methods,” IEEE Transactions on VLSI, 18(9),
1277-1286, 2010.

[14] X. Qin and P. Mishra, “A Universal Placement Technique of Compressed
Instructions for Efficient Parallel Decompression,” IEEE Transactions on
CAD, 28(8), 1224-1236, 2010.

