
Synchronized Generation of Directed Tests using Satisfiability Solving

Xiaoke Qin, Mingsong Chen and Prabhat Mishra

Department of Computer and Information Science and Engineering
University of Florida, Gainesville FL 32611-6120, USA

{xqin, mchen, prabhat}@cise.ufl.edu

Abstract
Directed test generation is important for the functional veri-

fication of complex system-on-chip designs. SAT based bounded
model checking is promising for counterexample generation
which can be used in directed testing. Existing research has
explored two directions to accelerate the SAT solving process:
learning during solving of one property with different bounds,
or solving multiple properties with known bounds. This paper
combines the advantages of both approaches by introducing
a novel SAT-solving technique which exploits the similarities
among SAT instances for multiple properties and bounds on
the same design. The proposed technique ensures that the
knowledge obtained in previous solving iterations be shared
across different bounds as well as between different properties.
Our experimental results demonstrate that our approach can
significantly reduce overall test generation time (on average 10
times) compared to existing methods.

I. Introduction

Functional verification is one of the most important stages in
the development cycle of modern system-on-chip designs. Due
to dramatic increase in complexity of embedded applications
and decreased time-to-market, it is becoming more challenging
to meet the required coverage before the deadline using conven-
tional simulation methods with random tests. Directed tests are
promising to address this problem since it requires significantly
less number of directed tests to achieve the same coverage goal.
Currently, directed tests are usually generated with the help of
human intervention, which cannot match today’s time sensitive
development cycles. Therefore, it is desired to employ a fully
automatic approach for directed test generation.

Model checking seems to be an attractive solution for auto-
matic generation of directed tests, because the counterexample
of the negated version of a property can be used as a test to acti-
vate the property. However, symbolic model checker sometimes
cannot handle large designs due to the state space explosion
problem. SAT-based bounded model checking (BMC), on the
other hand, restricts the search space by only checking the
property on the states reachable from the initial state within a
fixed number (k) of transitions, called bound. This is achieved
by unrolling the design k times, then converting the unrolled

This work was partially supported by NSF CAREER award 0746261.

design and the property description into a proposition satisfi-
ability (SAT) problem. Next, SAT solver is employed to find
a satisfiable assignment of variables, which can be used as a
counterexample or test. The effectiveness of SAT-based BMC
is based on the fact that SAT-BMC capacity is usually beyond
BDD capacity for practical designs [1].

Since the SAT instances for BMC are generated by unrolling
the same design for multiple times, their structural regularity
can be exploited to accelerate the SAT solving process. Existing
research in this area can be divided into two categories based on
whether it addresses one property or multiple properties. The
first category is applicable for test generation for one design
and one property with varying bounds [2], [3]. However, the
knowledge obtained are not shared when solving for other
properties on the same design. In contrast, the methods in
the second category tries to accelerate the test generation for
multiple properties with known bounds [4]. They exploit the
fact that although each test generation instance is created for
a different property, these instances still have a large overlap,
because the design remains unchanged. The major drawback
of this solution is that it assumes that the bound is known.
In general, it is very difficult to determine the bound upfront
without actually solving the SAT instance, which limits the
applicability of this solution.

In this paper, we combine the advantages of both approaches
by developing a novel BMC based test generation technique
for multiple properties of the same design, which enables
the reuse of learned knowledge across different bounds and
properties. The basic idea of our approach is to synchronize
the solving process of multiple properties for different bounds,
so that the utilization of learned knowledge can be maximized.
One may think that solving many SAT instances together
can be dramatically complex than solving one instance, and
therefore many be impractical. On the contrary, since all
these instances are generated by unrolling the same design for
several times, we successfully developed a simple but effective
approach to significantly reduce the overall SAT solving time
by forwarding knowledge among different solving processes.
Our experimental results demonstrate an order-of-magnitude
reduction in overall test generation time.

The rest of the paper is organized as follows. Section 2
describes related work on BMC and directed test generation.
Section 3 briefly discusses the background on SAT-based
BMC. Section 4 describes our test generation methodology
for multiple properties and bounds. Section 5 presents our

experimental results. Finally, Section 6 concludes the paper.

II. Related Work

Model checking has been widely used for system verification
and test generation [5], [6]. Since conventional model checking
techniques are not suitable for large designs due to the state ex-
plosion problem, Biere et al. [7], [1] introduced bounded model
checking with satisfiability solving. In general, BMC cannot
validate a safety property when a counterexample is not found
within a specific bound. However, SAT-based BMC is quite
effective to falsify a design by providing a counterexample
when the bound is not large, because in this case, SAT solvers
usually require less space and time than conventional symbolic
model checkers [8]. As a result, it is quite attractive in the field
of directed test generation, where a counterexample typically
exists within a relatively small bound. A study [9] illustrated
that SAT-based BMC outperforms unbounded model checking
for real designs.

A great deal of work has been done to accelerate the SAT
solving process during BMC [10], [11], [3], [2], [4]. The
basic idea is to exploit the regularity of the SAT instances
and make use of the knowledge learned in previous SAT
solving iterations. For example, incremental SAT solvers [12],
[13] reduce the solving time by recording and utilizing the
previously learned conflict clauses. A common approach is to
keep generated conflict clauses as long as the clauses which
led to the conflicts are not removed from the database. In [14],
the clauses that are responsible for the deduction of a new
conflict clause in the implication graph is recorded, so that
such conflict clauses can be used in the future when applicable.
The only problem is that keeping track of such dependencies
might be expensive. Interestingly, such dependency in BMC
are much easier to track than general cases. For single property
checking, Strichman [3], [2] observed that if a conflict clause is
deduced only from the transition part of a SAT instance, it can
be safely forwarded to all instances with larger bounds, because
the transition part of the design will still be in the SAT instance
when we unroll the design for more times. Nevertheless, this
approach was designed to check one property on one design
at a time and cannot be directly applied to accelerate the SAT
solving of multiple properties.

In directed test generation, Mishra et al. [4] forwarded
clauses between properties to speed up the SAT solving pro-
cess. They found that although the properties are different,
since they are checked on the same design, the SAT instances
have a large overlap. By solving a “base” property, many
common conflict clauses can be generated to accelerate the
solving processes of other properties. However, this method
requires the bound as an input. Since the bound calculation it-
self is usually time-consuming, and may be impossible in many
scenarios without solving the SAT instances, the applicability
of their approach is restricted.

Although there are some attempts to attack the SAT-based
BMC with multiple properties and unknown bound, none of
them is suitable for directed test generation. For example,
Fraser et al. [10] concatenated all properties into a large prop-
erty with “AND” and checked them together. This approach

is clearly not applicable in test generation because we have
to find tests for each property. The simultaneous SAT solver
[11] enabled the learned clauses to be reused by other solving
objectives. However, it restricted the expression of the safety
property or “proof objective” to have only one literal, which
is not the case in realistic properties. Our approach, on the
other hand, provides a general solution which can be applied
in practice.

III. Background : SAT-based BMC
This section briefly describes the basic concepts of BMC,

directed test generation based on BMC, and modern SAT solv-
ing techniques. BMC checks whether there is a counterexample
for the property within a given bound [1]. Given a design D, a
safety property p, and a bound k, BMC will unroll the design
k times and encode it using the following formula:

BMC(M,p, k) = I(s0) ∧
k−1∧
i=0

R(si, si+1) ∧
k∨

i=0

¬p(si) (1)

where I(s0) is the initial state of the system, R(si, si+1)
represents the state transition from state si to state si+1, and
p(si) checks whether property p holds on state si. The formula
is then transformed to CNF and checked by a SAT solver. If
the SAT solver finds some assignment which makes the CNF
true, it implies that the property does not hold at bound k,
i.e., M 2k p. Otherwise, if no such assignment is found, we
conclude that the property holds up to k, or M �k p.

In directed test generation [5], [6], the negated version of
the property is checked by BMC. The SAT solver will find
a sequence of input assignments which drive the design from
the initial state to the state where the negated version of the
property fails. Therefore, we can use such a counterexample as
a test to activate the intended functionality during simulation-
based validation. Such tests are called directed tests, which is
used for validation of both specification and implementation.

Many techniques and heuristics are employed in SAT solvers
to accelerate the solving process. Modern SAT solvers such
as zChaff [15] adopt the Davis-Putnam-Logemann-Loveland
(DPLL) algorithm and conflict-driven non-chronological back-
tracking. The basic idea behind these techniques is to save the
knowledge learned during resolving current conflict to avoid
the same conflict in the future [16]. A conflict occurs, when
the current assignment of some variables, through a set of
clauses, implies that one variable must be true and false at the
same time. In this case, conflict analysis will trace back along
the implication relations and find the closest assignment of
variables that led to the conflict. We can forbid such assignment
from occurring again by adding a carefully designed clause,
i.e., conflict clause, to the original CNF. Generally, conflict
clauses are only meaningful within the same SAT instance.
However, when the set of clauses that led to the conflict clause
are shared by multiple SAT instances, we can also forward
conflict clauses across instances.

IV. Synchronized Test Generation
Our work is motivated by previous works on incremental

SAT for single property with unknown bound [2] as well as

(a) Strichman [2] (b) Mishra [4]

(c) A naïve combination of (a) and (b)

k=0 k=1 k=2 k=3

p1

p2

p3

p1

p2

p3

k=0 k=1 k=2 k=3

p1

p2

p3

k=0 k=1 k=2 k=3

Different Clause forwarding path

Strichman’s approach

Mishra et al’s approach

Fig. 1. Different incremental SAT solving techniques

test generation for multiple properties with known bounds [4].
These two different approaches are illustrated in Figure 1. In
this example, there are three properties p1, p2, and p3 with
bounds 3, 2, and 1 respectively. We use solid dots to represent
different SAT instances and lines to indicate the conflict clause
forwarding paths. As discussed in Section II, Strichman et al.
[2] solved each property separately, and passed the knowledge
(deduced conflict clauses) “horizontally” within instances for
the same property (Figure 1a). In contrast, Mishra et al. [4]
solved one “base” property first, (e.g., p2 in this case), then
forward the learned clause “vertically” between other SAT
instances for different properties, as shown in Figure 1b.

Clearly, it should be profitable if we can appropriately
forward conflict clauses “vertically” between properties while
solving for each property “horizontally”. In this way, the
knowledge learned during checking a property for a specific
bound can benefit itself with larger bounds as well as across
other properties. One intuitive way to combine the two ap-
proaches, as shown in Figure 1c, is to choose some property
as based property (p2 in Figure 1c), check this property for
different bounds, and then forward the learned conflict clauses
to other SAT instances for other properties. Unfortunately, this
simple combination has three problems. First, it is very hard to
choose the base property, that should yield a large number of
conflict clauses which can be shared by other properties. Unlike
[4], where each property has only one SAT instance, we do not
know how many SAT instances we have to solve. As a result,
it is impossible to apply the clustering technique proposed
in [4], to determine the base property. Secondly, even if we
correctly find the optimal base property, it is still difficult to
choose the suitable bound of the receiving property to forward
clauses, because SAT instances with inappropriate bounds may
be solved trivially. Moreover, the learning during checking non-
base properties is wasted. For example, p3 in Figure 1c is not
a base property. Thus, the conflict clauses we learned during
checking p3 cannot be shared by other property like p1. When
the number of properties is large, this may cause a great waste
of computational power, because we have to explore the same

search space for many times, if the space is not visited during
the solving process of the base property.

Our approach to solve this problem is based on the effective
identification of conflict clauses that can be shared by other
SAT instances across properties and bounds. In fact, for any
k0 ≥ 0, all SAT instances generated during BMC (Equation
1) with k ≥ k0 clearly share the transition clauses I(s0) ∧∧k0−1

i=0 R(si, si+1), although their property terms
∨k

i=0 ¬p(si)
are different. This observation implies that all conflict causes
deduced based on these common clauses during solving process
of any SAT instance can be forwarded to any other SAT
instances with k ≥ k0, because all of them have the same set
of clauses that led to the conflict clause. Therefore, if we check
all properties together for k = 0, 1, 2, ..., i.e., “synchronously”,
all conflict clauses can be safely shared by all subsequent SAT
instances.
Algorithm 1: Synchronized Test Generation for Multiple
Properties
Input: Design D, Property Set P , Maximum bound

Kmax

Output: Test Set TS
Bound k ←− 0
Common Conflict Clause Set CCS ←− ∅
TS ←− ∅
while P 6= ∅ and k ≤ Kmax do

Clause Set CSk
T ←− BMC(D, true, k)

for p ∈ P do
Clause Set CSk

p ←− BMC(D, p, k)
Step1: In CSk

p , mark all clauses that also exist in CSk
T

Step2: (ConflictC, testp)←− SAT(CCS
⋃
CSk

p)
Step3: CCS ←− CCS

⋃
CheckMark (ConflictC)

if testp 6= null then
remove p from P
TS ←− TS

⋃
testp

end
end
k ←− k + 1

end

Algorithm 1 outlines our synchronized test generation
method for multiple properties. It accepts a design and a
property set as inputs and produces corresponding tests. As
indicated before, this algorithm will check all properties
synchronously for each bound. In each iteration, we first
generate the transition clause set CSk

T (corresponding to
I(s0)∧

∧k−1
i=0 R(si, si+1)) using BMC(D,true,k), then randomly

choose a property p from the property set P , and create its own
clause set CSk

p (corresponding to I(s0) ∧
∧k−1

i=0 R(si, si+1) ∧∨k
i=0 ¬p(si)). Next, we perform following 3 steps.

1) Mark all clauses in CSk
p which are also in CSk

T . Since
CSk

T remains same for all properties at k, this step can
be implemented efficiently by table lookup, as described
in Section IV-B.

2) Use a SAT solver to solve the CNF formula CCS
⋃
CSk

p ,
which contains not only CSk

p , but also all previously
learned conflict clauses in CCS.

3) For new conflict clauses ConflictC learned by SAT

solver, merge the clauses deduced purely by marked
clauses into CCS. This step is similar to the isolation
technique proposed in [3] and [4].

If the satisfied assignment, or a counterexample testp is
found in step 2, we record it in test set TS and remove p
from P. This process repeats until tests for all properties are
found or the maximum bound Kmax is reached. Finally, the
algorithm returns all generated tests.

k=0 k=1 k=2 k=3

p1

p2

p3

Fig. 2. Synchronized test generation for multiple properties

We use the same example in Figure 1 to illustrate the flow of
Algorithm 1. The clause forwarding path are shown in Figure
2. In the first iteration for k = 0, suppose we randomly pick p2

from the property set. At the beginning, the common conflict
clause set CCS is empty. Thus, p2 is solved directly. Since the
bound of p2 is 2, the SAT instance is not satisfiable and no test
is generated. However, all conflict clauses deduced based on
clauses in CS0

T are now recorded in CCS, and will be used
to accelerate the solving process of both p1 and p3 at bound
0. Similarly, the conflict clauses generated during solving p1

at k = 0 will be used to speed up p3 at k = 0 (assumes
p3 is solved last). In the next iteration, all instances will be
solved with the help of conflict clauses learned by all three SAT
instances at k = 0, because all conflict clauses are recorded in
CCS. Eventually, three tests will be generated at bound 3, 2,
and 1 for p1, p2 and p3 respectively.

Note that our algorithm does not require the SAT instances to
be preprocessed using Cone-Of-Influence (COI) optimization
as in [2] and [4], because original SAT instances have more
overlapped clauses, which are effectively exploited by our
approach to accelerate the overall solving process. Our exper-
imental results in Section V show that our approach (without
COI) outperforms [2] and [4] that use COI optimization.

In the remainder of this section, we show the correctness of
our approach and the implementation details of our synchro-
nized test generation algorithm.

A. Correctness of the proposed approach

To show the correctness of our test generation approach,
we need to show that in Algorithm 1, solving CCS

⋃
CSk

p is
equivalent to solving CSk

p . Formally, let ϕk
p and ψ be the CNF

formulae formed by clause set CSk
p and CCS respectively, we

need to prove that ϕk
p is satisfiable iff ϕk

p∧ψ is satisfiable using
the following lemma.

Lemma 4.1: ϕk
p ` ψ for all p ∈ P and k ≥ 0.

Proof: Let ϕk
T be the CNF formula formed by CSk

T . We
first show that

ϕk
T ` ψ (2)

for k ≥ 0 by induction on the size of ψ. In the basis step,
formula 2 obviously holds because ψ is empty.

Considering the moment before a new conflict clause π is
added to ψ in some iteration when the bound k′ ≤ k, π must
be deduced from ϕk′

T ∧ ψ, i.e., ϕk′

T ∧ ψ ` π. By induction
hypothesis, ϕk

T ` ψ before π is added into ψ. We also know
that ϕk

T ` ϕk′

T , because their original forms satisfy

I(s0) ∧
k−1∧
i=0

R(si, si+1) ` I(s0) ∧
k′−1∧
i=0

R(si, si+1)

Hence, ϕk
T ` ϕk′

T ∧ ψ. As a result, we have ϕk
T ` π and

ϕk
T ` ψ ∧ π, which means formula 2 still holds, after any new

clause is added to ψ, as long as k′ ≤ k.
On the other hand, we notice that

I(s0)∧
k−1∧
i=0

R(si, si+1)∧
k∨

i=0

¬p(si) ` I(s0)∧
k−1∧
i=0

R(si, si+1)

or
ϕk

p ` ϕk
T

Therefore, we conclude that

ϕk
p ` ψ

for all p ∈ P and k ≥ 0.

Since ϕk
p ` ψ, we have ϕk

p ↔ ϕk
p ∧ ψ. In other words,

Theorem 4.2: ∀p ∈ P ϕk
p is satisfiable iff ϕk

p ∧ ψ is
satisfiable.
The correctness of our approach is therefore justified.

B. Implementation Details

Our synchronized test generation algorithm is built around
zChaff SAT solver [15], which provides clause management
scheme to support incremental SAT solving. zChaff maintains
all input clauses and generates conflict clauses within an
internal clause database DB. When invoked, it will solve the
CNF formed by all clauses currently in DB. The management
of clauses within database DB is based on “group”. For each
clause, zChaff assigns a 32-bit group ID. Each bit identifies
whether that clause belongs to a certain group or not. When a
conflict clause is deduced by clauses from multiple groups, its
group ID is a “OR” product of the group ID of all its parent
clauses, i.e., this clause belongs to multiple groups. zChaff also
allows user to add or remove clauses by group ID between
successive solving processes. If one clause belongs to multiple
groups, it is removed when any of these groups are removed.

With these utilities, the step 1 and 3 in Algorithm 1 can be
implemented efficiently as follows:

1) In the clause marking step, add all clauses in CSk
T

⋂
CSk

p

into DB with group ID 1.
2) Add other clauses in CSk

p into DB with group ID 2.

3) After solving all clauses in DB with zChaff, remove
clauses with group ID 2.

In this way, CCS is implicitly maintained within DB,
because only conflict clauses generated purely based on clauses
in CCS

⋃
CSk

T are kept after each iteration.
There is another potential overhead in step 1. Before we

mark it in CSk
p , we have to identify whether it is in CSk

T or
not. Since CSk

T remains same for all properties at k, we build
a hash table to record all clauses in CSk

T . It takes O(1) time
to determine whether a clause from CSk

p is in CSk
T or not.

Therefore, the overall time consumption of step 1 and 3 in our
algorithm is negligible compared to the SAT solving time.

V. Experiments
We have evaluated our test generation approach using dif-

ferent software and hardware designs. In this section, we
used two benchmarks, a stock exchange system and a VLIW
implementation of the MIPS architecture, to enable comparison
with [4]. The systems and properties are described in SMV
language and converted to CNF clauses (DIMACS files) using
NuSMV [17]. We use zChaff [15] as our SAT solver to
implement our test generation algorithm. Both experiments
were performed on a PC with 3.0GHz AMD64 CPU and 4GB
RAM.

A. A Stock Exchange System

The design in our first case study simulates the behavior of a
common online stock exchange system (OSES). It can accept,
check and execute the customers orders (market order and limit
order). The system is specified using UML activity diagram and
implemented in JAVA. Its UML behavior specification has 27
activities, 29 transitions and 18 key paths. As indicted before,
the specification is translated into NuSMV input to generate
corresponding SAT instances. Then we apply our synchronized
SAT solving approach to find the satisfiable assignments,
which can be used as tests. We compared our approach with
Strichman’s approach [2] and a simple combination of [2]
and [4] on different properties with unknown bounds. For
Strichman’s approach [2], we use it to solve a sequence of SAT
instances for the same property with varying bounds until a
satisfiable instance is found. The simple combination of [2] and
[4] is developed as described in Section IV. After SAT instance
generation, we applied cone of influence (COI) to speed up
Strichman’s approach. When our approach was applied, we did
not use COI as indicted in Section IV.

Table 1 shows the results of 20 most time consuming
properties using Strichman’s approach [2]. The first column
shows the properties used for test generation. The second
column indicates corresponding bounds of each property. The
third column shows the test generation time (in seconds) for
each property using our approach. The time consumed by step 1
and 3 in Algorithm 1 is also counted in this column. The fourth
column indicates the time required by Strichman’s approach
[2] to generate the test for the same property. The time is
calculated as the summation of the time to solve all the SAT
instances from k = 0 to the bound of the property. The fifth

TABLE I. Test generation time comparison for OSES
Prop. Bound Our [2] vs ours [2] + [4]* vs ours

Approach [2] Speed- [2] + [4] Speed-
Time (s) Time (s) up Time (s) up

1 15 2.94 180.31 61.24 67.58 22.96
2 14 2.55 150.49 59.06 57.70 22.64
3 14 3.12 149.89 48.04 61.11 19.59
4 15 10.54 139.56 13.25 42.53 4.04
5 14 19.38 130.58 6.74 55.74 2.88
6 14 2.97 107.13 36.09 61.66 20.77
7 16 6.61 101.67 15.39 35.86 5.43
8 16 3.54 89.31 25.20 3.76 1.06
9 15 1.73 84.19 48.72 38.97 22.55

10 12 1.96 84.07 42.80 5.51 2.80
11 13 1.21 83.94 69.48 22.54 18.66
12 15 2.83 83.80 29.59 39.77 14.04
13 15 5.60 83.01 14.81 23.49 4.19
14 14 1.34 80.25 59.88 22.60 16.86
15 14 11.16 79.79 7.15 22.53 2.02
16 15 0.85 78.72 92.39 10.94 12.85
17 15 0.88 78.28 88.95 14.51 16.49
18 15 0.86 78.19 90.49 12.60 14.58
19 12 79.40 74.96 0.94 75.10 0.95
20 12 1.38 73.46 53.23 5.43 3.93

Total - 160.87 2011.62 12.50 679.93 4.23

* This is an intuitive combination of Strichman [2] and Mishra et al.
[4] (Figure 1c). We have shown these results to demonstrate how
our approach is superior than any simple combination of existing
methods [2] and [4].

column shows the speedup1 of our approach over [2]. The last
two columns present the test generation time using the simple
combination of [2] and [4] and the speedup of our approach
over it. It can be seen that our approach can produce more
than 10 times improvement compared to [2], because many
more conflict clauses are reused by subsequent iterations. This
is especially important for “hard” SAT instances, which have
to explore a potentially large assignment space. For example,
the “hardest” property p1 for [2] actually consumes less than
3 seconds in our approach. Clearly, the time consumption
for solving multiple SAT instances using our approach is
significantly smaller than the summation of time to solve
each instances independently. The overall time consumption
is reduced by knowledge sharing during solving all properties
synchronously.

One interesting observation is that the most time consuming
property p19 in our approach has a bound of only 12. The
reason for this is that the clauses learned during the solving
process of easier properties like p19 eliminated some useless
searching attempts for the solution of harder properties like
p1. More importantly, these clauses are more effective than
the conflict clauses learned during solving SAT instances of
the same property with smaller bounds. Although p19 itself,
which was solved first, did not benefit from other properties,
the overall time consumption was dramatically reduced. As
a result, our approach outperforms [2], which only forwards
clauses within SAT instances of the same property.

1calculated as (previous column / third column)

For the simple combination of [2] and [4], we chose p19

as the base property and forwarded the clauses learned during
solving it to other properties at bound 11. These parameters
are selected to illustrate the best possible performance of the
combination. It is remarkably faster compared to Strichman’s
approach [2], although it is still 4 times slower than our
approach. It should be noted that in reality, it is impossible to
choose the optimal parameter for this combination because the
bounds are unknown for all properties. Thus, its performance
will be much worse than what we illustrated here, while the
performance of our approach will not change.

B. A VLIW MIPS Processor

We also applied our test generation approach to a single-
issue MIPS processor [6]. There are five pipeline stages: fetch,
decode, execute, memory access, and writeback. The execute
stage has four parallel execution paths: integer ALU, 7 stage
multiplier (MUL1 -MUL7), four stage floating-point adder
(FADD1 - FADD4), and multi-cycle divider (DIV).

We translated the design into the NuSMV input and used
the three approaches to solve the generated SAT instances for
different properties and bounds. For the combination of [2]
and [4], we chose p17 as the base property and forwarded
learned clauses to bound 7. The results are given in Table 2. We
only show the results on 20 most time consuming properties
using Strichman’s approach. It can be seen that our approach
outperforms both Strichman’s approach [2] and the simple
combination of [2] and [4] by 15 and 3 times respectively.

TABLE II. Test generation time comparison for MIPS

Prop. Bound Our [2] vs ours [2] + [4]* vs ours
Approach [2] Speed- [2] + [4] Speed-
Time (s) Time (s) up Time (s) up

1 8 0.78 139.29 179.48 18.66 24.04
2 8 0.74 132.07 178.46 19.45 26.29
3 8 0.76 125.18 164.70 18.18 23.93
4 8 0.76 120.02 158.74 18.45 24.40
5 8 0.76 115.84 151.61 27.14 35.53
6 9 0.86 111.13 129.81 58.26 68.06
7 8 0.81 108.09 133.76 26.63 32.95
8 9 0.95 104.56 110.29 53.59 56.52
9 8 0.75 96.25 128.67 16.77 22.41

10 8 0.77 87.24 113.00 16.47 21.33
11 8 0.76 87.23 114.77 17.37 22.85
12 8 0.77 84.98 110.64 16.45 21.42
13 7 0.65 81.08 125.11 13.35 20.60
14 9 32.31 80.25 2.48 31.61 0.98
15 8 0.76 75.47 99.30 7.25 9.54
16 8 0.76 72.05 94.30 20.63 26.99
17 7 76.54 71.72 0.94 72.30 0.94
18 8 1.00 70.05 70.33 19.46 19.53
19 8 0.76 69.85 91.90 6.98 9.19
20 8 0.76 65.80 87.03 11.08 14.65

Total - 122.99 1898.13 15.43 490.06 3.98

VI. Conclusions
Automatic generation of directed tests is promising for

simulation based functional validation because it requires less
number of test vectors to achieve the same coverage re-
quirement. However, its applicability is limited due to the
capacity restriction of current model checking tools. Existing
incremental SAT approaches are suitable only for a single
property with unknown bound or for multiple properties with
known bounds. This paper presented an efficient technique
for test generation by reusing learned knowledge across mul-
tiple properties and different bounds. To enable knowledge
sharing among properties as well as bounds, we presented a
synchronized test generation technique for multiple properties
with different bounds. SAT instances for different properties
are solved together, so that the discovery and utilization of
the common conflict clauses can be maximized. The overall
time consumption of checking multiple properties using our
approach is remarkably smaller than the summation of time to
check each property independently. Our experimental results
on both hardware and software designs illustrated an order-of-
magnitude reduction in overall test generation time.

References

[1] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model checking
using satisfiability solving,” Formal Methods in System Design, vol. 19,
no. 1, pp. 7–34, 2001.

[2] O. Strichman, “Accelerating bounded model checking of safety proper-
ties,” Formal Methods in System Design, vol. 24, no. 1, pp. 5–24, 2004.

[3] O. Shtrichman, “Pruning techniques for the SAT-based bounded model
checking problem,” in Proc. of CHARME, 2001, pp. 58–70.

[4] P. Mishra and M. Chen, “Efficient techniques for directed test generation
using incremental satisfiability,” in Proc. of VLSI Design, 2009, pp. 65–
70.

[5] A. Gargantini and C. Heitmeyer, “Using model checking to generate
tests from requirements specifications,” in ACM SIGSOFT Software
Engineering Notes, vol. 24, 1999, pp. 146–162.

[6] P. Mishra and N. Dutt, “Graph-based functional test program generation
for pipelined processors,” in Proc. of DATE, 2004, pp. 182–187.

[7] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without BDDs,” in Proc. of TACAS, 1999, pp. 193–207.

[8] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: engineering an efficient SAT solver,” in Proc. of DAC, 2001, pp.
530–535.

[9] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella,
and M. Y. Vardi, “Benefits of bounded model checking at an industrial
setting,” in CAV, 2001, pp. 436–453.

[10] R. Fraer, S. Ikram, G. Kamhi, T. Leonard, and A. Mokkedem, “Accel-
erated verification of RTL assertions based on satisfiability solvers,” in
HLDVT, 2002, pp. 107–110.

[11] Z. Khasidashvili, A. Nadel, A. Palti, and Z. Hanna., “Simultaneous SAT-
based model checking of safety properties.” in Proc. of Haifa Verification
Conference, 2005, pp. 56–75.

[12] J. N. Hooker, “Solving the incremental satisfiability problem,” Journal
of Logic Programming, vol. 15, no. 1-2, pp. 177–186, 1993.

[13] H. Jin and F. Somenzi, “An incremental algorithm to check satisfiability
for bounded model checking,” in Proc. of BMC, vol. 119, no. 2, 2005,
pp. 51 – 65.

[14] J. Whittemore, J. Kim, and K. Sakallah, “SATIRE: A new incremental
satisfiability engine,” in Proc. of DAC, 2001, pp. 542–545.

[15] zChaff. [Online]. Available: http://www.princeton.edu/∼chaff/zchaff.html
[16] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik, “Efficient

conflict driven learning in a boolean satisfiability solver,” in Proc. of
ICCAD, 2001, pp. 279–285.

[17] NuSMV. [Online]. Available: http://nusmv.irst.itc.it/

