
Leakage-Aware Energy Minimization using
Dynamic Voltage Scaling and Cache

Reconfiguration in Real-Time Systems
Weixun Wang and Prabhat Mishra

Department of Computer and Information Science and Engineering
University of Florida, Gainesville, FL

{wewang,prabhat}@cise.ufl.edu

Abstract—System optimization techniques are widely used
to improve energy efficiency as well as overall performance.
Dynamic voltage scaling (DVS) is acknowledged to be successful
in reducing processor energy consumption. Due to the increasing
significance of the memory subsystem’s energy consumption,
dynamic cache reconfiguration (DCR) techniques are recently
proposed at the aim of saving cache subsystem’s energy con-
sumption. As the manufacturing technology scales into the order
of nanometers, leakage current, both in the processor and cache
subsystem, becomes a significant contributor in the overall power
dissipation. In this paper, we efficiently integrate processor
voltage scaling and cache reconfiguration together that is aware
of leakage power to minimize overall system energy consumption.
Experimental results demonstrate that our approach outperforms
existing techniques by on average 12 - 23%.

I. INTRODUCTION

Energy conservation is a primary optimization objective in
embedded systems design since these systems are generally
limited by battery lifetime. Various low-power techniques
focus on different components in the system. Dynamic voltage
scaling (DVS) [1] of the processor takes the advantage of the
fact that linear reduction in the supply voltage can quadrati-
cally reduce the power consumption while linearly slows down
the frequency. At the same time, memory hierarchy, especially
cache subsystem, has become comparable to the processor
with respect to the contribution in overall energy consumption
[2]. Dynamic cache reconfiguration (DCR) offers the ability
to tune the cache configuration parameters at runtime to meet
application’s unique requirement so that significant amount of
memory subsystem energy consumption can be saved [3]. It
will be promising to use both DVS and DCR to conserve both
processor and memory energy dissipations.

Real-time embedded systems bring particular design and
optimization considerations in order to satisfy the deadline
constraints imposed on each task. In real-time systems, all
tasks have to finish execution before their deadlines to en-
sure correct system behavior. Earliest Deadline First (EDF)
[4], which employs a dynamic priority scheme, is the most
commonly used scheduling algorithm in the real-time research
community. Under EDF, a preemptive task set is said to
be schedulable as long as the system utilization rate is not
more than 1 [5]. Essentially, DVS in real-time systems slows

This work was partially supported by NSF grant CCF-0903430.

down the processor, thus saves power/energy, at the cost of
stretched task execution time. On the other hand, applying
DCR in such systems may lead to similar effects so that
it needs to be done in a controlled way. While existing
research works exploit them separately, our proposed research
efficiently employs both DVS and DCR simultaneously to
reduce overall energy consumption, in hard real-time systems
with preemptive periodic task sets.

In the last decade, we have observed a continuous CMOS
device scaling process in which higher transistor density and
smaller device dimension lead to increasing leakage (static)
power consumption. This is mainly due to the proportion-
ally reduced threshold voltage level with the supply voltage.
Lower threshold voltage results in larger leakage current which
mainly consists of subthreshold current [6] and reverse bias
junction current [7]. Study has shown that leakage power is
increased by five times in each technology generation [8]
and can exceed above half of the total power dissipation
[9]. On-chip caches nowadays contribute a significant share
of the system leakage power. Static energy is projected to
account for near 70% of the cache subsystem’s budget in
70nm technology [9]. Furthermore, higher temperature have
adverse impact on leakage power in both processor [10] and
cache [11]. Therefore, decisions should be made judiciously
on whether slowing down the system to save dynamic power
or switching the system to sleep mode to reduce static power.
While existing techniques try to control the leakage power
along with DVS [12], extra consideration needs to be taken
when DCR is also employed as described in this paper.

The rest of the paper is organized as follows. Related works
are discussed in Section II. Section III presents the system
model of our work. Our leakage-aware voltage scaling and
cache reconfiguration technique is described in Section IV.
Section V demonstrates our experimental results. Finally,
Section VI concludes the paper.

II. RELATED WORK

A great deal of research work exists on dynamic volt-
age scaling in real-time systems. A lot of them focus on
minimizing dynamic power consumption and ignoring the
static portion by slowing down the processor as long as
possible through various directions including task scheduling,

voltage selection and worst-case execution time estimation
[13][14][15]. Meanwhile, a number of existing works pay
attention to control processor leakage power in real-time
systems [16][12][17][18]. Lee et al. [16] propose a schedul-
ing algorithm to minimize leakage energy consumption by
procrastinating currently ready tasks to enlarge system idle
periods based on a non-DVS platform. Jejurikar et al. [12]
present a leakage-aware DVS scheme which does not allow to
slow down the processor speed below a certain level called
critical speed to avoid growing static energy consumption
to compensate the reduction in dynamic energy. They also
propose a procrastination scheduling technique to maximize
processor idle intervals. Chen et al. [17] address the same
problem in a rate-monotone scheduling system. They also
propose a procrastination scheme based on energy consump-
tion evaluation [18]. However, none of the above techniques
considers dynamic cache reconfiguration.

Cache reconfiguration has drawn considerable amount of
research efforts in both general-purpose [19] and real-time
[20][21] systems. Reconfigurable cache architectures are pro-
posed in [2][22]. Wang et al. [20] employed DCR in real-
time systems by dynamically utilizing static profiling infor-
mation to tune the cache configuration in order to achieve
significant energy savings. Micro-architecture level techniques
are proposed at the aim of saving leakage energy in cache
subsystem by switching unused cache sub-arrays into low-
power mode [23][24]. Chi et al. [25] applied these techniques
in hard real-time systems. However, none of these approaches
takes processor voltage into consideration. Nacul et al. [26]
presented preliminary results to demonstrate the benefit of
combining DVS and DCR together in real-time systems but
they did not consider leakage power which may make their
solution inferior when leakage energy dominates the total
consumption.

Our proposed research in this paper integrates DVS and
DCR in hard real-time systems to reduce both dynamic and
static energy consumption. We take a step forward by exam-
ining the correlation between the energy models of processor
and cache subsystem. We statically assign voltage level and
cache configuration to each task based on slack allocation
method and procrastinate task execution at runtime to shut-
down the processor/cache when beneficial to achieve more
energy savings. Extensive experiments show that our approach
can result on average 46% energy savings compared to DVS-
only systems and up to 12 - 23% extra savings compared to
leakage-oblivious DVS + DCR technique [26].

III. SYSTEM MODEL

In this section, we describe our system model including the
task model and the energy model. We assume that DVS and
DCR are available in the target system. Specifically, we have:
• A voltage scalable processor which supports h different

voltage levels V{v1,v2, ... ,vh}.
• A highly configurable cache architecture, with reconfig-

urable parameters including cache size, line size and asso-
ciativity, which can be tuned to l different configurations
C{c1,c2, ... ,cl}.

A. Task Model

If each task is uniformly assigned one voltage level and one
cache configuration throughout all its instances, we have:
• A set of m independent periodic tasks T{τ1,τ2,...,τm}.
• Each task τi ∈ T has known period pi and deadline di.
• Task τi ∈ T has energy consumption and execution time

Ei(v j,ck) and Ti(v j,ck) with voltage level v j ∈ V and
cache configuration ck ∈ C, respectively.

We assume that task deadlines are equal to their periods and
the task set is schedulable by EDF scheduler under the highest
voltage level and largest cache configuration. Let P denote the
task set’s hyper-period (equal to the least common multiple of
all tasks’ periods). ji and ki represent the indices of selected
voltage level and cache configuration for task τi, respectively.
Our objective can be stated as:

min(E =
m

∑
i=1

P
pi
·Ei(v ji ,cki)) (1)

subject to,

m

∑
i=1

Ti(v ji ,cki)
pi

6 UEDF (2)

B. Energy Model

1) Processor Energy Model: Since short circuit power is
negligible [27], the energy consumed in a processor mainly
comes from dynamic and static power. The dynamic power
can be presented as:

Pdyn
proc = Ce f f ·V 2

dd · f (3)

where Ce f f is the total effective switching capacitance of
the processor, Vdd is the supply voltage level and f is the
operating frequency. We adapt the analytical processor energy
model from [7], whose accuracy has been verified with SPICE
simulation. The threshold voltage Vth can be presented as:

Vth = Vth1 −K1 ·Vdd −K2 ·Vbs (4)

where Vth1, K1, K2 are all constants and Vbs represents the body
bias voltage. As mentioned in Section I, static current mainly
consists of the subthreshold current Isubth and the reverse bias
junction current I j. Hence, the static power is given by:

Psta
proc = Vdd · Isubth + |Vbs| · I j (5)

where I j is approximated as a constant and Isubth can be
calculated by:

Isubth = K3 · eK4Vdd · eK5Vbs (6)

where K3, K4 and K5 are constant parameters. Obviously, to
avoid junction leakage power overriding the gain in lowering
Isubth, Vbs has to be constrained (between 0 and -1V). Let
Pon

proc be the intrinsic energy needed for keeping the processor
on (idle energy). The processor power consumption can be
computed as:

Pproc = Pdyn
proc +Psta

proc +Pon
proc (7)

The cycle length, tcycle, is given by a modified alpha power
model which is verified by SPICE simulation:

tcycle =
Ld ·K6

(Vdd −Vth)α
(8)

where K6 is a constant. In this paper, we estimate Ld to be
the average logic depth of all instructions’ critical path in the
processor. Table I lists the constants for 70nm technology.

Let CC denote the number of clock cycles executed, the
processor energy consumption becomes:

Eproc = Pproc ·CC · tcycle (9)

TABLE I
CONSTANTS FOR 70NM TECHNOLOGY

Const Value Const Value Const Value

K1 0.063 K6 5.26×10−12 Vth1 0.244
K2 0.153 K7 −0.144 I j 4.80×10−10

K3 5.38×10−7 Vdd [0.5,1.0] Ce f f 0.43×10−9

K4 1.83 Vbs [−1.0,0.0] Ld 37
K5 4.19 α 1.5 Lg 4×106

2) Cache Energy Model: Cache energy consumption also
consists of dynamic energy Edyn

cache and static energy Esta
cache:

Ecache = Edyn
cache +Esta

cache (10)

The number of cache accesses num accesses, cache misses
num misses and clock cycles CC are obtained from simulation
using SimpleScalar [28] for any given task and cache config-
uration. Let Eaccess and Emiss denote the energy consumed per
cache access and miss, respectively. Therefore, we have:

Edyn
cache = num accesses ·Eaccess +num misses ·Emiss (11)

Emiss = Eo f f chip access +EµP stall +Eblock f ill (12)

Esta
cache = Psta

cache ·CC · tcycle (13)

where Eo f f chip access is the energy required for fetching data
from off-chip memory, EµP stall is the energy consumed when
the processor is stalled due to cache miss, Eblock f ill is for
cache block refilling after a miss and Psta

cache is the static
power consumption of cache. We collect Eaccess, Psta

cache and
Eblock f ill from CACTI [29] for all cache configurations and
adopt numbers for others from [22].

IV. LEAKAGE-AWARE DVS AND DCR

Our approach addresses three major challenges including
profiling information analysis to determine the critical speed,
configuration selection and task procrastination to significantly
reduce overall energy consumption while meeting task dead-
lines. This section describes each of these steps in detail.

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

EprocDyn EprocSta EprocOn Eproc

Critical Speed

Vdd (V)

To
ta

lE
n

er
gy

 (
n

J)

Fig. 1. Processor energy consumption Eproc for executing cjpeg: EprocDyn is
the dynamic energy, EprocSta is the static energy and EprocOn is the intrinsic
energy needed to keep processor on.

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

1.6E+07

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

EprocDyn EprocSta EprocOn Eproc

EcacheDyn EcacheSta Ecache Etotal

Critical Speed

To
ta

lE
n

er
gy

 (
n

J)

Vdd (V)

Fig. 2. Overall system energy consumption Etotal of the processor and cache
subsystem (configured to 16KB,32B,2-way) for executing cjpeg: EcacheDyn and
EcacheSta are the dynamic and static cache consumption, respectively.

A. Critical Speed

The critical speed for processor voltage scaling defines a
point which the processor speed cannot be slowed down below
otherwise DVS will no longer be beneficial [12]. The dynamic
power consumption of processors, which is exclusively con-
sidered in traditional DVS, is usually a convex and increasing
function of the operating frequency. However, since lower
processor speed stretches the task execution time which leads
to higher static energy consumption, the energy consumed
per cycle in the processor will start increasing due to further
slowdown.

By taking DCR into consideration, we find that cache
configuration has significant impact on the critical speed with
respect to the overall system energy consumption. Note that
as described in Section III-B, there exists strong correlation
between the energy models of the processor and cache sub-
system. Since different cache configuration leads to different
miss ratio and miss penalty cycles, the number of clock cycles
(CC) required to execute an application is decided by the
cache configuration, which directly affects processor’s energy
consumption as shown in Equation (9). On other hand, the
length of each clock cycle (tcycle) and the energy consumed at
the stalled processor during an off-chip access (EµP stall) are
determined by the processor frequency, which directly affects

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

1.6E+07

1.8E+07

2.0E+07

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

4096B_1W_16B

4096B_1W_32B

4096B_1W_64B

8192B_1W_16B

8192B_2W_16B

8192B_1W_32B

8192B_2W_32B

8192B_1W_64B

8192B_2W_64B

16384B_1W_16B

16384B_2W_16B

16384B_4W_16B

16384B_1W_32B

16384B_2W_32B

16384B_4W_32B

16384B_1W_64B

16384B_2W_64B

16384B_4W_64B
Vdd (V)

To
ta

lE
n

er
gy

 (
n

J)

Fig. 3. Total energy consumption across all cache configurations for
executing cjpeg.

cache energy consumption as shown in Equation (12) and (13).
The former fact results in drastically varying processor energy
consumption across different cache configurations. The later
factor leads to faster critical speed compared to the DVS-
only scenario. It is caused by the impact of increasing cache
static power on the total static energy consumption when the
processor is slowed down.

Now we show a simple motivating example in which a
single benchmark (cjpeg) is executed under all processor
voltage levels. It can be observed that in Figure 1, when only
processor energy is considered, the critical speed is achieved
at Vdd = 0.7V. However, as shown in Figure 2, with respect to
the total amount of energy consumption, combining DVS and
DCR increases the critical speed to around Vdd = 0.85V. In
fact, when DCR is applied, different cache configuration will
lead to different critical speeds.

B. Real-Time Scaling and Reconfiguration

We define a configuration point as a pair of processor
voltage level and cache configuration: (v j,ck) where v j ∈ V
and ck ∈ C. For each task, we can construct a profile table
which consists of all possible configuration points as well
as the corresponding total energy consumption and execution
time. Clearly, all points with the voltage level lower than
the critical speed are eliminated. Furthermore, non-beneficial
configuration points, which is inferior in both energy and
time compared to some other points, are also discarded. In
other words, we only consider those Pareto-optimal tradeoff
points. In fact, we observe that cache configurations behave
quite consistently across different processor voltage levels as
shown in Figure 3. The cache configuration favored by cjpeg,
8KB cache size with 32B line size and 2-way associativity,
outperforms all the other configurations with respect to energy
consumption. Although there are some exceptions that large
cache configurations with highest voltage level could have
slightly fast performance, they normally consume much more
energy. Hence, we setup the profile table of each task con-
sisting of its favored cache configurations with all the voltage
levels higher than the critical speed.

Any existing static slack allocation scheme can be employed
in our approach. For each task, we assign the configuration
point which is most energy efficient while does not stretch the

task execution beyond the deadline decided by the allocated
slack. As long as the slack allocation is safe, we can always
ensure that the schedulability condition (Equation (2)) is
satisfied. Any DVS algorithm that can generate optimal or
approximated-optimal voltage assignment is also applicable
though most of them are more computationally complex. In
this paper, we use a heuristic algorithm motivated by the
uniform constant slowdown scheme which is proved to be op-
timal in continuous voltage scaling [30]. The optimal common
slowdown factor η is given by the system utilization rate. In
our approach, we only consider a finite number of discrete
configuration points as defined above. Therefore, for each
task, we select the configuration point with minimum energy
consumption but equal or shorter execution time compared to
the one decided by the optimal slowdown factor. Note that we
use each task’s execution under the highest voltage in V and
largest cache configuration in C as the base case (vbase,cbase),
which is used in the optimal slowdown factor calculation.
Algorithm 1 illustrates our method.

Algorithm 1 Configuration selection heuristic.

η = ∑
m
i=1

Ti(vbase,cbase)
pi

for all task τi ∈ T do
T bound

i = Ti(vbase,cbase)/η;
Assign τi with (v ji ,cki) which satisfied:
1) Ei(v ji ,cki) is the minimum;
2) Ti(v ji ,cki) 6 T bound

i ;
end for
return (v ji ,cki), ∀i ∈ [1,m]

C. Procrastination

To further control static energy consumption, it is beneficial
to put the system into a sleep mode instead of keep it idle
since the static power could be lower by order-of-magnitude.
As discussed in Section IV-A, taking cache into consideration
leads to even faster critical speed compared to leakage-aware
DVS-only scenario. In other words, for a same task set, the
idle periods during which there is no active task are getting
longer. However, bringing the system into sleep mode and
vice versa requires certain amount of overhead in terms of
energy and timing. In order to reduce the number of processor
mode switches, we need to make the busy/idle periods as
long as possible. One way to achieve this is to procrastinate
task execution when no time constraint will be violated. We
adapt the task procrastination algorithm from [16] into our
EDF scheduler. We ensure that when the system gets shut
down, there is no unfinished job in the system. This avoids
cold start penalty being introduced since otherwise resumed
task after wakeup has to refetch its data from memory. Hence,
the shutdown overhead consists of the energy consumed for
circuit logic recharging and dirty data flushing-back in the
cache subsystem provided write-back policy is used.

Algorithm 2 outlines our procrastination scheme. A timer
is enabled when idle period starts and disabled when busy
period starts. A newly arrived task during idle period will

update the timer if it has earlier absolute deadline compared to
the current earliest deadline. Upon timeout, all delayed ready
tasks are executed in EDF order. Arriving tasks during busy
period are allowed to preempt as normal EDF scheduler does.
Note that time represents the current time instant and (v ji ,cki)
stands for the chosen configuration point for task τi. Here,
isEarlier[i] records whether the current job of τi’s deadline
is earlier than all the pending tasks in the system at the time
when it arrives. Also, pr · d time

pr
e and pr · b time

pi
c are essentially

the absolute deadline and the arrive time of τi’s current job.

Algorithm 2 Task procrastination algorithm.
isEarlier[i] is initialized to be all false;
Current earliest deadline of delayed jobs δ = 0;
On arrival of a new job of task τr:
dr = pr · d time

pr
e;

actUtil = ∑
m
i=1

Ti(v ji ,cki)
pi

;
if System is in sleep mode or is idle then

if timer is disabled then
timer = b(1−actUtil) · prc;
δ = dr; isEarlier[r] = true;

else
if dr < δ then

for all τi in ready task queue do
if isEarlier[i] is true then

delayed = delayed +
time−pi·b time

pi
c

pi
;

end if
timer = b(1−actUtil −delayed) · prc;
δ = dr; isEarlier[r] = true;

end for
end if

end if
end if

V. EXPERIMENTS

A. Experimental Setup

To evaluate the effectiveness of our approach, we se-
lect benchmarks from MediaBench[31], MiBench[32] and
EEMBC[33] to from four task sets with each consists of
5 to 8 tasks. While DVS techniques usually use synthetic
tasks for evaluation, we choose real benchmarks so that cache
behaviors of real applications can be revealed. Table II lists
our task sets. Task Set 1 consists of tasks from MediaBench,
Set 2 from EEMBC, Set 3 from MiBench and Set 4 is a
mixture of all three suites. In Set 4, the two benchmarks from

TABLE II
TASK SETS CONSISTING OF REAL BENCHMARKS.

Sets Tasks
Set 1 cjpeg, djpeg, mpeg2, pegwit, rawcaudio
Set 2 A2TIME01, BaseFP01, BITMNP01, RSPEED01, TBLOOK01

Set 3 CRC32, susan, dijkstra, rijndael, adpcm, qsort, FFT,
stringsearch

Set 4 cjpeg, rawdaudio, pegwit, A2TIME01, RSPEED01, pktflow,
FFT, dijkstra

EEMBC are set to iterate 100 times in order to make their
size comparable with others. We adapt processor constants
described in Section III-B from [12]: Vbs = −0.7V , Ld = 37,
α = 1.5. We assume dirty data write back and circuit logic
recharging penalty for shutdown to be 85µJ and 300µJ. Idle
power for processor and cache subsystem are assumed to
be 240mW and 36mW . System in sleep mode is assumed
to consume 80µW of power. Hence, the shutdown threshold
interval is 1.14ms and any interval whose length is shorter
than the threshold will not lead to a shutdown. Energy model
as well as the scheduling simulator are implemented in C++.

B. Results

We compare the following techniques across various system
utilizations (from 0.1 to 0.9):

• DVS: Traditional DVS without DCR which assigns low-
est voltage level to each task whenever possible.

• CS-DVS: Leakage-aware DVS without DCR which never
assigns a processor speed level below the critical speed.

• CS-DVS-P: Leakage-aware DVS without DCR which
employs task procrastination.

• DVS-DCR: DVS + DCR without leakage awareness
which assigns the configuration point that best fits the
slack.

• CS-DVS-DCR: Leakage-aware DVS + DCR which gen-
erates profile table in aware of leakage power and never
assigns a configuration point below the critical speed.

• CS-DVS-DCR-P: Leakage-aware DVS + DCR which
also employs task procrastination.

Note that all the results are the average of all task sets and
are normalized to DVS scenario.

Figure 4 shows total energy consumption (processor +
cache) of different approaches. The first observation is that
generally, applying DVS + DCR outperforms DVS-only across
all utilization rates by 43% on average. Our approach (cs-DVS-
DCR) outperforms leakage-aware DVS (cs-DVS) by 46% on
average. Above the critical speed point, as expected, leakage-
aware and leakage-oblivious approaches behave almost the
same way since they are inclined to make similar decisions.
But when the utilization ratio is low, cs-DVS-DCR achieves
around 12 - 23% (up to 55%) energy savings compared to
DVS-DCR. Figure 5 (a) shows the reduction in static energy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DVS cs-DVS DVS-DCR cs-DVS-DCR

En
er

gy
 N

o
rm

al
iz

ed
 t

o
D

V
S

Utilization

Fig. 4. Total energy consumption of different approaches.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DVS-DCR cs-DVS-DCR

En
er

gy
 N

o
rm

al
iz

ed
 t

o
D

V
S-

D
C

R

Utilization

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

cs-DVS-DCR cs-DVS-DCR-P

En
er

gy
 N

o
rm

al
iz

ed
 t

o
cs

-D
V

S-
D

C
R

Utilization

(b)
Fig. 5. Results: (a) Static energy consumption of DVS-DCR and cs-DVS-DCR; (b) Idle energy consumption of cs-DVS-DCR and cs-DVS-DCR-P.

consumption by using cs-DVS-DCR compared to DVS-DCR.
Our approach gains averagely about 25% static energy savings
across all utilizations and around 42% in low utilization cases.
Note that with respect to total energy consumption, techniques
with and without procrastination show similar energy savings.
It is mainly due to the fact that the dynamic and static
energy of real benchmarks we used dominates the idle energy
consumption. To illustrate the effectiveness of procrastination,
Figure 5 (b) shows the result in idle energy savings. It can be
observed that around 10 - 40% savings can be achieved across
all utilization rates by using cs-DVS-DCR-P.

VI. CONCLUSION

Leakage power can adversely impact any system energy op-
timization techniques including both dynamic voltage scaling
and cache reconfiguration. Employing both DVS and DCR
together can lead to greater system energy savings than using
them independently. In this paper, we presented an efficient
approach to integrate DVS and DCR that is aware of leakage
power. We focus on reducing both dynamic and static overall
energy consumption. We also integrate task procrastination to
further save the energy consumption when the system is idle.
Our approach is shown to be superior than both leakage-aware
DVS techniques by around 46% and outperform leakage-
oblivious DVS + DCR techniques by up to 42%.

REFERENCES

[1] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava,
“Power optimization of variable-voltage core-based systems” IEEE
TCAD, vol. 18, pp. 1702–1714, 1999.

[2] A. Malik et al., “A low power unified cache architecture providing power
and performance flexibility” ISLPED, 2000.

[3] D. H. Albonesi, “Selective cache ways: On-demand cache resource
allocation” Micro, 1999.

[4] G. Buttazzo, Hard Real-Time Computing Systems. Kluwer, 1995.
[5] J. Liu, Real-Time Systems. Prentice Hall, 2000.
[6] J. A. Butts et al., “A static power model for architects” Micro, 2000.
[7] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw, “Combined

dynamic voltage scaling and adaptive body biasing for lower power
microprocessors under dynamic workloads” ICCAD, 2002.

[8] S. Borkar, “Design challenges of technology scaling” Micro, 1999.
[9] N. S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. S. Hu, M. J.

Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law
meets static power” Computer, vol. 36, no. 12, pp. 68–75, 2003.

[10] L. Yuan, S. Leventhal, and G. Qu, “Temperature-aware leakage mini-
mization technique for real-time systems” ICCAD, 2006.

[11] H. Noori et al., “The effect of temperature on cache size tuning for low
energy embedded systems” GLSVLSI, 2007.

[12] R. Jejurikar, C. Pereira, and R. K. Gupta, “Leakage aware dynamic
voltage scaling for real-time embedded systems” DAC, 2004.

[13] R. Jejurikar and R. Gupta, “Energy-aware task scheduling with task
synchronization for embedded real-time systems” IEEE TCAD, vol. 25,
pp. 1024–1037, 2006.

[14] S. Zhang, K. Chatha, and G. Konjevod, “Approximation algorithms
for power minimization of earliest deadline first and rate monotonic
schedules” ISLPED, 2007.

[15] S. Oh, J. Kim, S. Kim, and C. Kyung, “Task partitioning algorithm for
intra-task dynamic voltage scaling” ISCAS, 2008.

[16] Y.-H. Lee, K. Reddy, and C. Krishna, “Scheduling techniques for
reducing leakage power in hard real-time systems” ECRTS, 2003.

[17] J.-J. Chen and T.-W. Kuo, “Procrastination for leakage-aware rate-
monotonic scheduling on a dynamic voltage scaling processor” LCTES,
2006.

[18] J.-J. Chen and T.-W. Kuo, “Procrastination determination for periodic
real-time tasks in leakage-aware dynamic voltage scaling systems”
ICCAD, 2007.

[19] A. Gordon-Ross and F. Vahid, “A self-tuning configurable cache” DAC,
2007.

[20] W. Wang, P. Mishra, and A. Gordon-Ross, “Sacr: Scheduling-aware
cache reconfiguration for real-time embedded systems” in VLSI Design,
2009.

[21] W. Wang and P. Mishra, “Dynamic reconfiguration of two-level caches
in soft real-time embedded systems” ISVLSI, 2009.

[22] C. Zhang, F. Vahid, and W. Najjar, “A highly configurable cache for low
energy embedded systems” ACM TECS, vol. 6, pp. 362–387, 2005.

[23] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar,
“Gated-vdd: a circuit technique to reduce leakage in deep-submicron
cache memories” ISLPED, 2000.

[24] N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge, “Drowsy instruction
caches: leakage power reduction using dynamic voltage scaling and
cache sub-bank prediction” iMicro, 2002.

[25] J.-W. Chi, C.-L. Yang, Y.-J. Chen, and J.-J. Chen, “Cache leakage control
mechanism for hard real-time systems” CASES, 2007.

[26] A. C. Nacul and T. Givargis, “Dynamic voltage and cache reconfigura-
tion for low power” DATE, 2004.

[27] H. J. M. Veendrick, “Short-circuit dissipation of static cmos circuitry and
its impact on the design of buffer circuits” IEEE Journal of Solid-State
Circuits, vol. 19, no. 4, pp. 468–473, Aug 1984.

[28] D. Burger, T. M. Austin, and S. Bennett, “Evaluating future micropro-
cessors: The simplescalar tool set” University of Wisconsin-Madison,
Tech. Rep., 1996.

[29] CACTI, CACTI, HP Labs, CACTI 4.2, http://www.hpl.hp.com/.
[30] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, “Dynamic and

aggressive scheduling techniques for power-aware real-time systems” in
RTSS, 2001.

[31] C. Lee, M. Potkonjak, and W. H. Mangione-smith, “Mediabench: A
tool for evaluating and synthesizing multimedia and communications
systems” Micro, 1997.

[32] M. Guthaus, J. Ringenberg, D.Ernest, T. Austin, T. Mudge, and
R. Brown, “Mibench: A free, commercially representative embedded
benchmark suite” WWC, 2001.

[33] EEMBC, EEMBC, The Embedded Microprocessor Benchmark Consor-
tium, http://www.eembc.org/.

