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Abstract

Recent advances on language based software toolkit gen-
eration enables performance driven exploration of embed-
ded systems by exploiting the application behavior. There
is a need for an automatic generation of hardware to deter-
mine the required silicon area, clock frequency, and power
consumption of the candidate architectures. In this pa-
per, we present a language based exploration framework
that automatically generates synthesizable RTL models for
pipelined processors. Our framework allows varied micro-
architectural modifications, such as, addition of pipeline
stages, pipeline paths, opcodes and new functional units. The
generated RTL is synthesized to determine the area, power,
and clock frequency of the modified architectures. Our ex-
ploration results demonstrate the power of reuse in compos-
ing heterogeneous architectures using functional abstraction
primitives allowing for a reduction in the time for specifica-
tion and exploration by at least an order of magnitude.

1 Introduction

The increasing complexity of modern embedded systems
demands the use of rapid prototyping methodologies to pro-
vide an early estimation of the system area, power and per-
formance. Recent approaches on Architecture Description
Language (ADL) based software toolkit generation enables
performance driven exploration, as shown in Figure 1. The
simulator produces profiling data and thus may answer ques-
tions concerning the instruction set, the performance of an al-
gorithm and the required size of memory and registers. How-
ever, the required silicon area, clock frequency, and power
consumption can only be determined in conjunction with a
synthesizable HDL model.

The exploration space for pipelined processors is enor-
mous. System architects perform many micro-architectural
explorations such as, addition/deletion of functional units,
feedback paths, pipeline stages, pipeline paths, and
instruction-set exploration prior to deciding an architecture
for a given set of applications. Many commercial proces-
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sors now offer the possibility of extending their instruction
set for a specific application by introducing new instructions
and customized functional units [1]. The goal of such pro-
cessor extensions is typically to optimize performance in an
application domain without violating the area and energy
constraints. Algorithms have been proposed to decide au-
tomatically, from high level application code, which opera-
tions are to be carried out in the customized extensions [2].
These algorithms primarily use performance improvement as
a metric for selecting new operations. However, area, power,
and clock frequency should also be considered during ex-
ploration. It is necessary to generate synthesizable register-
transfer level (RTL) models from the high level specifica-
tion of the processor to enable area, power and performance
driven instruction-set exploration.
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Figure 1. ADL driven Design Space Exploration

Manual or semi-automatic generation of synthesizable
hardware description language (HDL) model for the archi-
tecture is a time consuming process. This can be done only
by a set of skilled designers. Furthermore, the interaction
among the different teams, such as specification developers,
HDL designers, and simulator developers makes rapid archi-
tectural exploration infeasible. As a result, system architects
rarely have tools or the time to explore architecture alterna-
tives to find the best-in-class solution for the target applica-
tions. This situation is very expensive in both time and en-
gineering resources, and has a substantial impact on time-to-
market. Without automation and a unified development en-
vironment, the design process is prone to error and may lead
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to inconsistencies between hardware and software represen-
tations. Automatic generation of synthesizable HDL design
along with a software toolkit from a single specification lan-
guage will be an effective solution for early architectural ex-
ploration.

The contribution of this paper is a methodology for au-
tomatic generation of synthesizable hardware from a spec-
ification language to enable rapid exploration of pipelined
processors. We use the EXPRESSION ADL [3] to specify
the architecture. EXPRESSION has been used for genera-
tion of compiler and simulator. In this paper, we focus on
synthesizable HDL generation from the ADL specification.
Due to our single specification driven exploration approach
the hardware and software representations are consistent.

The rest of the paper is organized as follows. Section 2
presents related work addressing language driven HDL gen-
eration approaches. Section 3 presents our ADL driven ex-
ploration framework using synthesizable HDL generation.
Section 4 presents exploration experiments using our frame-
work. Finally, Section 5 concludes the paper.

2 Related Work

There are two major approaches in the literature for syn-
thesizable HDL generation. The first one is a parameterized
processor core based approach. These cores are bound to a
single processor template whose architecture and tools can be
modified to a certain degree. The second approach is based
on processor specification languages.

Examples of processor template based approaches are
Xtensa [1], Jazz [4], and PEAS [5]. Xtensa [1] is a scal-
able RISC processor core. Configuration options include the
width of the register set, caches, memories etc. New func-
tional units and instructions can be added using the Tensilica
Instruction Language (TIE). A synthesizable hardware model
along with software toolkit can be generated for this class of
architectures. Improv’s Jazz [4] processor is a VLIW pro-
cessor that permits the modeling and simulation of a system
consisting of multiple processors, memories, and peripher-
als. It allows modifications of data width, number of reg-
isters, depth of hardware task queue, and addition of cus-
tom functionality in Verilog. PEAS [5] is a GUI based hard-
ware/software codesign framework. It generates HDL code
along with software toolkit. It has support for several archi-
tecture types and a library of configurable resources.

Processor description language driven HDL generation
frameworks can be divided into three categories based on
the type of information the languages can capture. The lan-
guages such as nML [6] and ISDL [7] capture the instruc-
tion set (behavior) of the processor. On the other hand, the
structure-centric languages such as MIMOLA [8] captures
the net-list of the target processor. Finally, recent languages
such as LISA [9] and EXPRESSION [3] captures both struc-
ture and behavior of the processor.

In nML, the processor instruction-set is described as an

attributed grammar with the derivations reflecting the set of
legal instructions. In ISDL, constraints on parallelism are
explicitly specified through illegal operation groupings. As
the generation of functional units is the result of an analysis
and optimization process of the HDL generator HGEN, the
designer has only indirect influence on the generated HDL
model. Itoh et al. [10] have proposed a micro-operation de-
scription based synthesizable HDL generation. It can handle
simple processor models with no hardware interlock mech-
anism or multi-cycle operations. MIMOLA [8] captures the
structure of the processor wherein the net-list of the target
processor is described in a HDL like language. Extracting the
instruction set from the structure may be difficult for compli-
cated instructions.

LISA [9] captures operation-level description of the
pipeline. The synthesizable HDL generation approach based
on LISA language [11] is closest to our approach. The
LISA machine description provides information consisting
of model components for memory, resource, instruction set,
behavior, timing, and micro-architecture. It generates an
HDL model of the processor’s control path and the structure
of the pipeline. However, the designer has to manually im-
plement the datapath components. A major problem is the
verification, since operations have to be described and main-
tained twice - on the one hand in the LISA model and on the
other hand in the HDL model (hand written datapath) of the
target architecture. Due to the need of manual intervention,
this method is not suitable for rapid design space exploration.

The methodology we present in this paper combines the
advantages of the processor template based environments and
the language based specifications. In fact, we have taken
template based design one step ahead using functional ab-
straction technique. Thus, unlike previous approaches, we
are able to efficiently explore a wide range of pipelined ar-
chitectures exhibiting heterogeneous architectural styles, as
well as the memory subsystems.

3 Architecture Exploration Framework

Figure 2 shows our ADL driven architecture exploration
framework. The first step is to specify the architecture in
EXPRESSION ADL. It is necessary to validate the ADL
specification to ensure that the architecture is well-formed
[12, 13]. The software toolkit, including compiler and simu-
lator, is generated automatically from the ADL specification.
The application program is compiled and simulated to gen-
erate performance numbers. The hardware implementation
needs to be generated from the ADL specification to enable
area, power and performance driven exploration.

In this paper, we present automatic generation of synthe-
sizable HDL models from the ADL specification using func-
tional abstraction. The functional abstraction technique was
first introduced by Mishra et al. [14] for generating simu-
lation models for a wide variety of architectures. First, we
briefly describe the EXPRESSION ADL followed by a brief
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Figure 2. Architecture Exploration Framework

description of the functional abstraction technique. Finally,
we describe the generation of HDL models. Our HDL gen-
erator is capable of composing heterogeneous architectures
using functional abstraction primitives. The generated hard-
ware model (VHDL Description) is synthesized using Syn-
opsys Design Compiler [18] to generate evaluation statistics
such as, area, clock frequency and power consumption.

3.1 The ADL Specification

The EXPRESSION ADL [3] captures the structure, be-
havior and mapping (between structure and behavior) of the
processor. The structure contains the description of each
component and the connectivity between the components.
There are four types of components: units (e.g., ALUs),
storages (e.g., register files), ports, and connections (e.g.,
buses). Each component has a list of attributes. For exam-
ple, a functional unit will have information regarding latches,
ports, connections, supported opcodes, execution timing, and
capacity. The behavior is captured by describing the opera-
tions. Each operation is described in terms of it’s opcode,
operands, behavior and instruction format. Finally, the map-
ping functions map operations in the behavior to components
in the structure. It defines, for each functional unit, the set of
operations supported by that unit (and vice versa). For ex-
ample, an operation add is mapped to ALU unit in a typical
processor.

3.2 The Functional Abstraction

The functional abstraction technique was first introduced
by Mishra et al. [14] for generating simulation models from
the ADL specification. The notion of functional abstrac-
tion comes from a simple observation: different architectures
may use the same functional unit (e.g., fetch) with different
parameters, the same functionality (e.g., operand read) may

be used in different functional unit, or may have new archi-
tectural features. The first difference can be eliminated by
defining generic functions with appropriate parameters. The
second difference can be eliminated by defining generic sub-
functions, which can be used by different architectures at dif-
ferent points in time. The last one is difficult to alleviate since
it is new, unless this new functionality can be composed of
existing sub-functions (e.g., multiply-accumulate operation
by combining multiply and add operations). They defined
the necessary generic functions, sub-functions and computa-
tional environment needed to capture a wide variety of pro-
cessor and memory features.

FetchUnit ( # of read/cycle, res-station size, ....)
{
   address = ReadPC();
   instructions = ReadInstMemory(address, n);

}

   WriteToReservationStation(instructions, n);
outInst = ReadFromReservationStation(m);
WriteLatch(decode_latch, outInst);

pred = QueryPredictor(address);
if pred {
   nextPC = QueryBTB(address);
   SetPC(nextPC);
} else
   IncrementPC(x);

Figure 3. A Fetch Unit Example

The structure of each functional unit is captured using pa-
rameterized functions. For example, a fetch unit functional-
ity contains several parameters, such as number of operations
read per cycle, number of operations written per cycle, reser-
vation station size, branch prediction scheme, number of read
ports, number of write ports etc. Figure 3 shows a specific
example of a fetch unit described using sub-functions. Each
sub-function is defined using appropriate parameters. For ex-
ample, ReadInstMemory reads n operations from instruction
cache using current PC address (returned by ReadPC) and
writes them to the reservation station. The notion of generic
sub-functions allows the flexibility of specifying the system
in finer detail. It also allows reuse of the components.

The behavior of a generic processor is captured through
the definition of opcodes. Each opcode is defined as a func-
tion with a generic set of parameters, which performs the in-
tended functionality. The parameter list includes source and
destination operands, necessary control and data type infor-
mation. For example, some common sub-functions are ADD,
SUB, MUL, SHIFT etc. The opcode functions may use one
or more sub-functions. For example, the MAC (multiply
and accumulate) uses two sub-functions (ADD and MUL)
as shown in Figure 4.

Similarly, they defined generic functions and sub-
functions for memory modules, controller, interrupts, excep-
tions, DMA, and co-processor. The detailed description of
generic abstractions for all of the micro-architectural compo-
nents can be found in [14].
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} }

MUL (src1, src2) {

MAC (src1, src2, src3) {

ADD (src1, src2) {

      return (src1 + src2);      return (src1 * src2);

      return ( ADD( MUL(src1, src2), src3) );
}

Figure 4. Modeling of MAC operation

3.3 Synthesizable HDL Generation

We have implemented all the generic functions and sub-
functions using HDL. Our framework generates HDL de-
scription from the ADL specification of the processor by
composing functional abstraction primitives. In this section,
we briefly describe how to generate three major components
of the processor: instruction decoder, datapath and controller,
using the generic HDL models. The detailed description is
available in [16].

Generation of Instruction Decoder

A generic instruction decoder uses information regarding
individual instruction format and opcode mapping for each
functional unit to decode a given instruction. The instruc-
tion format information is available in the operation descrip-
tion. The decoder extracts information regarding opcode,
operands etc. from input instruction using the instruction
format. The mapping section of the EXPRESSION ADL
has the information regarding the mapping of opcodes to the
functional units. The decoder uses this information to per-
form/initiate necessary functions (e.g., operand read) and de-
cide where to send the instruction.

Data Path Generation

The implementation of datapath consists of two parts.
First, compose each component in the structure. Second, in-
stantiate components (e.g., fetch, decode, ALU, LdSt, write-
back, branch, caches, register files, memories etc.) and estab-
lish connectivity using appropriate number of latches, ports,
and connections using the structural information available in
the ADL. To compose each component in the structure we
use the information available in the ADL regarding the func-
tionality of the component and its parameters. For example,
to compose an execution unit, it is necessary to instantiate
all the opcode functionalities (e.g, ADD, SUB etc. for an
ALU) supported by that execution unit. Also, if the execution
unit is supposed to read the operands, appropriate number
of operand read functionalities need to be instantiated unless
the same read functionality can be shared using multiplexors.
Similarly, if this execution unit is supposed to write the data
back to register file, the functionality for writing the result
needs to be instantiated. The actual implementation of an
execution unit might contain many more functionalities e.g.,
read latch, write latch, and insert/delete/modify reservation
station (if applicable).

Generation of Control Logic

The controller is implemented in two parts. First, it gen-
erates a centralized controller (using generic controller func-
tion with appropriate parameters) that maintains the informa-
tion regarding each functional unit, such as busy, stalled etc.
It also computes hazard information based on the list of in-
structions currently in the pipeline. Based on these bits and
the information available in the ADL, it stalls/flushes nec-
essary units in the pipeline. Second, a local controller is
maintained at each functional unit in the pipeline. This lo-
cal controller generates certain control signals and sets nec-
essary bits based on the input instruction. For example, the
local controller in an execution unit will activate the add op-
eration if the opcode is add, or it will set the busy bit in case
of a multi-cycle operation.

4 Experiments

We performed architectural design space exploration by
varying different architectural features, achieved by reusing
the abstraction primitives with appropriate parameters. In
this section, we illustrate the usefulness of our approach by
performing rapid exploration of the DLX architecture [15].

We have chosen DLX processor for two reasons. First, it
has been well studied in academia and there are HDL im-
plementations available for the DLX processor that can be
used for comparison purposes. Second, it has many inter-
esting features, such as fragmented pipelines and multi-cycle
functional units that are representative of many commercial
pipelined processors such as TI C6x, PowerPC, and MIPS
R10K.

4.1 Experimental Setup

The DLX architecture has five pipeline stages: fetch, de-
code, execute, memory, and writeback. The execute stage has
four parallel paths: integer ALU (IALU), 7 stage multiplier
(MUL1 - MUL7), four stage floating-point adder (FADD1 -
FADD4), and a multi-cycle divider (DIV).

The EXPRESSION ADL captures the structure and be-
havior of the DLX architecture. Synthesizable HDL mod-
els are generated automatically from the ADL specification.
We have used Synopsys Design Compiler [18] to synthesize
the generated HDL description using LSI 10K technology li-
braries and obtained area, power and clock frequency values.

Table 1. Synthesis Results: RISC-DLX vs Public-DLX

HDL Code Area Speed Power
(lines) (gates) (MHz) (mW)

RISC-DLX 7758 208 K 35 32.6
Public-DLX 6529 159 K 44 27.4

To ensure the functional correctness, the generated HDL
model is validated against the generated simulator using Liv-
ermoore loops (LL1 - LL24) and multimedia kernels (com-
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press, GSR, laplace, linear, lowpass, SOR and wavelet). To
ensure the fidelity of the generated area, power, and per-
formance numbers, we have compared our generated HDL
(RISC version of the DLX) with the hand-written HDL
model publicly available from eda.org [19]. Table 4.1
presents the comparative results between the generated DLX
model (say RISC-DLX) and the hand written DLX model (say
Public-DLX). Our generated design (RISC-DLX) is 20-30%
off in terms of area, power and clock speed. We believe these
are reasonable ranges for early rapid system prototyping and
exploration.

c1 = cos(arg)
s1 = sin(arg)
c2 = c1 * c1 - s1 * s1;
s2 = c1 * s1 + c1 * s1;
c3 = c1 * c2 - s1 * s2;
s3 = c2 * s1 + s2 * c1;

arg = th2 * piovn

jlast = j0 + in - 1;

k0 = ji * int4 + 1;

j0 = jr * int4 + 1;

int4 = in * 4;

Figure 5. The Application Program

Figure 5 shows one of the most frequently executed code
segment from FFT benchmark that we have used as an appli-
cation program during micro-architectural exploration.

4.2 Results

We have performed extensive architectural explorations by
varying different micro-architectural features [17]. In this
section we present three exploration experiments: pipeline
path exploration, pipeline stage exploration and instruction-
set exploration. The reported area, power, and clock fre-
quency numbers are for the execution units only. The num-
bers do not include the contributions from others components
such as Fetch, Decode, MEM and WriteBack.

Addition of Functional Units (Pipeline Paths)

Figure 6 shows the exploration results due to addition of
pipeline paths using the application program shown in Fig-
ure 5. The first configuration has only one pipeline path con-
sisting of Fetch, Decode, one execution unit (say Ex1), MEM
and WriteBack. The Ex1 unit supports five operations: sin,
cos, +, - and �. The second configuration is exactly same as
the first configuration except it has one more execution unit
(say Ex2) parallel to Ex1. The Ex2 unit supports three op-
erations: +, - and �. Similarly, the third configuration has
three parallel execution units: Ex1 (+, -, �), Ex2 (+, -, �)
and Ex3 (sin, cos, +, - and �). Finally, the fourth configura-
tion has four parallel execution units: Ex1 (sin, cos), Ex2 (+,
-, MAC1), Ex3 and Ex4, where Ex3 and Ex4 are customized
functional units that perform a�b� c�d.

The application program requires fewer number of cy-
cles (schedule length) due to the addition of pipeline paths
whereas the area and power requirement increases. The
fourth configuration is interesting since both area and sched-
ule length decrease due to addition of specialized hardware
and removal of operations from other execution units.

1MAC performs multiply-and-accumulate of the form a�b� c

Figure 6. Pipeline Path Exploration

Addition of Pipeline Stages

Figure 7 presents exploration experiments due to addition
of pipeline stages in the multiplier unit. The first configura-
tion is a one-stage multi-cycle multiplier. The second, third
and fourth configurations use multipliers with two, three and
four stages respectively.

Figure 7. Pipeline Stage Exploration

The clock frequency (speed) is improved due to addition
of pipeline stages. The fourth configuration generated 30%
speed improvement at the cost of 13% area increase over the
third configuration.

Addition of Operations

Figure 8 presents exploration results for addition of op-
codes using three processor configurations. The three con-
figurations are shown in Figure 8. The first configuration has
four parallel execution units: FU1, FU2, FU3 and FU4. The
FU1 supports three operations: +, -, and �. The FU2, FU3
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and FU4 supports (+, -, �), (and, or) and (sin, cos) respec-
tively. The second configuration is obtained by adding a cos
operation in the FU3 of the first configuration. This gener-
ated reduction of schedule length of the application program
at the cost of increase in area. The third configuration is ob-
tained by adding multipliers both in FU3 and FU4 of the
second configuration. This generated best possible (using +,
-,�, sin and cos) schedule length for the application program
shown in Figure 5.

Figure 8. Instruction-Set Exploration

Each iteration in our exploration framework is in the order
of hours to days depending on the amount of modification
needed in the ADL and the synthesis time. However, each it-
eration will be in the order of weeks to months for manual or
semi-automatic development of HDL models. The reduction
of exploration time is at least an order of magnitude.

5 Summary

We have presented an ADL driven hardware generation
and exploration framework for pipelined processors. The
EXPRESSION ADL captures the structure and the behav-
ior of the architecture. The synthesizable HDL description
is generated automatically from the ADL specification us-
ing the functional abstraction technique. The synthesis of
the generated HDL model is performed to generate evalua-
tion statistics such as chip area, clock frequency, and power
consumption. The feasibility of our technique is confirmed
through experiments. The results show that a wide variety
of processor features can be explored in hours to days – an
order of magnitude reduction in time compared with existing
approaches that employ semi-automatic or manual genera-
tion of HDL models.

Our future work will focus on generating HDL models for
real-world architectures. We have not considered the opti-
mization and resource sharing issues of our data path com-
ponents yet. As a result, the execution units consumes 50-

60% of the total area and power of the generated hardware
model. Our future research includes an improved methodol-
ogy to generate optimized data path components with shared
resources.
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