
Processor-Memory Co-Exploration driven by a
Memory- Aware Architecture Description Language!*

Prabhat Mishra Peter Grun Nikil Dutt Alex Nicolau
pmishra@cecs.uci.edu pgrun@cecs.uci.edu dutt@cecs.uci.edu nicolau@cecs.uci.edu

Architectures and Compilers for Embedded Systems (ACES) Laboratory
Center for Embedded Computer Systems, University of California, Irvine, CA 92697, USA

Abstract
Memory represents a major bottleneck in modern em-

bedded systems. Traditionally, memory organizations fo r
programmable systems assumed a fixed cache hierarchy.
With the widening processor-memory gap, more aggressive
memory technologies and organizations have appeared, al-
lowing customization of a heterogeneous memory architec-
ture tuned for the application. Howevel; such a processor-
memory eo-exploration approach critically needs the abil-
ity to explicitly capture heterogeneous memory architec-
tures. We present in this paper a language-based ap-
proach to explicitly capture the memory subsystem conjig-
uration, and pelform exploration of the memory architec-
ture to trade-off cost versus performance. We present a set
of experiments using our Memory-Aware Architectural De-
scription Language to drive the exploration of the memory
subsystem for the TIC621 I processor architecture, demon-
strating a range of cost and pelformanee attributes.

1 Introduction

For a large class of embedded systems, memory repre-
sents a major performance, cost and power bottleneck [161.
Thus system designers pay great attention to the design and
tuning of the memory architecture early in the design pro-
cess. However, not many system-level tools exist to help
the system designers evaluate the effects of novel memory
architectures, and facilitate simultaneous exploration of the
processor and memory architectures.

While a traditional memory architecture for pro-
grammable systems was organized as a cache hierarchy,
the widening processor/memory performance gap [181 re-
quires more aggressive use of memory configurations, cus-
tomized for the specific target applications. To address
this problem, on one hand recent advances in memory
technology have generated a plethora of new and effi-
cient memory modules (e.g., SDRAM, DDRAM, RAM-

*This work was partially supported by grants from NSF (MIP-
9708067). DARPA (F336 15-00-'2-1632) and a Motorola fellowship.

BUS, etc.), exhibiting a heterogeneous set of features (e.g.,
page-mode, burst-mode, pipelined accesses). On the other
hand, many embedded applications exhibit varied memory
access patterns that naturally map into a range of hetero-
geneous memory configurations (containing for instance
multiple cache hierarchies, stream buffers, and on- and
off-chip direct mapped memories). In the design of tradi-
tional programmable systems, the processor architect typi-
cally assumed a fixed cache hierarchy, and spent significant
amounts of time optimizing the processor architecture; thus
the memory architecture is implicitly fixed (transparent to
the processor) and optimized separately from the processor
architecture. Due to the heterogeneity in recent memory or-
ganizations and modules, there is a critical need to address
the memory -related optimizations simultaneously with the
processor architecture and the target application. Through
co-exploration of the processor and the memory architec-
ture, it is possible to better exploit the heterogeneity in the
memory subsystem organizations, and better trade-off sys-
tem attributes such as cost, performance, and power. How-
ever, such processor-memory co-exploration requires the
capability to explicitly capture, exploit, and refine both the
processor as well as the memory architecture.

Recent work on language-driven Design Space Explo-
ration @SE) ([I], P I , E41, [61, @I, [121, l171, [211, [221),
uses Architectural Description Languages (ADL) to cap-
ture the processor architecture, generate automatically a
software toolkit (including compiler, simulator, assembler)
for that processor, and provide feedback to the designer
on the quality of the architecture. While these approaches
extensively address processor features (such as instruc-
tion set, number of functional units, etc.) to our knowl-
edge no previous approach allows explicit capture of a cus-
tomized, heterogeneous memory architecture, and the at-
tendant tasks of generating a software toolkit that fully ex-
ploits this memory architecture.

The contribution of this paper is the explicit description
of a customized, heterogeneous memory architecture in our
EXPRESSION ADL 1121, permitting co-exploration of the
processor and the memory architecture. By viewing the

70
0-7695-083 14/00 $10.00 0 2000 EEE

mailto:pmishra@cecs.uci.edu
mailto:pgrun@cecs.uci.edu
mailto:dutt@cecs.uci.edu
mailto:nicolau@cecs.uci.edu

memory subsystem as a “first class object”, we generate a
memory-aware software toolkit (compiler and simulator),
and allow for memory-aware Design Space Exploration
(DSE).

The rest of the paper is organized as follows. Sec-
tion 2 presents related work addressing ADL-driven DSE
approaches. Section 3 outlines our approach and the over-
all flow of our environment. Section 4 presents the mem-
ory subsystem description in EXPRESSION, followed by a
contemporary example architecture in Section 5 . Section 6
illustrates memory architecture exploration using experi-
ments on the TIC6211 processor, with varying memory
configurations to trade-off cost versus performance. Sec-
tion 7 concludes the paper.

2 Related Work
An extensive body of recent work addresses Archi-

tectural Description Language (ADL) driven software
toolkit generation and Design Space Exploration (DSE)
for processor-based embedded systems, in both academia:
ISDL [4], Valen-C [5], MIMOLA [6], LISA [7], nML [8],
[17], and industry: ARC [I] , Axys [21, RADL [19], Target
[20], Tensilica [21], MDES [22].

While these approaches explicitly capture the processor
features to varying degrees (e.g., instruction set, structure,
pipelining, resources), to our knowledge, no previous ap-
proach has explicit mechanisms for specification of a cus-
tomized memory architecture that describes the specific
types of memory modules (e.g., caches, stredprefetch
buffers), their complex memory features (e.g., page-mode,
burst-mode accesses), their detailed timings, resource uti-
lization, and the overall organization of the memory archi-
tecture (e.g., multiple cache hierarchies, partitioned mem-
ory spaces, direct-mapped memories, etc.)

Our EXPRESSION ADL [121 was designed to explic-
itly capture the memory architecture, representing both the
structure, and the instruction set of the memory subsys-
tem. The structure represents the connectivity between the
memory modules, the characteristics of the memory mod-
ules (such as timing), pipelining, and parallelism present.
The memory instruction set contains the loadstore instruc-
tions, cache control, DMA, prefetch instructions, as well
as the operations triggered automatically by the hardware
(such as cache line fill transfer from the main memory).

We use the detailed memory subsystem information in
EXPRESSION to automatically generate EXPRESS, our
Memory-Aware Compiler ([9], [IO]) to better match the
memory subsystem architecture (by using the explicit re-
source and timing information in scheduling to hide the
latency of the lengthy memory operations), and gener-
ate SIMPRESS [141, the cycle-accurate structural mem-
ory simulator to provide accurate feedback to the designer.
The explicit memory subsystem ADL specification enables

processor-memory co-exploration, leading to a larger de-
sign space, better fine-tuning of the memory subsystem to
the processor architecture and application, and better per-
formance/cost trade-offs.

3 Our Approach

Figure 1 shows the flow in our approach. In our IP li-
brary based Design Space Exploration (DSE) scenario, the
designer starts by selecting a set of components from a pro-
cessor IP library and memory IP library. Our EXPRES-
SION Architectural Description Language (ADL) descrip-
tion (containing a mix of such IP components and custom
blocks) is then used to generate the information necessary
to target both the compiler and the simulator to the specific
processor-memory system.

Traditionally, the memory subsystem was transparent
(assumed an implicitly defined memory architecture, e.g.,
a fixed cache hierarchy) to the processor and the software
toolkit. While the processor pipeline was captured in de-
tail to allow aggressive scheduling in the compiler, the
memory subsystem pipeline was not explicitly captured
and exploited by the compiler. However, by describing the
pipelining and parallelism available in recent memory or-
ganizations, there is tremendous opportunity for the com-
piler to generate performance improvements. Indeed, as
shown in Figure 1, our previous work on RTGEN [ll]
(Reservation Tables generation algorithm) and TIMGEN
[9] (Timing Generation algorithm) already generates the
timing information for both the processor and memory sub-
system pipelines starting from the ADL description of the
memory. The compiler uses this detailed timing informa-
tion to hide the latency of the lengthy memory operations
in the presence of efficient memory access modes (e.g.,
page/burst modes), and cache hierarchies [lo], to gener-
ate significant performance improvements. Such aggres-
sive optimizations are only possible due to the explicit rep-
resentation of the detailed memory architecture.

We present here the memory subsystem description in
EXPRESSION, along with the abstractions that allow cap-
turing a set of heterogeneous memory modules, and con-
necting them to form customized memory architectures.
Furthermore, in a DSE environment it is crucial to provide
the designer with detailed feedback on the choices made in
the processor and memory architectures. In [141 we pre-
sented SIMPRESS, our cycle-accurate structural simulator
generation approach for the processor descriptions in EX-
PRESSION. In this paper we present the memory simula-
tor generation (shown shaded in Figure 1) that is integrated
into the SIMPRESS simulator, allowing for detailed feed-
back on the memory subsystem architecture and its match
to the target applications.

71

Figure 1. The Flow in our approach

4 The Memory Subsystem Description in
EXPRESSION

In order to explicitly describe the memory architecture in
EXPRESSION, we need to capture: (i) the behavior of the
operations that touch the memory subsystem (the memory
subsystem instruction set description), and (ii) the organi-
zation of the memory subsystem (the memory subsystem
structure).

The memory subsystem instruction set represents the
possible operations that can occur in the memory subsys-
tem, such as data transfers between different memory mod-
ules or to the processor, control instructions for the differ-
ent memory components (such as the DMA), or explicit
cache control instructions (e.g., cache freeze, etc.).

The memory subsystem structure represents the abstract
memory modules (such as caches, stream buffers, RAM
modules), their connectivity and characteristics (e.g., cache
properties). The memory subsystem structure is repre-
sented as a netlist of memory components connected with
each other and with the processor through connections
and ports. The memory components are described and at-
tributed with their characteristics (such as cache line size,
replacement policy, write policy).

The pipeline stages and parallelism for each memory
module, its connections and ports, as well as the latches be-
tween the pipeline stages are described explicitly, to allow
modeling of resource and timing conflicts in the pipeline.
The semantics of each component is represented in C, as
part of a parameterizable components library.

5 Example Memory Architecture

We illustrate our Memory-Aware Architectural De-
scription Language (ADL) using the Texas Instruments
TIC6211 VLIW DSP processor that has several novel
memory features. Figure 2 shows the example architecture,

containing an off-chip DRAM, an on-chip SRAM, and two
levels of cache (L1 and L2), attached to the memory con-
troller of the TIC621 1 processor For illustration purposes
we present only the D1 Idst functional unit of the TIC621 1
processor, and we omitted the External Memory Interface
unit from the Figure 2. TI C6211 is an 8-way VLIW DSP
processor with a deep pipeline, composed of 4 fetch stages
(PG, PS, PR, PW), 2 decode stages (DP, DC), followed by
the 8 functional units. The D1 loadlstore functional unit
pipeline is composed of DlJ31, Dl-E2, and the 2 memory
controller stages: MemCtrlXl and IdemCtrlJ32.

The L1 cache is a 2-way set associative cache, with a size
of 64 lines, a line size of 4 words, and word size of 4 bytes.
The replacement policy is Least Recently Used (LRU), and
the write policy is write-back. The cache is composed of a
TAG-BLOCK, a DATA-BLOCK, and the cache controller,
pipelined in 2 stages (L1 -S 1, Ll-S2). The cache character-
istics are described as part of the STORAGE-SECTION in
EXPRESSION [12]:
(L1-CACHE

(TYPE DCACHE)
(NUKLINES 64)
(LINESIZE 4)
(WORDSIZE 4)
(ASSOCIATIVITY 2)
(REPLACEMENT-POLICY LRU)
(WRITE-POLICY WRITE-BACK)
(SUB-UNITS TAG-BLOCK DATA-BLOCK Ll-Sl L132)

)

The memory subsystem instruction set description is
represented as part of the Operation Section in EXPRES-
SION [12]:

(OPCODE LDW (OPERANDS (SRC1 reg) (SRC2 reg) (DST reg))

The internal memory subsystem data transfers are rep-
resented explicitly in EXPRESSION as operations. For
instance, the L1 cache line fill from L2 triggered on a
cache miss is represented through the LDWLl_MISS op-
eration, with the memory subsystem source and destination
operands described explicitly:
(OPCODE LDW-L1-MISS (OPERANDS (SRC1 reg)
(SRC2 reg) (DST reg) (MEM-SRCl Ll--CACHE)
(MEM-SRC2 L2-CACHE) (MEM-DST1 L1-CACHE))

This explicit representation of the internal memory sub-
system data transfers (traditionally not present in ADLs)
allows the designer to reason about the memory subsys-
tem configuration. Furthermore it allows the compiler to
exploit the organization of the memory subsystem, and
the simulator to provide detailed feedback on the internal
memory subsystem traffic. We do not modify the proces-
sor instruction set, but rather represent explicitly operations
which are implicit in the processor and memory subsystem
behavior.

The pipelining and
parallelism between the cache operations is described in

72

EXPRESSION through PIPELINE-PATHS [121. Pipeline
Paths represent the ordering between pipeline stages in the
architecture (represented as bold arrows in Figure 2). For
instance, a load operation to a DRAM address traverses
first the 4 fetch stages (PG, PS, PR, PW) of the processor,
followed by the 2 decode stages (DP, DC), and then it is di-
rected to the loadstore unit D1. Here it traverses the D1.31
and D1E2 stages, and is directed by the MemCtrlEl stage
to the L1 cache, where it traverses the L I S 1 stage. If the
access is a hit, it is then directed to the L1S2 stage, and
the data is sent back to the MemCtrlXl and MemCtrlE2
(to keep the figure simple, we omitted the reverse arrows
bringing the data back to the CPU). Thus the pipeline path
traversed by the example load operation is:
(PIPELINE PG, PS, PR, PW, DP, DC, Dl-El, DLE2,
MemCtrl-El, Ll-Sl, Ll-S2, MemCtrl-El, MemCtrl-E2)

Even though this example pipeline path is flattened, the
pipeline paths in EXPRESSION are .described in a hierar-
chical manner. In case of an L1 miss, the data request is
redirected from Ll-SI to the L2 cache controller, as shown
by the pipeline path (the bold arrow) to L2 in Figure 2.

m u c m

I P t l # I

Figure 2. Sample Memory Architecture for TIC6211
The L2 cache is 4-way set associative, with a size of

1024 lines, and line size of 8 words. The L2 cache con-
troller is non-pipeIined, with a latency of 6 cycles:
(L2-CTRL (LATENCY 6))

During the third cycle of the L2 cache controller, if
a miss is detected it is sent to the off-chip DRAM. The
DRAM module is composed of the DRAM data block and
the DRAM controller, and supports normal, page-mode
and burst-mode accesses. A normal access starts with a
row decode, where the row part of the address is used to
select a particular row from the data array, and copy it into
the row buffer. During the column decode, the column part
of the address is used to select a particular element from the
row buffer and output it. During the precharge, the bank is
deactivated. In a page-mode access, if the next access is
to the same row, the data can be fetched directly form the

row buffer, omitting the column decode and precharge op-
erations. During a burst access, consecutive elements from
the row buffer are clocked out on consecutive cycles. Both
page-mode and burst-mode accesses, when exploited ju-
diciously generate substantial performance improvements
[9]. The timings of each such access mode is represented
using the pipeline paths and LATENCY constructs. For
instance, the normal read access (NR), composed of a col-
umn decode, a row decode and a precharge, is represented
by the pipeline path:

(PIPELINE COL-DEC ROW-DEC PRECHARGE)

(COL-DEC (LATENCY 6))
(ROW-DEC (LATENCY 1))
(PRECHAREGE (LATENCY 6))

. . .

where the latency of the COL-DEC is 6 cycles, of
ROWDEC is 1 cycle, and of the PRECHARGE is 6 cy-
cles.

In this manner EXPRESSION can model a variety of
memory modules and their characteristics. A unique fea-
ture of EXPRESSION is the ability to model the p a r d -
lelism and pipelining available in and between the mem-
ory modules, such as number of outstanding hits, misses
or parallel loads, and generate timing and resource infor-
mation to allow aggressive scheduling to hide the latency
of the lengthy memory operations. The EXPRESSION
description can be used to drive the generation of both
a memory-aware compiler [9], [101, and cycle-accurate
structural memory subsystem simulator, and thus enable
Design Space Exploration and co-design of the memory
and processor architecture. For more details on the mem-
ory subsystem description in EXPRESSION and automatic
simulator generation, please refer to [151.

6 Experiments
As described earlier, we have already used this Memory-

Aware Architectural Description Language (ADL) ap-
proach to generate a Memory-Aware Compiler [9] and
manage the memory miss traffic [IO], resulting in signif-
icantly improved performance. In this section we demon-
strate further use of the memory subsystem specification to
describe different configurations of the memory subsystem
with the goal of studying the trade-off between cost and
performance.

6.1 Experimental Setup

We performed a set of experiments starting from the
base TIC621 1 processor architecture, and varied the mem-
ory subsystem architecture. We generated a cycle-accurate
structural memory subsystem simulator, and performed
Design Space Exploration of the memory subsystem. The
memory organization of the TIC621 1 is varied by using an

73

L1 cache, L2 cache, an off-chip DRAM module, an on-
chip SRAM module and a stream buffer module [131. The
L1 cache is a 2-way set associative cache with line size of
4 words and word of 4 bytes. The L2 cache shares a to-
tal of 2K on-chip SRAM memory with the direct mapped
on-chip SRAM.

The Stream Buffer [131 is used as a replacement for the
L2 cache, exhibiting a much smaller data storage size, and
slightly more complex control mechanism. It receives a
sequence of miss addresses from L1, storing them into a
small history buffer. When it recognizes a stream, it al-
locates one of several FIFO queues to start prefetching it
from the DRAM. The stream buffer we implemented con-
tains 4 such FIFO queues, storing 4 cache lines each, and
uses an LRU policy to discard a FIFO in case of conflict.
When the stream buffer receives an L1 cache miss address,
it compares it to the top of each FIFO queue. If the address
is found - a stream buffer hit - it pops it from the FIFO and
returns it to the L1 cache. If the address is not found - a
miss - the stream buffer compares it with the addresses in
the history buffer to check for a stream, and sends a request
to the DRAM to bring the data.

We used a set of benchmarks from the multimedia and
DSP domains, and compiled them using the EXPRESS
compiler. We collected the statistics information using
the SIMPRESS cycle-accurate structural simulator, which
models both the TI621 1 processor and the memory subsys-
tem.

6.2 Results

The configurations we experimented with are presented
in Table 1. The numbers in Table 1 represent: the size
of the memory module (e.g., the size of L1 in config-
uration 1 is 128), the cachektream buffer organizations:
numdines x num-ways x line-size x word-size, the
latency (in number of processor cycles), and the replace-
ment policy (LRU or FIFO). Note that for the stream buffer,
num-ways represents the number of FIFO queues present.

Config

Table 1. The memory subsystem configurations

LI L2 SRAM Stream DRAM
Cache Cache Buffer

2

3

lat=l (LRU) lat=4 cycle
4X2X4X4 2K lat=20

lat=l (LRU) lat=l cycle
4 ~ 2 ~ 4 x 4 1 6 ~ 4 ~ 8 x 4 - lat=20

cycle

cycle

cycle
8K

I I I I lat=l I I cvc~e I

The configurations in Table 1 are presented in increasing
order of the cost in terms of area. The first configuration

contains an L1 cache and a small stream buffer (256 bytes)
to capitalize on the stream nature of the benchmarks. The
second configuration contains the L'1 cache and an on-chip
direct mapped SRAM of 2K. A part of the arrays in the
application are mapped to the SRAIM. Due to the reduced
control necessary for the SRAM, it has a small latency (of 1
cycle), and the area requirements are small. The third con-
figuration contains L1 and L2 caches with FIFO replace-
ment policy. Due to the control necessary for the L2 cache
(of size 2K), the cost of this configuration is larger than
the configuration 2 containing the SRAM. Configuration 4
is the same as configuration 3, but with LRU replacement
policy for the L1 and L2 caches. Due to the more complex
control required by the LRU polic,y, the cost of this con-
figuration is larger than configuratron 3. Configuration 5
contains an L1 cache, an L2 cache of size 1K and a direct
mapped SRAM of size 1K. Due to the extra busses to route
the data to the caches and SRAM, this configuration has
a larger cost than the previous one. The last configuration
contains a large SRAM, and the caches, and has the largest
area requirement. All the configurdions contain the same
off-chip DRAM module with a latency of 20 cycles.

Figure 3 presents a subset of experiments we ran, show-
ing the total cycle counts (including the time spent in the
processor) for the set of benchmarks for different memory
configurations attached to the TIC621 1 processor. From
the experiments we performed, we chose a representa-
tive set of benchmarks, which show the different trends in
the cost versus performance trade-off. Even though these
benchmarks are kernels, we observed a significant varia-
tion in the trends shown by the different applications.

Figure 3. Cycle counts for the memory configurations

For instance, in hydro, tridiag, and stateeq the first con-
figuration even though has the Itowest cost performs the
best (lower cycle count means higher performance), due to
the capability of the stream buffer to exploit efficiently the
stream nature of the access patterns. Moreover, in these ap-

74

plications the most expensive configuration (configuration
6), containing the large SRAM behaves poorly, due to the
fact that not all the arrays fit in the SRAM, and the lack
of L1 cache to compensate the large latency of the DRAM
creates its toll on the performance.

The expected trend of higher cost - higher performance
was apparent in the applications ICCG, integrate, and low-
pass, While the stream buffer in configuration 1 has a com-
parable performance to the other configurations, the con-
figuration 6 has the best behavior due to the low latency of
the direct mapped on-chip SRAM.

Thus, using our Memory-Aware ADL-based Design
Space Exploration approach, we obtained design points
with varying cost and performance. We observed vari-
ous trends for different application classes, allowing cus-
tomization of the memory architecture tuned to the applica-
tions. Note that this cannot be determined through analysis
alone; the customized memory subsystem must be explic-
itly captured, and the applications have to be executed on
the configured processor-memory system, as we demon-
strated in this section.

7 Summary

Memory represents a critical driver in terms of cost, per-
formance and power for embedded systems. To address
this problem, a large variety of modern memory technolo-
gies, and heterogeneous memory organizations have been
proposed.

On one hand the application is characterized by a vari-
ety of access patterns (such as stream, locality-based, etc.).
On the other hand, new memory modules and organiza-
tions provide a set of features which exploit specific ap-
plications needs (e.g., caches, stream buffers, page-mode,
burst-mode, DMA). To find the best match between the ap-
plication characteristics and the memory organization fea-
tures, the designer needs to explore different memory con-
figurations in combination with different processor archi-
tectures, and evaluate each such system for a set of met-
rics (such as cost, power, performance). Performing such
processor-memory co-exploration requires the capability to
capture the memory subsystems, and perform a compiler-
in-the-loop exploration/evaluation.

In this paper we presented a Memory-Aware Architec-
tural Description Language (ADL) approach which cap-
tures the memory subsystem explicitly.

This Memory-Aware ADL approach is used to drive
the generation of a cycle accurate memory simulator, and
also facilitate the exploration of various memory configu-
rations, and trade-off cost versus performance: Our experi-
mental results show that varying price-performance design
points can be uncovered using the processor-memory co-
exploration approach.

Our ongoing work targets the use of this ADL approach
for further memory exploration experiments, using larger
applications, to study the impact of different parts of the
application (such as loop nests) on the memory organiza-
tion behavior and overall performance, as well as on sys-
tem power.

References

[I] ARC Cores. htp://www.arccores.com.
[2] Axys Design Automation. http://www.aqsdesign.com.
[3] G. G. et al. CHESS: Retargetable code generation for embedded

DSP processors. In Code Generarion for Embedded Processors.
Kluwer, 1997.

[4] G. H. et al. ISDL: An instruction set description language for retar-
getability. In Proc. DAC, 1997.

[5] H. Y. et al. A programming language for processor based embedded
systems. In Proc. APCHDL, 1998.

[6] R. L. et al. Retargetable generation of code selectors from HDL
processor models. In Proc. EDTC, 1997.

[7] V. Z. et al. LISA - machine description language and generic ma-
chine model for HW/SW co-design. In IEEE Workshop on VLSI
Signal Processing, 1996.

[8] M. Freericks. The nML machine description formalism. Technical
Report TR SM-IMPIDISTIOL, TU Berlin CS Dept., 1993.

[9] P. Grun, N. Dun, and A. Nicolau. Memory aware compilation
through accurate timing extraction. In DAC, Los Angeles, 2000.

[IO] P. Grun, N. Dutt, and A. Nicolau. Mist: An algorithm for memory
miss traffic management. In To Appear in ICCAD, San Jose, 2000.

[1 I] P. Grun, A. Halambi, N. Dutt, and A. Nicolau. RTGEN: An algo-
rithm for automatic generation of reservation tables from architec-
tural descriptions. In ISSS, San Jose, CA, 1999.

[121 A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau.
EXPRESSION: A language for architecture exploration through
compiler/simulator retargetability. In Proc. DATE, Mar. 1999.

[131 N. Jouppi. Improving direct-mapped cache performance by the ad-
dition of a small fully-associative cache and prefetch buffers. In
ISCA, 1990.

[I41 A. Khare, N. Savoiu, A. Halambi, I? Grun, N. Dun, and A. Nicolau.
V-SAT: A visual specification and analysis tool for system-on-chip
exploration. In Proc. EUROMICRO, 1999.

[I51 P. Mishra, I? Grun, N. Dutt, and A. Nicolau. Memory subsystem
description in EXPRESSION. Technical report, University of Cali-
fomia, Irvine, 2000.

[161 S. Przybylski. Sorting out the new DRAMS. In Hot Chips Tutorial,
Stanford, CA, 1997.

[171 V. Rajesh and R. Moona. Processor modeling for hardware software
codesign. In International Conference on VZSI Design, Jan. 1999.

[181 Semiconductor Industry Association. National technologyroadmap
for semiconductors: Technology needs, 1998.

[191 C. Siska. A processor description language supporting retargetable
multi-pipeline dsp program development tools. In Proc. ISSS, Dec.
1998.

[20] Target Compiler Technologies. hrtp:/hww.retarger.com.
[2 I] Tensilica Incorporated. hrrp:/hww.rensilica.com.
[22] Trimaran Release: http://www.trimaran.org. The MDES User Man-

ual, 1997.

75

http://htp://www.arccores.com
http://www.aqsdesign.com
http://hrtp:/hww.retarger.com
http://hrrp:/hww.rensilica.com
http://www.trimaran.org

