Automated Micro-architectural Test Generation for
Validation of Modern Processors

Heon-Mo Koo Prabhat Mishra
hkoo@cise.ufl.edu prabhat@cise.ufl.edu

Department of Computer and Information Science and Engineering
University of Florida, Gainesville, FL 32611, USA.

Abstract—Design complexity of todays microprocessors is in- have difficulty in activating micro-architectural target artifacts
creasing at an alarming rate to cope up with the required perfor- and pipeline functionalities since it is not possible to generate
mance improvement by adopting complicated micro-architectural intormation regarding pipeline interactions or timing details
features such as deep pipelines, dynamic scheduling, out-of- .~ . T o
order and superscalar execution, and dynamic speculation. Since using input ISA speuflcatlon. For example, 't_ IS very hard to
verification complexity is directly proportional to the design J€nerate an architectural test program for micro-architectural
complexity, considerable amount of time and resources are spent design bugs such as a pipeline interaction error (e.g., “Decode
on design validation. In the current industrial practice, billions of stage is not stalled even if Completion Queue is full”), or
random test programs generated at instruction set architecture a performance error (e.g., “Data dependency, Read After
(ISA) level are used during simulation-based validation. However, . . el - ! .
architectural test generation techniques have limitations in terms Write (RAW)' !S not resolved by_ f_orwardlng path even_ if
of exercising intricate micro-architectural artifacts. Therefore, Operand is available”). Therefore, it is necessary to use micro-
it is necessary to use micro-architectural details during test architectural details during test generation.
generation. Furthermore, there is a lack of automated techniques Compared to random or biased-random tests, the directed
for directed test generation targeting micro-architectural faults. tests can reduce overall validation effort significantly since
To address these challenges, we present a directed test generation .
technigue at micro-architectural level for functional validation of .Shorter tests can obtain the sgme covera_ge goal. However, there
microprocessors. A processor model is described in a temporal iS @ lack of automated techniques for directed test generation
specification language at micro-architecture level. The desired targeting micro-architectural faults. As a result, directed tests
behaviors of_ micro-ar_chitecture mechanisms_ are expressed asgre typically hand-written by experts, which is time consuming
temporal logic properties. We use decompositional model check- and error prone. As an automated approach, Model Checking

ing for systematic test generation. Our experiments using a b d test fi . Th ted .
processor based on the Power Architectur8™ Technology shows 21 D€ USed as a test generation engine. The negated version

very promising results in terms of test generation time as well Of @ desired property and the processor model are applied to a
as test program length. model checker to produce a counterexample automatically that

contains a sequence of instructions (a test program) from an
initial state to a failure state. This test program can be used to
Performance improvement of modern processors is accogkercise the desired property. However, this naive approach is
panied with high design complexity by adopting complicateghsuitable for a real processor model due to the state explosion
micro-architectural mechanisms such as deeply pipelined $foblem during model checking. There is a need for automated
perscalar, dynamic scheduling, and dynamic speculation. Sirgf directed test generation techniques.
verification complexity is directly proportional to the design To address these challenges, we present a directed test
complexity, functional validation has become one of the majgeneration technique at micro-architectural level for functional
bottlenecks in modern processor design: up to 70% of thglidation of microprocessors. Figure 1 shows the overall flow
design development time and resources are spent on functiastahe proposed test generation process. The input specification
verification. Simulation is the most widely used form otontains both the structure (micro-architectural details) and
microprocessor validation. A major Challenge in Simulatiorthe behavior (instruc‘[ion Set) of the processor. From the
based validation is how to reduce the overall validation tin'ﬁ)ecification, a micro-architectural model of the processor is
and resources. formally specified in Model Checking language. Properties can
In the current industrial practice [1], [12], random ange automatically generated from the specification based on a
biased-random test generation techniques at architecture (I$ctional fault model such as pipeline interaction coverage.
level are most widely used for simulation-based validatiophe processor model is decomposed into functional units and
to uncover errors early in the design cycle as well as tfe properties are decomposed accordingly to alleviate the state
perform simulation for the entire processor design. Howevelxplosion. Model checker generates partial counterexamples
as demonstrated in 1V, architectural test generation techniqygs individual units and they are merged together to form a
1The Power Architecture and Power.org wordmarks and the Power a%gunterexample for the entire processor. Once a test program

Power.org logos and related marks are trademarks and service marks Iicerléegenerated’ RTL simulation is performed to d_etermine if the
by Power.org test detects the fault. Another undetected fault is selected from

I. INTRODUCTION

Functional An alternative formal method, model checking [4], has been

Coverage successfully used in software and hardware validation as a test
Architectural ' . generation engine [5], [10]. The negated version of a desired
Specification property along with the processor model is applied to the
model checker. The model checker automatically produce a
| Processor model | | Property for a fault |<_ counterexample that contains a sequence of instructions (a test
program) from an initial state to a failure state. However, this
@}@ [Decompose property] naive approach is unsuitable for_a real processor model due to
the state explosion problem during model checking.
| Koo and Mishra [9] have proposed proposed a proces-
.4{GenerateatestproqramJ sor/property decomposition technique to reduce the search
using modef checking space during counterexample generation as well as an al-
' gorithm for merging the partial counterexamples to generate
architectural test programs. Their test generation technique

Detect all faults?) - | : .
is built on a relatively simple MIPS processor [6] with no

renaming buffer, reordering buffer, or reservation station. They
Simulation use pipeline path-level model partitioning to generate a test
program for data forwarding, but it causes deprivation of mem-
ory during model checking when applying to the industrial

))) processors due to high complexity of even single pipeline path.
the fault list and the process continues until all the faults ajg addition, they mainly focus on the data path rather than the

detected. o _ _ _ control path. While a data (opcode and operands) is located
The main contribution of this work is to provide a framey, 5 single pipeline stage, control signals (functional unit

work for a directed and automated micro-architectural test gef}zius and buffer status) may spread across multiple pipeline
eration technique for validation of modern industrial ProceStages and buffers which make model partitioning and coun-
sors. Since the proposed method is generic, its framework Gapeyample merging more difficult. Therefore, it is necessary

be used for yalidatiorj of any other real processors. The r?étimprove the decomposition and merging algorithms for
of the paper is organized as follows. Il presents related Woélﬁplication to the complex industrial processors.
addressing test generation in the context of micro-architectural

validation of pipelined processors. Il describes modeling of [1l. DIRECTED MICRO-ARCHITECTURAL TEST
an industrial processor and our test generation methodology, GENERATION

followed by a case study in IV. Finally, V concludes the paper. toqay's test generation techniques and verification methods
are very efficient to find bugs at the unit level. Hard-to-find
bugs arise often from the interactions among many pipeline

As a recent industrial micro-architectural test generati®tages and buffers of a modern processor design. We primarily
technique, Piparazzi [2] has been developed at IBM whef@cus on such micro-architectural interface among functional
a model of micro-architecture and the user’s specification augits in a pipelined processor.
converted into a Constraint Satisfaction Problem (CSP) and
the dedicated. CSP splver is u_sed to gqnstruct an actgal € Fgorithm 1: Test Generation
program. Their technique requires additional confirmation Pinpyts: i) Processor model
the conversion and construction procedures compared to using i) Set of interactionsS from fault model and corner case
formal methods in test generation. Outputs: Test programs

Several methodologies have been developed for validatioRe9"
of pipelined processors using finite state machine (FSM) mad- TestPrograms 3 -

for each interactiort; in the setS

els [3], [7], [8], [11] where FSM coverage based on reachahle P, = CreateProperty;)
states and state transitions is used to generate test programs. P, = Negatef’)
In modern processor designs, complicated micro-architectural test; = DecompositionalMCl/, P;)
mechanisms include interactions among many pipeline stages TestPrograms = TestPrograrstest;
and buffers that lead the FSM-based approaches to the state-endfor
space explosion problem. To alleviate the state explosiorlznrdeturn TestPrograms
Utamaphethai et al. [13] have presented a FSM model patti-
tioning technique based on micro-architectural pipeline storageAlgorithm 1 describes our test generation procedure. This
buffers whose entries store data and status. However, it suffalgorithm takes the processor moddl and desired pipeline
from targeting complete micro-architectural features becausgeractions S as inputs and generates test programs. The
test programs are generated by design errors from each buffeacessor model is described in a temporal specification
not for combined buffers. language such as SMV [14]. For each interactisn the

Fig. 1. Automated Test Program Generation Methodology

Il. RELATE WORK

2]

o

000 = 7 pipeline stages
Fetch stage 1 = Superscalar

| Fetchstage2 | Rename " Dynamic scheduling
Buffers *= Dynamic speculation

I-cache

Gl | Decode stage
¢ 3 ‘ ¥ 3
[Rs][Rs] [rRs][RS]
Execute stage
[Lsu ssagel\ \MUst'agel\ [sui] [su2 |

\LSU stage 2 \ MU stfge 2
[LSU stage 3] [MU stage 3]

‘ | e

MU stage 4
1
Completion stage [e——

Completion
Queue

Write-back stage

Fig. 2. Instruction Pipeline Flow of e500 processor that is based on the Power Architecture Technology

algorithm produces one test programst;. S; is composed modules and verified their interface. These modules are basic
of a set of instruction and control functionalities at pipelinenits in processor model decomposition for test generation.
units and their relations and it is converted to a temporal

logic property P;. The negation ofP; is an interaction fault. B. Property Generation and Decomposition

The processor model and the fault?; are applied to e generate a property for each pipeline interaction from
decompositional model checking framework to generate a tggé specification. Since interactions at a given cycle are
program. The algorithm iterates over all the interaction faulsmantically explicit and our processor model is organized in
in the fault model and corner cases. structure-oriented modules, the interactions can be converted
A. Micro-architectural Modeling into prp_perties. The generated properties are express_ed in

rproposmonal temporal logic LTL (Linear Temporal Logic)

.F|gure 2 shows a functional block Q|agram of the fou 4]. Each property consists of temporal operators (G, F, X,
wide superscalar e500 processor that is based on the Po Lnd Boolean connectives.(V, -, and—). Most pipeline

A_rchi_tecture Technology [.15] With the seven pipeline Sta98Ryeractions can be converted in the form of a propé&ity.
Pipeline buffers are highlighted in grey. We have developeAdp A ...A pn) that combines activitiey; over n modules

a processor model based on the micro-architectural structLHg-mQg logical AND operator. The atomic propositio is a
the instruction behavior, and the rules in each pipeline stage ctional activity at a node such as operation execution,

that determine when instructions can move to the next sta&g" exception or NOP. The property is trueif, A ps A
and when they cannot. The micro-architectural features in /\'p,) becomes true ét any time step

the processor maodel mclud_e plpelmt_ed and_ CIOCk'aCCl_”ateSince we are interested in counterexample generation, we
behaviors such as multiple issue for instruction parallelis

t-of-ord i d in-ord letion for d Meed to generate the negation of the property first. The
out-ol-order execution and In-order-comp'etion for ynamlﬁegation of the properties can be expressed as:

scheduling, register renaming for removing false data de-
pendency, reservation stations for avoiding stalls at Fetch

- ; ~X(p
and Decode pipeline stages, and data forwarding for early ~F(p
resolution of RAW data dependency. By representing them

in a model checking language, we can achieve the automati(i:Or example, the negation of the interaction property is

test generation goal. that b ¢ i ¢
In order to use model checking as a test generator, th& 1 ¥ P2 V ...V —py) that becomes true if any o

processor model needs to be verified beforehand. Since i’lg P22 ---» OF Pn 1S NOL true over all time steps. In the

infeasible to verify the entire model as a single unit due to tﬁgmamder Of_ this section, we descnbe_ .hOW to decomp(_)se
state explosion during model checking, we have partition se properties (already negated) for efficient model checking.

the entire processor model into multiple modules based ggasrio\é?]gzz\s/egoxhb;:tggcsor%f éimgg;a;rzpﬁgorjsggi
the functional units shown as rectangles in Figure 2. Ea P P

partitioned module has been verified using the requireme% Flpna) # F(p) AFlg) and G(p V q) # G(p) v
-

=

X(-p) ~G(p) = F(-p)
G(-p) —pRq = —pU—q

v
I

and rules described in the specification. For example, a %Q)' Irgcerta:;w S|tuat|on?, such WFE)F(Z}'_')|F((J))' ordt
quirement of Issue stage is that instructions can be iss 88.{ Eq))'d elcohmplcz_& 'O_T_i a;e”no. ene 'C't‘;i. c?mpartlal 0
out-of-order from only the bottom two entries and a rule jfaditional model checking. The following combinations aflow

that an instruction cannot be issued if the reservation statialﬁnple property decompositions.

for its unit currently holds a non-executing instruction. For

verification of module interface, we integrated neighboring)G(((I;/\\/‘f])) - ?}8}@%8) f(((];\//\?) zl;(gap))vAl;(?;)

TABLE |
TESTCASES AND CODE LENGTH

[| Test Cases | Test Code Length
1 Instruction dual issue 15
2 Renamingsrc1 operand 12
3 Read operand from forwarding path (RAW) 9
4 Reservation station reads operand from forwarding path (RAW) 7
5 Read operand from renaming reg. (RAW) 10
6 Read operand from GPR (RAW) 11
7 Renaming for WAW (no stall) 8
8 Stall at Decode stage due to 1Q full 14
9 Stall at Decode stage due to CQ full, then released queue full at the next clock|cycle 34
10 | CQ full, then full again 35
11 | CQ full, then empty, and then full again 95
12 | Only one instruction Completion (one or two instructions can retire per cycle) 12

Introducing the notion of clock (time step) in the propertyassignments contain fetched instruction data from I-cache and
allows more decompositions for counterexample generationthsy are converted into assembly instruction sequences.
shown below. Note that the left and right hand side of the
decomposition are not logically equivalent but they produce

functionally equivalent counterexamples. IV. EXPERIMENTS

For evaluation of overall validation efforts to activate micro-
architectural corner cases, we applied our directed test method-

Although we only use a few decomposition scenarios, dlogy on a commercial superscalar PowerPC processor at
is important to note that these scenarios are sufficient fBreescale Inc. We performed various test generation experi-
generating the properties where interactions are considerefbnts for validating the pipeline interactions and corner cases.
In addition to these interaction properties, we created mamyble | shows a subset of the directed test cases that we
micro-architectural properties based on real experiences ggerated and their corresponding length in terms of number
industrial designers. of instruction sequences. For example, test programs for case 3

C. Test Generation using Decompositional Model Checkin hrough 6 exercise operand _read from four different resources
s shown in Figure 3, which can be generated at micro-

The Dbasic idea of DecompositionalMC() in Algorithmychitecture level but very difficult at ISA level. In terms of

1 is to apply the decomposed properties (sub-properties)dficiency, only several seconds were spent on test generation
appr(_)prlate modules and compose their responses to constg%tept for the case 11 where test generation took approx-
the final test program. Model checker is used to genergfgaiely one minute. It is obvious that test generation time

partlal counterexa_mples for the part|t|0r_1ed modules. Integri@'proportional to the length of the generated test programs.
tion of these partial counterexamples is a challenge dueggch of our test cases took less than 100 clock cycles on an
the fact that the relationships among decomposed modulgs, aqe whereas the existing random tests in the company took
and sub-properties are not preserved at whole design leyghoximately 100,000 clock cycles. Clearly, our approach can

in general. We propose clock-based integration of partigly,ce the validation effort by several orders-of-magnitude.
counterexamples.

For example, if two sub-properties are applied at the same
clock cycle ¢lk = t5) to two modules sharing a parent

G((clk # t) V (pV @) ~ G((clk #) Vp) V G((clk # t2) V q)

module, then two counterexamples are generated and merdegle ——— Execute _’ Complete _"’ Write-Back
into the output property of the parent module for generating the :'_'_'_'_'_'_'_@_?_] @ @
counterexamples at the previous clock cyelg: = t; —1). In ———————— - i LT EEE
Figure 2, four reservation station (RS) modules share the par-) ! ? I

ent module Issue. Counterexamples generated from multiple Regf;:?gtr:"” Dl @ Instruction flow
RS at the cyclg: are merged for creating the output property Forwarding data

of Issue stage. The negated version of this property is applied
to the model checker along with Issue module to generate a

counterexample at the cycle — 1 that is used to produce .
the output properties of Decode, GIQ, and Rename buffer. 10 validate these test cases, we converted the test programs

Merging partial counterexamples continues until we obtain tﬁ@to the input format of RTL simulation and monitored instruc-

primary input assignments for all the sub-properties. Thell@ns in pipeline stages at every clock cycle during simulation
to ensure that the generated test program activates the actual

2The clk variable is used to count time steps, @nds a specific time step. micro-architectural fault.

Fig. 3. Four Different Data Forwarding Mechanisms

V. CONCLUSIONS [3] D. Campenhout, T. Mudge, and J. Hayes. High-level test generation

. . . L for design verification of pipelined microprocessors.Pioc. of Design
Architectural test generation techniques have limitations t0 aytomation Conference (DACpages 185188, 1999.

achieve micro-architectural coverage goal. This paper prg4] E. M. Clarke, O. Grumberg, and D. A. PeleModel Checking MIT
sented a directed test generation technique based on dechm—PreSS' Cambridge, MA, 1999.

. f both del and ies f lidati 5] A. Gargantini and C. Heitmeyer. Using model checking to generate
position ot both processor model and properties for validation™ (egts from requirements specifications. ACM SIGSOFT Software

of performance as well as functionality of the modern micro- Engineering Notesvolume 24, pages 146-162, 1999.

processorsl Our experlmental results USIng e500 processor tmt\] Hennessy and D. F’attersoﬁomputer Architecture: A Quantitative
Approach Morgan Kaufmann, 2002.

IS basgq on the Power Architecture T?ChnOIOQY demon.Strafﬂ H. lwashita, S. Kowatari, T. Nakata, and F. Hirose. Automatic test
the efficiency of our method by generating complicated micro- pattern generation for pipelined processors. Rroc. International
architectural tests. Since the proposed technique is generic,rj:'é? Conference on Computer-Aided Design (ICCApjges 580-583, 1994.

f K b d f lidati find ial K. Kohno and N. Matsumoto. A new verification methodology for
ramework can be used for validation ot industrial-strengt complex pipeline behavior. IRroc. of Design Automation Conference

processors. Furthermore, this work can be an excellent com- (DAC), pages 816-821, 2001.

plement to the current RTPG validation methodology without®] H.-M. Koo and P. Mishra. Functional test generation using property
dificati fth .. lidati fl decompositions for validation of pipelined processors.Pmceedings

modification of the existing validation flow. of Design Automation and Test in Europe (DATBhges 1240—1245,
Our future work includes extension of the processor model 200s.

for dynamic speculation and other features. Since the numib¥}l P- Mishra and N. Dutt. Graph-based functional test program generation
for pipelined processors. IRroc. of Design Automation and Test in

of interactions (directed tests) can be still extremely large, gope (DATE) pages 182-187, 2004.
we plan to develop a test compaction technique to reduce {lng J. Shen and J. A. Abraham. An RTL abstraction technique for processor

number of test programs. We also plan integrate our work in microarchitecture validation and test generatidournal of Electronic
Testing: Theory and Application46(1-2):67—-81, 2000.

a performance analysis tool. [12] K. Shimizu, S. Gupta, T. Koyama, T. Omizo, J. Abdulhafiz, L. Mc-
Conville, and T. Swanson. Verification of the cell broadband engine
REFERENCES processor. InProc. of Design Automation Conference (DA@Rges

338-343, 2006.

5]',3] N. Utamaphethai, R. D. S. Blanton, and J. P. Shen. Effectiveness
of microarchitecture test program generatiolfEEE Design & Test
17(4):38-49, 2000.

; ; ; ; I 14] www-cad.eecs.berkeley.edu/ kenmcmil/sr@adence SMV
[2] A. Adir, E. Bin, O. Peled, and A. Ziv. Piparazzi: A test program[h .
generator for micro-architecture flow verification. Rroc. of High-Level [15] www.freescale.com/files/32bit/doc/refmanual/e5S00CORERMAD.pdf.

Design Validation and Test Workshop (HLDYFRges 23-28, 2003. Freescale PowerPc e500 core family reference manual

[1] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov,
and A. Ziv. Genesys-pro: Innovations in test program generation f
functional processor verificationlEEE Design & Test 21(2):84-93,
2004.

