
Automated Micro-architectural Test Generation for
Validation of Modern Processors

Heon-Mo Koo Prabhat Mishra
hkoo@cise.ufl.edu prabhat@cise.ufl.edu

Department of Computer and Information Science and Engineering
University of Florida, Gainesville, FL 32611, USA.

Abstract— Design complexity of todays microprocessors is in-
creasing at an alarming rate to cope up with the required perfor-
mance improvement by adopting complicated micro-architectural
features such as deep pipelines, dynamic scheduling, out-of-
order and superscalar execution, and dynamic speculation. Since
verification complexity is directly proportional to the design
complexity, considerable amount of time and resources are spent
on design validation. In the current industrial practice, billions of
random test programs generated at instruction set architecture
(ISA) level are used during simulation-based validation. However,
architectural test generation techniques have limitations in terms
of exercising intricate micro-architectural artifacts. Therefore,
it is necessary to use micro-architectural details during test
generation. Furthermore, there is a lack of automated techniques
for directed test generation targeting micro-architectural faults.
To address these challenges, we present a directed test generation
technique at micro-architectural level for functional validation of
microprocessors. A processor model is described in a temporal
specification language at micro-architecture level. The desired
behaviors of micro-architecture mechanisms are expressed as
temporal logic properties. We use decompositional model check-
ing for systematic test generation. Our experiments using a
processor based on the Power ArchitectureTM Technology1 shows
very promising results in terms of test generation time as well
as test program length.

I. I NTRODUCTION

Performance improvement of modern processors is accom-
panied with high design complexity by adopting complicated
micro-architectural mechanisms such as deeply pipelined su-
perscalar, dynamic scheduling, and dynamic speculation. Since
verification complexity is directly proportional to the design
complexity, functional validation has become one of the major
bottlenecks in modern processor design: up to 70% of the
design development time and resources are spent on functional
verification. Simulation is the most widely used form of
microprocessor validation. A major challenge in simulation-
based validation is how to reduce the overall validation time
and resources.

In the current industrial practice [1], [12], random and
biased-random test generation techniques at architecture (ISA)
level are most widely used for simulation-based validation
to uncover errors early in the design cycle as well as to
perform simulation for the entire processor design. However,
as demonstrated in IV, architectural test generation techniques

1The Power Architecture and Power.org wordmarks and the Power and
Power.org logos and related marks are trademarks and service marks licensed
by Power.org

have difficulty in activating micro-architectural target artifacts
and pipeline functionalities since it is not possible to generate
information regarding pipeline interactions or timing details
using input ISA specification. For example, it is very hard to
generate an architectural test program for micro-architectural
design bugs such as a pipeline interaction error (e.g., “Decode
stage is not stalled even if Completion Queue is full”), or
a performance error (e.g., “Data dependency, Read After
Write (RAW), is not resolved by forwarding path even if
operand is available”). Therefore, it is necessary to use micro-
architectural details during test generation.

Compared to random or biased-random tests, the directed
tests can reduce overall validation effort significantly since
shorter tests can obtain the same coverage goal. However, there
is a lack of automated techniques for directed test generation
targeting micro-architectural faults. As a result, directed tests
are typically hand-written by experts, which is time consuming
and error prone. As an automated approach, Model Checking
can be used as a test generation engine. The negated version
of a desired property and the processor model are applied to a
model checker to produce a counterexample automatically that
contains a sequence of instructions (a test program) from an
initial state to a failure state. This test program can be used to
exercise the desired property. However, this naive approach is
unsuitable for a real processor model due to the state explosion
problem during model checking. There is a need for automated
and directed test generation techniques.

To address these challenges, we present a directed test
generation technique at micro-architectural level for functional
validation of microprocessors. Figure 1 shows the overall flow
of the proposed test generation process. The input specification
contains both the structure (micro-architectural details) and
the behavior (instruction set) of the processor. From the
specification, a micro-architectural model of the processor is
formally specified in Model Checking language. Properties can
be automatically generated from the specification based on a
functional fault model such as pipeline interaction coverage.
The processor model is decomposed into functional units and
the properties are decomposed accordingly to alleviate the state
explosion. Model checker generates partial counterexamples
for individual units and they are merged together to form a
counterexample for the entire processor. Once a test program
is generated, RTL simulation is performed to determine if the
test detects the fault. Another undetected fault is selected from

Processor model

Functional
Coverage

Generate fault list

Decompose property

Generate a test program
using model checking

Detect all faults?

Simulation

Yes
No

Architectural
Specification

Property for a fault

Decompose model

Processor model

Functional
Coverage

Generate fault list

Decompose property

Generate a test program
using model checking

Detect all faults?

Simulation

Yes
No

Architectural
Specification

Property for a fault

Decompose model

Fig. 1. Automated Test Program Generation Methodology

the fault list and the process continues until all the faults are
detected.

The main contribution of this work is to provide a frame-
work for a directed and automated micro-architectural test gen-
eration technique for validation of modern industrial proces-
sors. Since the proposed method is generic, its framework can
be used for validation of any other real processors. The rest
of the paper is organized as follows. II presents related work
addressing test generation in the context of micro-architectural
validation of pipelined processors. III describes modeling of
an industrial processor and our test generation methodology,
followed by a case study in IV. Finally, V concludes the paper.

II. RELATE WORK

As a recent industrial micro-architectural test generation
technique, Piparazzi [2] has been developed at IBM where
a model of micro-architecture and the user’s specification are
converted into a Constraint Satisfaction Problem (CSP) and
the dedicated CSP solver is used to construct an actual test
program. Their technique requires additional confirmation of
the conversion and construction procedures compared to using
formal methods in test generation.

Several methodologies have been developed for validation
of pipelined processors using finite state machine (FSM) mod-
els [3], [7], [8], [11] where FSM coverage based on reachable
states and state transitions is used to generate test programs.
In modern processor designs, complicated micro-architectural
mechanisms include interactions among many pipeline stages
and buffers that lead the FSM-based approaches to the state-
space explosion problem. To alleviate the state explosion,
Utamaphethai et al. [13] have presented a FSM model parti-
tioning technique based on micro-architectural pipeline storage
buffers whose entries store data and status. However, it suffers
from targeting complete micro-architectural features because
test programs are generated by design errors from each buffer,
not for combined buffers.

An alternative formal method, model checking [4], has been
successfully used in software and hardware validation as a test
generation engine [5], [10]. The negated version of a desired
property along with the processor model is applied to the
model checker. The model checker automatically produce a
counterexample that contains a sequence of instructions (a test
program) from an initial state to a failure state. However, this
naive approach is unsuitable for a real processor model due to
the state explosion problem during model checking.

Koo and Mishra [9] have proposed proposed a proces-
sor/property decomposition technique to reduce the search
space during counterexample generation as well as an al-
gorithm for merging the partial counterexamples to generate
architectural test programs. Their test generation technique
is built on a relatively simple MIPS processor [6] with no
renaming buffer, reordering buffer, or reservation station. They
use pipeline path-level model partitioning to generate a test
program for data forwarding, but it causes deprivation of mem-
ory during model checking when applying to the industrial
processors due to high complexity of even single pipeline path.
In addition, they mainly focus on the data path rather than the
control path. While a data (opcode and operands) is located
in a single pipeline stage, control signals (functional unit
status and buffer status) may spread across multiple pipeline
stages and buffers which make model partitioning and coun-
terexample merging more difficult. Therefore, it is necessary
to improve the decomposition and merging algorithms for
application to the complex industrial processors.

III. D IRECTED M ICRO-ARCHITECTURAL TEST

GENERATION

Today’s test generation techniques and verification methods
are very efficient to find bugs at the unit level. Hard-to-find
bugs arise often from the interactions among many pipeline
stages and buffers of a modern processor design. We primarily
focus on such micro-architectural interface among functional
units in a pipelined processor.

Algorithm 1 : Test Generation
Inputs: i) Processor modelM

ii) Set of interactionsS from fault model and corner cases
Outputs: Test programs
Begin

TestPrograms =φ
for each interactionSi in the setS

Pi = CreateProperty(Si)
Pi = Negate(Pi)
testi = DecompositionalMC(M , Pi)
TestPrograms = TestPrograms∪ testi

endfor
return TestPrograms

End

Algorithm 1 describes our test generation procedure. This
algorithm takes the processor modelM and desired pipeline
interactionsS as inputs and generates test programs. The
processor model is described in a temporal specification
language such as SMV [14]. For each interactionSi, the

Fetch stage 1

Fetch stage 2

Decode stage

Issue stage

MU stage 1

MU stage 2

MU stage 3

MU stage 4

Completion stage

Write-back stage

LSU stage 1

LSU stage 2

LSU stage 3

SU1 SU2

Divide
Post-divide

Execute stage

� 7 pipeline stages
� Superscalar
� Dynamic scheduling
� Dynamic speculation

RS RS

IQ

GIQ

I-cache

Rename
Buffers

Completion
Queue

RS RS

Fetch stage 1

Fetch stage 2

Decode stage

Issue stage

MU stage 1

MU stage 2

MU stage 3

MU stage 4

Completion stage

Write-back stage

LSU stage 1

LSU stage 2

LSU stage 3

SU1 SU2

Divide
Post-divide

Execute stage

� 7 pipeline stages
� Superscalar
� Dynamic scheduling
� Dynamic speculation

RS RS

IQ

GIQ

I-cache

Rename
Buffers

Completion
Queue

RS RS

Fig. 2. Instruction Pipeline Flow of e500 processor that is based on the Power Architecture Technology

algorithm produces one test programtesti. Si is composed
of a set of instruction and control functionalities at pipeline
units and their relations and it is converted to a temporal
logic propertyPi. The negation ofPi is an interaction fault.
The processor modelM and the faultPi are applied to
decompositional model checking framework to generate a test
program. The algorithm iterates over all the interaction faults
in the fault model and corner cases.

A. Micro-architectural Modeling

Figure 2 shows a functional block diagram of the four-
wide superscalar e500 processor that is based on the Power
Architecture Technology [15] with the seven pipeline stages.
Pipeline buffers are highlighted in grey. We have developed
a processor model based on the micro-architectural structure,
the instruction behavior, and the rules in each pipeline stage
that determine when instructions can move to the next stage
and when they cannot. The micro-architectural features in
the processor model include pipelined and clock-accurate
behaviors such as multiple issue for instruction parallelism,
out-of-order execution and in-order-completion for dynamic
scheduling, register renaming for removing false data de-
pendency, reservation stations for avoiding stalls at Fetch
and Decode pipeline stages, and data forwarding for early
resolution of RAW data dependency. By representing them
in a model checking language, we can achieve the automatic
test generation goal.

In order to use model checking as a test generator, the
processor model needs to be verified beforehand. Since it is
infeasible to verify the entire model as a single unit due to the
state explosion during model checking, we have partitioned
the entire processor model into multiple modules based on
the functional units shown as rectangles in Figure 2. Each
partitioned module has been verified using the requirements
and rules described in the specification. For example, a re-
quirement of Issue stage is that instructions can be issued
out-of-order from only the bottom two entries and a rule is
that an instruction cannot be issued if the reservation station
for its unit currently holds a non-executing instruction. For
verification of module interface, we integrated neighboring

modules and verified their interface. These modules are basic
units in processor model decomposition for test generation.

B. Property Generation and Decomposition

We generate a property for each pipeline interaction from
the specification. Since interactions at a given cycle are
semantically explicit and our processor model is organized in
structure-oriented modules, the interactions can be converted
into properties. The generated properties are expressed in
propositional temporal logic LTL (Linear Temporal Logic)
[4]. Each property consists of temporal operators (G, F, X,
U) and Boolean connectives (∧, ∨, ¬, and→). Most pipeline
interactions can be converted in the form of a propertyF(p1

∧ p2 ∧ . . .∧ pn) that combines activitiespi over n modules
using logicalAND operator. The atomic propositionpi is a
functional activity at a nodei such as operation execution,
stall, exception or NOP. The property is true if(p1 ∧ p2 ∧
. . .∧ pn) becomes true at any time step.

Since we are interested in counterexample generation, we
need to generate the negation of the property first. The
negation of the properties can be expressed as:

¬X(p) = X(¬p) ¬G(p) = F (¬p)
¬F (p) = G(¬p) ¬pRq = ¬pU¬q

For example, the negation of the interaction property is
G(¬p1 ∨ ¬p2 ∨ . . .∨ ¬pn) that becomes true if any of
p1, p2, . . . , or pn is not true over all time steps. In the
remainder of this section, we describe how to decompose
these properties (already negated) for efficient model checking.
There are various combinations of temporal operators and
Boolean connectives where decompositions are not possible
e.g., F (p ∧ q) 6= F (p) ∧ F (q) and G(p ∨ q) 6= G(p) ∨
G(q). In certain situations, such aspUq, F (p → F (q)), or
F (p → G(q)), decompositions are not beneficial compared to
traditional model checking. The following combinations allow
simple property decompositions.

G(p ∧ q) = G(p) ∧G(q) F (p ∨ q) = F (p) ∨ F (q)
X(p ∨ q) = X(p) ∨X(q) X(p ∧ q) = X(p) ∧X(q)

TABLE I

TEST CASES AND CODE LENGTH

Test Cases Test Code Length

1 Instruction dual issue 15
2 Renamingsrc1 operand 12
3 Read operand from forwarding path (RAW) 9
4 Reservation station reads operand from forwarding path (RAW) 7
5 Read operand from renaming reg. (RAW) 10
6 Read operand from GPR (RAW) 11
7 Renaming for WAW (no stall) 8
8 Stall at Decode stage due to IQ full 14
9 Stall at Decode stage due to CQ full, then released queue full at the next clock cycle 34
10 CQ full, then full again 35
11 CQ full, then empty, and then full again 95
12 Only one instruction Completion (one or two instructions can retire per cycle) 12

Introducing the notion of clock (time step) in the property
allows more decompositions for counterexample generation as
shown below2. Note that the left and right hand side of the
decomposition are not logically equivalent but they produce
functionally equivalent counterexamples.

G((clk 6= ts) ∨ (p ∨ q)) ≈ G((clk 6= ts) ∨ p) ∨G((clk 6= ts) ∨ q)

Although we only use a few decomposition scenarios, it
is important to note that these scenarios are sufficient for
generating the properties where interactions are considered.
In addition to these interaction properties, we created many
micro-architectural properties based on real experiences of
industrial designers.

C. Test Generation using Decompositional Model Checking

The basic idea of DecompositionalMC() in Algorithm
1 is to apply the decomposed properties (sub-properties) to
appropriate modules and compose their responses to construct
the final test program. Model checker is used to generate
partial counterexamples for the partitioned modules. Integra-
tion of these partial counterexamples is a challenge due to
the fact that the relationships among decomposed modules
and sub-properties are not preserved at whole design level
in general. We propose clock-based integration of partial
counterexamples.

For example, if two sub-properties are applied at the same
clock cycle (clk = ts) to two modules sharing a parent
module, then two counterexamples are generated and merged
into the output property of the parent module for generating the
counterexamples at the previous clock cycle (clk = ts−1). In
Figure 2, four reservation station (RS) modules share the par-
ent module Issue. Counterexamples generated from multiple
RS at the cyclek are merged for creating the output property
of Issue stage. The negated version of this property is applied
to the model checker along with Issue module to generate a
counterexample at the cyclek − 1 that is used to produce
the output properties of Decode, GIQ, and Rename buffer.
Merging partial counterexamples continues until we obtain the
primary input assignments for all the sub-properties. These

2Theclk variable is used to count time steps, andts is a specific time step.

assignments contain fetched instruction data from I-cache and
they are converted into assembly instruction sequences.

IV. EXPERIMENTS

For evaluation of overall validation efforts to activate micro-
architectural corner cases, we applied our directed test method-
ology on a commercial superscalar PowerPC processor at
Freescale Inc. We performed various test generation experi-
ments for validating the pipeline interactions and corner cases.
Table I shows a subset of the directed test cases that we
generated and their corresponding length in terms of number
of instruction sequences. For example, test programs for case 3
through 6 exercise operand read from four different resources
as shown in Figure 3, which can be generated at micro-
architecture level but very difficult at ISA level. In terms of
efficiency, only several seconds were spent on test generation
except for the case 11 where test generation took approx-
imately one minute. It is obvious that test generation time
is proportional to the length of the generated test programs.
Each of our test cases took less than 100 clock cycles on an
average whereas the existing random tests in the company took
approximately 100,000 clock cycles. Clearly, our approach can
reduce the validation effort by several orders-of-magnitude.

Issue Execute Complete Write-Back

Reservation
Station

3 5 6

4 Instruction flow

Forwarding data

Issue Execute Complete Write-Back

Reservation
Station

3 5 6

4 Instruction flow

Forwarding data

Fig. 3. Four Different Data Forwarding Mechanisms

To validate these test cases, we converted the test programs
into the input format of RTL simulation and monitored instruc-
tions in pipeline stages at every clock cycle during simulation
to ensure that the generated test program activates the actual
micro-architectural fault.

V. CONCLUSIONS

Architectural test generation techniques have limitations to
achieve micro-architectural coverage goal. This paper pre-
sented a directed test generation technique based on decom-
position of both processor model and properties for validation
of performance as well as functionality of the modern micro-
processors. Our experimental results using e500 processor that
is based on the Power Architecture Technology demonstrate
the efficiency of our method by generating complicated micro-
architectural tests. Since the proposed technique is generic, its
framework can be used for validation of industrial-strength
processors. Furthermore, this work can be an excellent com-
plement to the current RTPG validation methodology without
modification of the existing validation flow.

Our future work includes extension of the processor model
for dynamic speculation and other features. Since the number
of interactions (directed tests) can be still extremely large,
we plan to develop a test compaction technique to reduce the
number of test programs. We also plan integrate our work in
a performance analysis tool.

REFERENCES

[1] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov,
and A. Ziv. Genesys-pro: Innovations in test program generation for
functional processor verification.IEEE Design & Test, 21(2):84–93,
2004.

[2] A. Adir, E. Bin, O. Peled, and A. Ziv. Piparazzi: A test program
generator for micro-architecture flow verification. InProc. of High-Level
Design Validation and Test Workshop (HLDVT), pages 23–28, 2003.

[3] D. Campenhout, T. Mudge, and J. Hayes. High-level test generation
for design verification of pipelined microprocessors. InProc. of Design
Automation Conference (DAC), pages 185–188, 1999.

[4] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. MIT
Press, Cambridge, MA, 1999.

[5] A. Gargantini and C. Heitmeyer. Using model checking to generate
tests from requirements specifications. InACM SIGSOFT Software
Engineering Notes, volume 24, pages 146–162, 1999.

[6] J. Hennessy and D. Patterson.Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 2002.

[7] H. Iwashita, S. Kowatari, T. Nakata, and F. Hirose. Automatic test
pattern generation for pipelined processors. InProc. International
Conference on Computer-Aided Design (ICCAD), pages 580–583, 1994.

[8] K. Kohno and N. Matsumoto. A new verification methodology for
complex pipeline behavior. InProc. of Design Automation Conference
(DAC), pages 816–821, 2001.

[9] H.-M. Koo and P. Mishra. Functional test generation using property
decompositions for validation of pipelined processors. InProceedings
of Design Automation and Test in Europe (DATE), pages 1240–1245,
2006.

[10] P. Mishra and N. Dutt. Graph-based functional test program generation
for pipelined processors. InProc. of Design Automation and Test in
Europe (DATE), pages 182–187, 2004.

[11] J. Shen and J. A. Abraham. An RTL abstraction technique for processor
microarchitecture validation and test generation.Journal of Electronic
Testing: Theory and Applications, 16(1-2):67–81, 2000.

[12] K. Shimizu, S. Gupta, T. Koyama, T. Omizo, J. Abdulhafiz, L. Mc-
Conville, and T. Swanson. Verification of the cell broadband engine
processor. InProc. of Design Automation Conference (DAC), pages
338–343, 2006.

[13] N. Utamaphethai, R. D. S. Blanton, and J. P. Shen. Effectiveness
of microarchitecture test program generation.IEEE Design & Test,
17(4):38–49, 2000.

[14] www-cad.eecs.berkeley.edu/ kenmcmil/smv.Cadence SMV.
[15] www.freescale.com/files/32bit/doc/refmanual/e500CORERMAD.pdf.

Freescale PowerPc e500 core family reference manual.

