
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 4, APRIL 2013 605

RATS: Restoration-Aware Trace Signal Selection
for Post-Silicon Validation

Kanad Basu, Student Member, IEEE, and Prabhat Mishra, Senior Member, IEEE

Abstract— Post-silicon validation is one of the most important
and expensive tasks in modern integrated circuit design method-
ology. The primary problem governing post-silicon validation
is the limited observability due to storage of a small number
of signals in a trace buffer. The signals to be traced should
be carefully selected in order to maximize restoration of the
remaining signals. Existing approaches have two major draw-
backs. They depend on partial restorability computations that
are not effective in restoring maximum signal states. They also
require long signal selection time due to inefficient computation
as well as operating on gate-level netlist. We have proposed a
signal selection approach based on total restorability at gate-level,
which is computationally more efficient (10 times faster) and
can restore up to three times more signals compared to existing
methods. We have also developed a register transfer level signal
selection approach, which reduces both memory requirements
and signal selection time by several orders-of-magnitude.

Index Terms— Post-silicon validation, restoration, trace buffer,
trace signals.

I. INTRODUCTION

FUNCTIONAL validation is one of the most important
tasks in integrated circuit (IC) design due to the combined

effects of increasing design complexity and reduced time-to-
market. Pre-silicon validation is the first step to detect bugs,
which uses a combination of formal validation and simulation-
based techniques. Since many physical parameters cannot be
modeled correctly, a lot of errors escape the pre-silicon phase
and affect the normal operation of the chip. This makes post-
silicon debug an important step in any design methodology.
Post-silicon validation is used to capture these errors that have
escaped the pre-silicon phase. Recent reports [1] indicate that
at 65 nm, the industry spends almost 50% of its total design
cost in post-silicon debug.

Post-silicon debug is comprised of signal observation and
analysis. A primary problem for post-silicon debug is the
limited observability of internal signal states. Although we
can observe the input and output signals, it is not possible
to observe the internal signals since the IC is completely
fabricated. Some recent techniques like embedded logic analy-
sis (ELA) can be used to probe into the chip and record
some internal logic states. The entire procedure is shown in

Manuscript received June 1, 2011; revised February 1, 2012; accepted
March 3, 2012. Date of publication April 20, 2012; date of current version
March 18, 2013. This work was supported in part by the National Science
Foundation CAREER Award under Grant 0746261.

The authors are with the Department of Computer and Information Science
and Engineering, University of Florida, Gainesville, FL 32611-6120 USA
(e-mail: kbasu@cise.ufl.edu; prabhat@cise.ufl.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2012.2192457

Integrated Circuit

Buffer

Pre−Silicon
Validation

Implementation
(Gate Level)

Manufacturing

Input

Tests

L
O
G

C

I

Interconnection
Fabric

Trigger
Unit

Restoration
Signal

Debug

Signal

Output
Post−Silicon
Validation
and Debug

Trace Circuitry Design
Signal Selection and

Trace

Fig. 1. Overview of the system validation and debug.

Fig. 1. The signals to be traced are selected during design
phase. When tests are applied to the design under test (DUT),
these signal states are traced using ELA. The trace is then
dumped into an on-chip trace buffer using efficiently designed
interconnection network, from where the data is transferred
to an offline debugger via some Joint Test Action Group
interface. More trace data can be stored using some online
compression algorithm [2]. The debugger is able to point out
the actual error locations in the DUT. To limit the size of
the trace buffer, only a few signal states can be traced. The
rest of the states are usually reconstructed from the internal
logic of the circuit. Therefore, the signals to be traced should
be selected carefully in order to maximize the restoration.
Existing signal selection approaches have two major disadvan-
tages. They utilize partial restorability and therefore, cannot
ensure best possible signal restoration. Also, these methods
are computationally inefficient since they require long signal
selection time.

Signal selection techniques based on partial restoration1

were proposed by Ko et al. [3] and Liu et al. [4]. If the
trace buffer width is n, these approaches select n signals
with highest partial restorabilities for tracing. As discussed
in Section III, the partial restorability based approaches [3],
[4] are not able to provide best possible signal reconstruc-
tion. This paper presents a total restorability2 based signal
selection algorithm to produce significantly better restoration
performance compared to existing approaches. Our proposed
method is also computationally more efficient than the existing
approaches as shown in Section VI-B.

1Partial restorability of a signal refers to the probability that the signal state
can be reconstructed using known states of some other traced signals.

2Total restorability measures whether a group of signals can definitely
reconstruct a set of signal states.

1063-8210/$31.00 © 2012 IEEE

606 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 4, APRIL 2013

The time requirement for gate-level signal selection (GSS)
algorithms is high because of the excessive number of vari-
ables used to represent signals in the circuit. One promising
alternative to reduce signal selection time is to perform signal
selection at higher abstraction levels like register transfer
level (RTL). We have proposed an efficient signal selection
approach in RTL level. Our RTL-level signal selection (RSS)
reduces both signal selection time and memory requirements
with minor impact on restoration performance.

The rest of this paper is organized as follows. Section II
presents related works in signal selection. Section III describes
the signal selection problem using illustrative examples.
Sections IV and V describe our signal selection technique
in gate and RTL level, respectively. Section VI presents
the experimental results. Finally, Section VII concludes this
paper.

II. RELATED WORK

A major problem concerning post-silicon debug is the
limited observability of the internal signals. Once the signal
states are known, they can be analyzed using some algorithms
like failure propagation tracing [5] to identify the errors in
the circuit. Formal analysis for post-silicon debug, proposed
by De Paula [6], is not scalable to circuits with a large
number of gates. Scan-based debugging techniques, such as
[7] require to stop the circuit functionality when the scan
data are being written. This is not beneficial in cases where
the functional errors are drastically apart. Design-for-debug
(DfD) techniques have been used extensively to increase the
observability of internal signals of the silicon. Generally this
is done by sampling the data, which is stored in on-chip trace
buffers. Various DfD techniques like ELA [8] and shadow
flip flops have been proposed over the years for post-silicon
debug.

Recently, Ko et al. [3] and Liu et al. [4] have proposed a
generic trace signal selection algorithms in which a few impor-
tant signals can be traced and others can be reconstructed from
them. Our proposed method is closest to their approaches and
hence, throughout this paper, we have compared our proposed
technique with their approaches.

RTL-level circuit analysis has already been used in different
domains for solving design-related problems. An RTL fault
grading approach was used to ameliorate the gate-level fault
coverage by Mao et al. [9]. RTL-level tests were generated and
reused for detecting gate-level stuck-at-faults by Yogi et al.
[10]. Recently RSS algorithms were proposed by Ko et al.
[11]. Similar to their approach, we use a control data flow
graph (CDFG). However, there is a basic difference between
the two approaches. While our proposed approach (Algorithm
2) works entirely on RTL-level description of a circuit for
signal selection, [11] selects some signals from the RTL-level,
and then the rest from the gate-level description of the circuit.
Thus, both RTL-level and gate-level model of the design are
necessary for the algorithm in [11] to select signals, while
our proposed algorithm can operate with only the RTL-level
model. Therefore, our proposed approach would be faster and
still produce restoration performance comparable to gate-level

H

Clk

Clk

Clk

Clk

Clk

Clk

Clk

Clk

C

D

E

GA

B

F

Fig. 2. Example circuit.

netlists. We have proposed an RSS algorithm that is efficient
both in terms of memory requirements and signal selection
time compared to the existing state-of-the-art gate-level signal
selection approaches.

III. BACKGROUND AND MOTIVATION

A. Signal Reconstruction

In post-silicon debug, unknown signal states can be recon-
structed from the traced states in two ways-forward and
backward restoration. Forward restoration deals with the
restoration of signals from input to output, that is, knowledge
of input states can provide the output. Backward restoration,
on the other hand, deals with reconstructing the input from the
output. Forward and backward restoration has been explained
in detail in [3].

We now show by using a simple circuit how reconstruction
is performed in [3] and [4]. An example circuit is shown in
Fig. 2 having eight flip-flops. Let us assume that the trace
buffer width is 2, that is, states of two signals can be recorded.
We try to restore the other signal states by application of the
methods presented in [3] and [4]. The results are shown in
Table III-A. The “Xs” represent those states, which cannot be
determined. The selected signals are shown in shades. Partial
restorability calculations for both [3] and [4] are such that the
signals selected are C and F , in that order. Restoration ratio,
which is a popular metric of signal restorability is defined as

Restoration Ratio= number of states restored + traced

number of states traced
.

Let us calculate the number of restored states in Table III-A
([3], [4]). If we consider the row corresponding to signal
A, two entries have value 0, while the rest have value X
(non-restored state). Thus, two states are known. Similarly,
two states are known for the row corresponding to signal B .
Since signal C is traced, all the states are known (no X in
the row). For signal D, three entries in the row have value
0, hence three states are reconstructed. Computing in this
manner, a total of 26 states are reconstructed. Out of them, ten
entries (corresponding to signals C and F) are traced states.
Therefore, Restoration Ratio = 26/10 = 2.6.

B. Motivational Example

We now employ our proposed method (described in
Section IV) for selecting signals in the circuit in Fig. 2. The
first signal that we trace is C . Note that this was the same
signal that was chosen by [3] and [4]. The second signal that

BASU AND MISHRA: RESTORATION-AWARE TRACE SIGNAL SELECTION FOR POST-SILICON VALIDATION 607

TABLE I

RESTORED SIGNALS USING [3] AND [4]

Signal Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
A X 0 X 0 X
B X 0 X 0 X
C 1 1 0 1 0
D X X 0 0 0
E X X 0 0 0
F 0 1 1 0 0
G X 0 0 X 0
H X 0 0 X 0

TABLE II

RESTORED SIGNALS USING OUR METHOD

Signal Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
A 0 0 0 0 1
B 1 0 1 0 X
C 1 1 0 1 0
D X 0 0 0 0
E X 1 0 0 0
F X X 1 0 0
G X 0 0 0 0
H X X 0 0 0

we choose is A, based on total restorability computations.3

The results are shown in Table III-B. It can be seen that our
method provides a restorability ratio of 3.2, which is better
than [3], [4].

IV. GSS

Algorithm 1 shows our GSS that has five important steps.
Edge and sequential element values are calculated in the first
two steps. Total restorability computation is then used to create
region and recompute sequential element values, accompanied
by signal selection. The remainder of this section describes
each of the steps in detail.

A. Computation of Edge Values

An edge between two sequential elements is the path taken
to reach an element from another, while passing through a
number of combinational gates between them, that is, there
cannot be any sequential elements in between them. The edge
may be in the forward or backward direction. In Fig. 2, an
edge between the two flip-flops A and C passes through an OR

gate. In a general case, there can be any number and type of
combinational gates in an edge. To find the probability that C
is influenced by A (which is the value of the edge AC), there
can be two cases (independent and dependent) as discussed
below.4

1) Independent Signals: Consider two edges AC and BC
in Fig. 2. Here, the two input signals of the OR gate in front
of flip-flop C are driven by flip-flops A and B , which are
independent. Hence, the edges AC and BC are independent.

To calculate the edge values for an independent scenario,
we use a generic example in Fig. 3. Later, we will show how
the calculation works for the specific case in Fig. 2.

3Tracing A along with C gives a guarantee for restoring D, while F does
not provide any such guarantees.

4We are showing calculations for forward restorabilities, however, those for
backward restorabilities can be derived in similar lines.

Algorithm 1: GSS
Input: Circuit, Trace Buffer
Output: List of selected signals S (initially empty)
1: Compute the node-values(defined in Section IV-B) of
all sequential elements.
2: Find the node with the highest value and add to S.
3: Create Initial Region.
while trace buffer is not full do

4: Recompute the values of sequential elements.
5: Compute Region growth by finding the sequential
element with highest value not in S and add to S.

end
return S

m inputs

K

Gn
L

G2G1 Q

Q’

QD
Q’

D

Fig. 3. Example circuit with n gates.

Fig. 3 has two flip-flops K and L. We want to find how
the input of L is sensitized by the output of K . The input of
L corresponds to the output of the gate Gn . The path from
K to L is independent of any other paths through which the
output of K propagates. Let’s consider the gate G1. We define
four probabilities: P I

0,N , P I
1,N , P O

0,N , and P O
1,N . Here,

P I
0,N indicates the probability that a node N (gate or flip-

flop) has an input state of “0” when another node is controlling
it. Similarly, P I

1,N , P O
0,N , and P O

1,N indicate the cases for
input state of “1”, output state of “0” and “1”, respectively.
The output of flip-flop K can influence the output of G1 in
two cases: 1) output of K is a controlling value and 2) all the
inputs to G1 are complement of the controlling value. Let us
consider G1 to be a two-input AND gate. We define PG1 as
the overall probability of K controlling G1. According to [12]

PG1 = P O
1,G1 + P O

0,G1 . (1)

Now, let’s define P O
0,G1 and P O

1,G1 . Let Pcond0,G1 and
Pcond1,G1 be the probability that the output of G1 follows the
output of K , i.e., the output of G1 is 0(1), when the output
of K is 0(1). For simplicity of calculation, in this example,
we assume P I

0,G1 = P I
1,G1= 0.5 (that is, occurrence of 0 or

1 follows equal probability at the input)

P O
0/1,G1 = Pcond0/1,G1 × P I

0/1,G1 . (2)

Now, for a two-input AND gate, Pcond0,G1 is 1, since 0 is
the controlling input. Therefore, we obtain P O

0,G1 = 0.5.
Similarly, since one is the non-controlling input, Pcond1,G1 is
0.5, which gives P O

1,G1 = 0.25. From (1), it can be seen
that PG1 = 0.75. Now, we return to our main goal, that is,
to determine how K controls L. We first find the effect of
the output from K as it propagates to the next gate G2 and
then extrapolate along the entire path to L. We use the same
set of (1) and (2) again, except that the input is G1 here
and the output is G2. Obviously, the values of P I

0,G2 and
P I

1,G2 would be P O
0,G1 and P O

1,G1 obtained from (2). For

608 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 4, APRIL 2013

G1

Gp

Gn
L

K G2

x
m inputs

y

QD

Q’

QD

Q’

Fig. 4. Example circuit with dependent signals.

example if G2 is also a two-input AND gate, applying (2), we
obtain, P O

0,G2 = 0.5, and P O
1,G2 = 0.125. Therefore, we

get PG2 = 0.625, where PG2 is the probability for the gate
G2 defined in (1).

In this way, the calculation continues until we reach L, to
obtain the value of the edge K L. If there are n combinational
gates between K and L, we get

P O
0/1,Gn =

∏

1≤i≤n

(Pcond0/1,Gi) × P I
0/1,G1 . (3)

Finally, (1) is used to compute the probability PGn , which
corresponds to the value of the edge K L.

We use these computations to show how an edge value is
computed in case of the circuit in Fig. 2. Let’s compute the
value of edge AC . We name the OR gate in between the two
as gate G and we assume that P I

0,G = P I
1,G = 0.5. Since

it is an OR gate, Pcond0,G = 0.5 and Pcond1,G = 1. Therefore,
(2) can be used to obtain P O

0,G = 0.25 and P O
1,G = 0.5.

Equation (1) can now be used to obtain PG = 0.75, which
represents the value of the edge AC .

2) Dependent Signals: In case of dependent signals, we
need to determine the probability of a sequential element
output influencing an m-input gate, when the output of the
sequential element affects l inputs (l ≥ 2) of the gate.

We have used a generic example in Fig. 4 to calculate the
edge value in case of dependent signals. It should be noted
that dependent signals were not considered by [3] or [4].

Let’s consider Fig. 4. It can be seen that two inputs (x ,y) of
the m input gate Gn are affected by flip-flop K. For this, our
goal would be to combine the dependent edges so that the edge
will have independent signals. We can then easily utilize the
formula used in Section IV-A1 to compute the edge value. We
desire to find P O

1,Gn and P O
0,Gn , in lines with the parameter

P I/O
0/1,N defined in Section IV-A1. Let us assume that Gn

is an AND gate. For an AND gate, since 0 is the controlling
value, having either of the inputs as 0 will ensure a 0 being
propagated into the gate Gn . Therefore

P I
0,Gn = P O

0,x + P O
0,y − P O

0,x&y (4)

P O
0,x&y subtracts the probability when both are 0, since it is

being computed twice. Similarly, since 1 is the non-controlling
input, we get

P I
1,Gn = P O

1,x&y (5)

where P O
1,x&y is the probability when both x and y are

“1”. Let’s evaluate the terms P O
0,x&y and P O

1,x&y. Let
Pcond0/1,x/y be the probabilities that x(y) is 0(1) when the
output of K is 0(1). P O

0/1,x&y can be defined as

P O
0/1,x&y = (Pcond0/1,x × Pcond0/1,y) × P O

0/1,K .

A

C

D

E
B

F

H

3/4
3/4

3/4
3/4

3/4

3/4

3/4

3/4

3/4

3/4

3/4
G

3/4

Fig. 5. Graphical representation of example circuit.

With the help of (2), this can be reduced to

P O
0/1,x&y = P O

0/1,x × P O
0/1,y

P O
0/1,K

. (6)

Since the paths from K to x and from K to y are assumed
to be independent,5 (3) can be used to obtain the values
P O

0/1,x/y. Application of (4) and (5) provides the values of
P I

0/1,Gn . The final PGn can be obtained using (1), and the
information on the number of inputs to the gate Gn . This
corresponds to the value of the edge K L.

3) Example: We now proceed to show how the calculations
described in Sections IV-A1 and IV-A2 can be used to
determine the edge values for the circuit in Fig. 2. A graphical
representation of the circuit is shown in Fig. 5. Edge values
are shown next to each edge.

The sequential elements are represented by nodes, and an
edge between two sequential elements is represented by a
straight line. It should be noted that there are no dependent
edges in this example. All the edges have one two-input gate in
between them, As a result, all the edge values are 3/4 (obtained
from Section IV-A1). We will use this graph to explain our
signal selection algorithm.

B. Initial Value Computation for Sequential Elements

We define the value of a sequential element as the sum of
all the edges attached with it, in both forward and backward
direction. For example, in Fig. 5, the value of flip-flop C is the
sum of the weights of all edges connected with it, that is, C A,
C B , C D, and C E . It is important to note that we have used
a “threshold” in order to prevent combinational loops inside
the circuit during edge value computation. This parameter was
used by [3] as well.

Our computation of the sequential element values is inde-
pendent of the sequential loops in the circuit. In a sequential
loop, the output of a sequential element depends on another
in both the previous and the next cycle. However, both
cannot be true at the same clock cycle, that is, the same
sequential element cannot determine the output of another in
the same cycle by both forward and backward restoration.
While forward restoration can determine the state in at least
the next cycle, backward can determine it at most the previous
cycle.

5If any one of these paths consists of dependent signals, the above
procedure can be applied in a recursive manner until it becomes an equivalent
independent path.

BASU AND MISHRA: RESTORATION-AWARE TRACE SIGNAL SELECTION FOR POST-SILICON VALIDATION 609

3C

D

E
B

F

H

A
3/4

3/4

3/4
3/4

3/4

3/4

3/4

3/4

3/4

3/4

3/4

3/49/4

9/4
9/4

9/4

3

G
3/2

3/2

(a)

A

C

D

E
B

F

G

H

(b)

Fig. 6. Region creation and growth. (a) Initial region creation. (b) Region
growth.

C. Initial Region Creation

A region is a collection of nodes attached together. It is not
necessary that all the nodes have an edge with each other in
the region. However, each node in the region must have at
least one edge with another node in the region. In Fig. 5, the
flip-flops A−E form a region. The first node to be chosen is
the one with the highest value, based on the calculations in
Section IV-B. It is added to a list called “known.” Now, all
nodes which have an edge with the recently selected element
are added to the region.

We show by an example in Fig. 6(a) how this portion of
our algorithm is used to perform the selection of the profitable
signals. The values of the nodes (addition of all it is edge
values) are shown in bold alongside each node. For example,
A has three edges AC , AD, and AG, each having a value 3/4.
Therefore, the value for A is (3/4) + (3/4) + (3/4) = (9/4).
The node with the highest value in Fig. 6(a) is C . All the
nodes which have an edge from C are included in the region.
The region is represented by the spline in Fig. 6(a).

D. Recomputation of Node Values

The first node in Fig. 5 to be traced is already known
(C in the previous example). However, there are other nodes
that need to be traced as well. To select the subsequent nodes,
their values are recomputed. The node whose value is being
computed may have an edge to a node inside the region as
well as one outside the region. Edges to nodes inside the
region are given higher weight. As discussed in Section III,
many restorability computations require knowledge of more
than one signal of the input/output.6 Therefore, it is better
to gain more knowledge of the signals that are already in
the region, thus increasing their restorability values and there-
fore, aiming for total restorability of those signals. Existing
approaches [3], [4] recompute the restorability values after
each iteration, which when translated to the graph in Fig. 5,
would correspond to edge value recomputation, which is more
computationally intensive.

E. Region Growth

The node with the highest restorability and not in the list
“known” is determined. If two nodes have the same value,
the one with the higher forward restoration is traced. This

6For example, when all the inputs to a gate are complement of the
controlling value.

is because, backward restoration fails in some cases whereas
forward restoration does not when all the inputs are known.
For example in Fig. 6(a), the next node to be traced is A. It
is included in the list “known.” If the trace buffer is already
full, calculations will stop, otherwise the region is continued
to grow. All nodes having an edge to the recently selected
node are added in the region. As shown in Fig. 6(b), in this
case G is added since G is the only node connected to A
and not in the region. The dotted line indicates the original
region. Next, recomputation of node values as in Section IV-D
is reconsidered and this process is iterated until the trace buffer
is full. “Region growth” is found to be distributed uniformly
across the entire circuit, and not clustered in a single area.

F. Complexity Analysis

In this section, we compute the complexity of our algorithm.
Let V be the number of nodes in the circuit, and E be the
number of edges in the circuit. Let N be the number of signals
to be traced, that is, the size of the trace buffer is N . The
first step, that is, edge value computation takes O(E) time,
while flip-flop value computations for each time, a signal
is selected takes O(V) time. To select N signals, the time
required is O(NV). Therefore, the overall time complexity
of our algorithm is O(E + NV). On the other hand, the time
complexity of existing algorithms is O(N E). Since, E >> V ,
the time complexity of our proposed algorithm is less. The
overall space complexity of our algorithm is O(E + N + V).
Since, E >> N + V , the space complexity reduces to O(E).

V. RSS

To show how signal reconstruction can be efficiently per-
formed in RTL level, let us consider the following Verilog
design in Fig. 7(a). The design consists of three register-
variables namely a, b, and c (each corresponds to a set of
flip-flops) as well as two input signals d and e. There are also
three other signals m1, m2, and m3. In the example, a and b
are eight bits long, c and e are of seven bits, while d is just
a one-bit signal. To show how reconstruction is performed,
let us observe how each of these flip-flops is assigned—a is
the concatenated value of d and c, b is the result of logical
operations between a, m1, m2, and m3 while c attains the sum
of an arithmetic operation between e and a constant number.
Let us assume that we trace the value of a. We now explain
how tracing of a in cycle k helps us to reconstruct the other
states. The assignment of b shows that the state of b in cycle
k + 1 can be reconstructed from the state of a by forward
restoration. From the assignment of a, the states of c and
d in cycle k − 1 can be reconstructed from state of a by
backward restoration. Finally, from the last statement, that is,
the assignment of c, state of e can be restored in cycle k − 2
by backward restoration. Thus, we see that tracing of only one
state of a can reconstruct the states of four other variables in
different cycles.

Algorithm 2 shows our signal selection procedure that has
six important steps. In the first step, a CDFG is generated to
model the entire system. Since in the RTL description, each
register variable represents multiple sequential elements, we

610 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 4, APRIL 2013

Algorithm 2: RSS
Input: RTL description of design, No. of trace entries
Output: List of selected signals S (initially empty)
1: Develop the CDFG of the RTL description.
2: Find the relationship between the register variables.
3: Find the initial values of the register variables.
while trace buffer is not full do

4: Find the register variable with the highest value.
5: Add all sequential elements corresponding to it to
the list S.
6: Recompute values for all the register variables.

end
return S

use the register variables for signal selection. However, the
trace buffer width refers to the total number of sequential
elements represented by these register variables. For example,
the register variable [7 : 0] a represents eight sequential ele-
ments, and therefore selection of variable a implies that eight
trace buffer locations are needed. The relationship between the
different register variables is obtained from the CDFG. These
relations are used to produce the total restorability values for
the variables. The register variable with the highest value is
chosen for tracing. Once a variable is chosen for tracing, all
the other variable values are recomputed in the same manner
as in Algorithm 1. Steps 4−6 are continued until the trace
buffer is full. The remainder of this section describes each of
the steps in detail.

A. CDFG Generation

The first step of RTL level signal selection is to generate the
CDFG from the RTL model. CDFG can be generated using
any standard HDL parser. For our use, we have generated the
CDFG by modifying the open source Icarus Verilog parser
[13] for the Verilog circuits. Although, our studies are based
on Verilog benchmarks, our approach is also applicable for
VHDL designs. The format of our CDFG representation is
similar to Mohanty et al. [14].

Fig. 7(b) shows the CDFG representation of the Verilog
code in Fig. 7(b). The CDFG can represent both the movement
of control signals as well as data values. The dotted arrows
indicate the control-flow (transitions) in the CDFG, while
the bold arrows represent the data flow (computations). For
example, in the right-hand side of Fig. 7(b), there is a bold
arrow from a to the AND gate. This is because a is an input of
the AND gate. The circles in the CDFG represent computation
and control nodes, while the boxes represent storage nodes.
For example, the circle in the top represents an OR assignment
for the conditional statement always, while the square at the
bottom right represents the storage in the node b. It should
be noted that direct assignments like a <= 7′b0 are just
represented as a bold arrow with value 0 entering a box for
storage of value a. In this case, since three variables a, b,
and c are all being assigned 0 together, they are grouped in a
single box. This basic representation can be further extended
to represent the CDFG of a complex design. This CDFG

always @ (posedge clk or negedge reset)
begin
if (!reset)

begin

end
else

begin
a <= {d, c}; b <= (a & m1) || (m2 &

m3);
end

end

(a)

m3

posedge

==

1

Y
1

==
Y

!reset

N

negedge reset

|

clk

e
7’b1

+c, b, a

0

c

d

{}

a

&

|

b

m1m2

&

(b)

Fig. 7. Verilog code and CDFG. (a) RTL Verilog example. (b) CDFG of
Verilog code.

representation is used as input for the next step, relationship
computation.

B. Relationship Computation

The relationship of a signal with others can be obtained
from the CDFG. The relationship computation for a signal
in the circuit provides the effect of that signal on others.
To compute the relationship of the signals, we first note
that there can be two main relationship types, namely direct
relationship and conditional relationship. These two classes
and their respective relationship computations are explained
as follows.

1) Direct Relationship: Two signals are said to be directly
dependent when they occur on the same line of a signal
assignment. For example, in the RTL description shown in
Fig. 7(a), the signal pairs (a, b) and (a, c) have direct
relationship. This is because both the variable assignments
occur inside the i f block. Direct relationship can be of
two types, namely f orward and backward relationship.
Forward relationship deals with the propagation of values
in the forward direction, that is from the right-hand side of
the assignment to the left-hand side. Backward relationship
on the other hand deals with the reverse, that is from left-
hand to right-hand side of the assignment. For example, in

BASU AND MISHRA: RESTORATION-AWARE TRACE SIGNAL SELECTION FOR POST-SILICON VALIDATION 611

the RTL description of the example in Fig. 7(b), a has a
forward relationship on b, while b has a backward relationship
on a. We will use a simple generic example to show how
the direct relationship computation is performed. Later, we
will consider a specific example shown in Fig. 5(a). A typical
signal assignment statement looks like

y <= x1 O P1 x2 O P2 x3 O P3 . . . xn

where O P represents any operation (e.g., AND, OR, etc.). We
can see that there are n signals on the right-hand side of the
assignment statement. We want to find out the relationship of
each of these signals on y. Let us assume that each of these
signals is k bits long and all the xi s are independent. We also
assume that each of the O Pi s are AND gates. Therefore, the
assignment statement can be rewritten as

y <= x1 & x2 & . . . & xn.

The same computation can be extended to other operations,
as well as different operations for each O Pi . Let us compute
the relationship of xi (1 < i < n) on y. The relationship of xi

on y is computed as a probability that y completely follows
xi . Therefore, the relationship can be found in the same way
as the independent edge value computation in Section IV-A1.
Essentially, the relationship of y and x , P y

0/1,xi is equivalent
to Pcond0/1,y in (2). It should be noted that y follows xi

completely when either all the k bits of xi are 0 (P0), or when
all the xi s have their k bits as 1 (P1).7 In all other cases, some
of the k bits of y are different from xi . The relationship of y
on xi is given by

P y
0,xi = 2k×(n−1)

2k×n
(7)

P y
1,xi = 1

2k×n
. (8)

According to [12] and assuming for ease of illustration8 that
0 or 1 can occur with equal probability, we get

P y
xi = 2k×(n−1) + 1

2k×n
. (9)

The numerator on the right-hand side consists of two terms.
The first term corresponds to the case when all the bits of xi

are 0. Therefore, each of the k bits of the other n−1 variables
can have 2k×(n−1) values. The last term, 1 on the numerator,
corresponds to the case when all the bits of all the xi s are
1. The denominator denotes all the possible cases of value
assignments to the xi s. These calculations, as stated above,
can be extended for other operations as well. For example, if
OP was an OR operation, (7) and (8) will be modified as

P y
1,xi = 1

2k×n
(10)

P y
0,xi = 2k×(n−1)

2k×n
. (11)

In this section, we have described the direct relation-
ship when the signals are independent. However, similar to

7Since 0 is the controlling input of AND gate.
8In actual experiments, we have used a profiling information to determine

the probabilities.

Section IV-A2, we can have dependent signals as well. The
nature of dependent signals is derived from multiple branches
of the CDFG. Computations for dependent signals are similar
to the computations in Section IV-A2.

2) Conditional Relationship: Conditional relationship cor-
responds to the non-assignment dependencies. For example,
in the RTL code corresponding to Fig. 7(b), the signals a
and b have conditional relationship on reset .9 We generally
do not consider backward conditional relationship, since,
these are not in direct assignment statements. Conditional
relationship are computed in the same way as in (7), however
the operations are checked inside the conditional block. For
example, we consider the following codes:

i f (m or n) x <= y.

Here, the symbol x has a conditional dependence on m
and n. Since there are only two variables m and n in the
conditional dependency, the dependency value is 3/4, as
obtained from (1) and (2) in Section IV-A1. The conditional
relationships are computed in this manner for all the signals
in the circuit.

C. Signal Selection

Once the values of the variables are computed, the next
step is to select the best one for tracing. The signal selection
procedure is similar to the gate level signal selection. The
variable with the highest value is selected and the rest of
the values are recomputed using region growth. This part is
similar to Algorithm 1 and hence not discussed here. The
process continues until the trace buffer is full.

VI. EXPERIMENTS

In this section, we first compare our approach with existing
GSS techniques [3], [4]. Next, we demonstrate how our
proposed RSS can further improve the signal selection time.

A. Experimental Setup

We applied our GSS approach on the ISCAS’89 bench-
marks used by [3] and [4] to compare with their methods
and hence show the effectiveness of our algorithm. The trace
buffers used are same as that of [3], that is, 8×4k, 16×4k, and
32 ×4k. We have designed a simulator in the lines of the one
described by [4] for our purpose, which conducts simulation in
both forward and backward direction. We have implemented
the simulator as an iterative process, which terminates when
it is not possible to restore any more states. We have fed the
simulator with ten sets of random values and noted the average
restoration ratio.

Fig. 8 give an overview of our experimental setup to vali-
date the RSS algorithm. For this purpose, we have used Ver-
ilog circuits obtained from Opencores website [15]. It should
be noted that we have not used the ISCAS’89 benchmarks
since an RTL description of these was not available. We have
modified the Icarus Verilog parser [13] to generate the CDFG.

9It should be noted that we do not consider conditional relationship of
general control signals like clock (clk) or reset .

612 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 4, APRIL 2013

Gate−level signal

GSS

Synthesis RSS

Compare

Restoration

Restoration

Gate−level Design

RTL Design

Signal mapping to

Fig. 8. Overview of our experiments to verify RSS.

TABLE III

COMPARISON WITH [3]

Restoration ratio Restoration ratio
with random inputs with deterministic inputs

Circuit [3] Our
approach

Improvement [3] Our
approach

Improvement

s38584 38 42 1.1 6 20 3.33
s38417 9 16 1.8 9 16 1.8
s35932 48 50 1.04 25 35 1.4

The CDFG is then analyzed to provide the list of selected
signals using Algorithm 2. As can be seen in Fig. 8, we have
compared the results obtained using GSS and RSS on the
same circuits to compare the restoration performance of each
approach. The signals selected using RSS are mapped to gate-
level and the restoration performance is noted. Simultaneously,
the RTL design is synthesized to gate-level netlist, and GSS
is applied on the netlist. The restoration performance of the
two algorithms is then compared as discussed in Section VI-
C. Our RSS algorithm is found not to incur any significant
restoration penalty compared to the GSS algorithm.

B. Results on GSS

We would like to compare our signal selection approach
with the other closely related methods. Table III compares
the performance of our approach with the one proposed by
Ko et al. [3] using the three largest ISCAS’89 benchmark
circuits. All the experiments have been performed with a trace
buffer of width 32. Table III is divided into three distinct parts.
The first column indicates the circuit name. The next three
columns compare the performance when random sets of inputs
are used to drive the circuits. In this case, even the control
signals are driven using random inputs. The improvement can
be defined as the ratio between the restoration ratio using our
approach and that of [3]. The third part of Table III compares
our approach with [3] when the gates of the circuit are
driven deterministically. This means that the control signals
are driven using values that prevent it from going to a reset
state, while the other signals are driven with random inputs.
From Table III, it can be seen that the improvement obtained
using random inputs is moderate (31% on average). On the
other hand, considerable gain (117% on average) is obtained
when we use our algorithm for deterministic inputs. As stated
in [4], deterministic inputs are actually used in circuits during
real-life applications. Hence, gain obtained with them is more
significant.

Table IV compares the restoration ratio of our proposed
approach with the one proposed by Liu et al. [4] for the three

TABLE IV

COMPARISON WITH [4] WITH DETERMINISTIC INPUTS

Restoration ratio
Circuit [4] Our approach Improvement
s38584 9 20 2.22
s38417 14 16 1.14
s35932 22 35 1.6

4 3

Fig. 9. Comparison of signal selection time.

largest ISCAS’89 benchmarks. As before, a trace buffer width
of 32 is chosen. In this case, the inputs are deterministic in
nature. An average improvement of 113% is observed. It can
be seen that the improvement here is less than the one obtained
in Table III. This can be attributed to the fact that the algorithm
proposed by [4] is more efficient than [3].

Fig. 9 compares our signal selection time against the time
taken by [3] and [4] for the three largest ISCAS’89 benchmark
circuits. It can be seen that our approach takes significantly
less time (up to 90%) compared to them. This is primarily
due to the fact that [3], [4] recompute edge values in every
iteration whereas we compute them once. In summary, our
GSS technique shows considerable improvement (up to 3
times) in signal restoration and significant reduction (up to
10 times) in signal selection time compared to the existing
approaches.

C. Results on RSS

In this section, we discuss how our RTL level signal
selection algorithm can further improve the signal selection
time without compromising on restoration ratio. As discussed
before, we have applied our approach on the designs obtained
from the Opencores benchmarks. We have compared our RSS
approach with the GSS procedure. The results are shown
in Table V. Similar to the previous experiments, we have
assumed a trace buffer of width 32.

The first column in Table V provides the circuit name. The
second column shows the memory size reduction, which is
the ratio of memory size in gate-level and RTL-level.

The last column gives the speedup obtained using RSS
compared to GSS. Speedup can be defined as the ratio of GSS
time to RSS time. As can be seen, RSS is up to 3600 times
faster and requires up to 191 times less memory compared to
GSS.

Fig. 10 compares the restoration performance of RSS and
GSS for some of the benchmarks. As can be seen, the
restoration performance is similar. The gate-level restoration

BASU AND MISHRA: RESTORATION-AWARE TRACE SIGNAL SELECTION FOR POST-SILICON VALIDATION 613

TABLE V

RTL-LEVEL VERSUS GSS

Circuit Memory size Speedup
reduction

Total CPU 8.1 697
Wishbourne LCD controller 22.81 1923
dmx512 tranceiever 191.24 733
OPB onewire 3.22 3600
Simple RS232 Uart 3.8 500

Fig. 10. Comparison of restoration performance.

performance is found to be slightly better than the RTL-level
in some cases. The primary reason for this is the representation
of sequential elements as arrays in RSS. Whenever we select
a signal for tracing at RSS, we are actually tracing all the
elements in the array. However, some of the signals in the
array might not be as good. Some other signals could have
been selected for better restoration performance.

VII. CONCLUSION

Post-silicon validation is extremely complex and time con-
suming in IC design methodology. Signal selection is an
important aspect of post-silicon debug. We developed tech-
niques employing total restorability for selecting the most
profitable signals that were guaranteed to generate better
restoration compared to existing approaches. Our experimental
results demonstrated two major advantages—our approach
can provide faster (up to 90%) signal selection as well as
significantly better (up to 3 times) restoration compared to
existing approaches. Our RSS approach can further improve
the signal selection time by several orders-of-magnitude, and
also requires less memory compared to the GSS techniques.

REFERENCES

[1] A. Nahir, A. Ziv, M. Abramovici, A. Camilleri, R. Galivanche, B.
Bentley, H. Foster, A. Hu, V. Bertacco, and S. Kapoor, “Bridging pre-
silicon verification and post-silicon validation,” in Proc. Design Autom.
Conf., Jun. 2010, pp. 94–95.

[2] K. Basu and P. Mishra, “Efficient trace data compression using statically
selected dictionary,” in Proc. IEEE 29th VLSI Test Symp., May 2011,
pp. 14–19.

[3] H. F. Ko and N. Nicolici, “Algorithms for state restoration and trace-
signal selection for data acquisition in silicon debug,” IEEE Trans.
Comput.-Aided Design, vol. 28, no. 2, pp. 285–297, Feb. 2009.

[4] X. Liu and Q. Xu, “Trace signal selection for visibility enhancement in
post-silicon validation,” in Proc. Design, Autom. Test Eur. Conf. Exhibit.,
Apr. 2009, pp. 1338–1343.

[5] O. Caty, P. Dahlgren, and I. Bayraktaroglu, “Microprocessor silicon
debug based on failure propagation tracing,” in Proc. Int. Test Conf.,
Nov. 2005, pp. 10–293.

[6] F. M. De Paula, M. Gort, A. J. Hu, S. Wilton, and J. Yang, “BackSpace:
Formal analysis for post-silicon debug,” in Proc. Formal Methods
Comput.-Aided Design, Nov. 2008, pp. 1–10.

[7] G. J. Van Rootselaar and B. Vermeulen, “Silicon debug: Scan chains
alone are not enough,” in Proc. Int. Test Conf., Sep. 1999, pp. 892–902.

[8] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and
D. Miller, “A reconfigurable design-for-debug infrastructure for SoCs,”
in Proc. Design Autom. Conf., 2006, pp. 7–12.

[9] W. Mao and R. K. Gulati, “Improving gate level fault coverage by RTL
fault grading,” in Proc. Int. Test Conf., 1996, pp. 150–159.

[10] N. Yogi and V. Agrawal, “Spectral RTL test generation for gate-level
stuck-at faults,” in Proc. 15th Asian Test Symp., Nov. 2006, pp. 83–88.

[11] H. F. Ko and N. Nicolici, “Automated trace signals selection using the
RTL descriptions,” in Proc. Int. Test Conf., 2011, pp. 1–10.

[12] E. Taylor, J. Han, and J. Fortes, “Toward accurate and efficient reliability
modeling of nanoelectronic circuits,” in Proc. IEEE-NANO, Jun. 2006,
pp. 395–398.

[13] Icarus Verilog. (2012, Apr.) [Online]. Available: http://www.icarus.com/
eda/verilog/

[14] S. P. Mohanty, N. Ranganathan, E. Kougianos, and P. Patra, Low-
Power High-Level Synthesis for Nanoscale CMOS Circuits. New York:
Springer-Verlag, 2008.

[15] OpenCores. (2012, Apr.) [Online]. Available: http://opencores.org/

Kanad Basu (S’08) received the B.E. degree from
the Department of Electronics and Telecommunica-
tion Engineering, Jadavpur University, West Bengal,
India. He is currently pursuing the B.E. degree
with the Department of Computer and Information
Science and Engineering, Embedded Systems Lab-
oratory, University of Florida, Gainesville.

His current research interests include functional
and structural testing, design for test, and post-
silicon validation.

Mr. Basu was a recipient of the Best Paper Award
from the International Conference on VLSI Design in 2011.

Prabhat Mishra (S’00–M’04–SM’08) received the
B.E. degree from Jadavpur University, West Bengal,
India, the M.Tech. degree from the Indian Institute
of Technology, Kharagpur, India, and the Ph.D.
degree from the University of California, Irvine, all
in computer science.

He is currently an Associate Professor with the
Department of Computer and Information Science
and Engineering, University of Florida, Gainesville.
He has published four books, nine book chapters,
and more than 80 research papers in premier jour-

nals and conferences. His current research interests include design automation
of embedded systems, energy-aware computing, and hardware verification.

Dr. Mishra serves as an Associate Editor of the Association for Computing
Machinery (ACM) Transactions on Design Automation of Electronic Systems,
the IEEE DESIGN AND TEST OF COMPUTERS, and the Journal of Electronic
Testing. He is a Guest Editor of the IEEE TRANSACTIONS ON COMPUTERS, a
Program/Organizing Committee Member of several ACM and IEEE
conferences. His research has been recognized by several awards, including
the National Science Foundation CAREER Award in 2008, two Best Paper
Awards (VLSI Design in 2011 and CODES+ISSS in 2003), and the European
Design and Automation Association Outstanding Dissertation Award from the
European Design Automation Association in 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

