
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. NN, MMM YYYY 1

System-Wide Leakage-Aware Energy Minimization
using Dynamic Voltage Scaling and Cache
Reconfiguration in Multitasking Systems

Weixun Wang, Student Member, IEEE, Prabhat Mishra, Senior Member, IEEE

Abstract—System optimization techniques are widely used
to improve energy efficiency as well as overall performance.
Dynamic voltage scaling (DVS) is well studied and known to
be successful in reducing processor energy consumption. Due to
the increasing significance of the memory subsystem’s energy
consumption, dynamic cache reconfiguration (DCR) techniques
are recently proposed at the aim of improving cache subsystem’s
energy efficiency. As the manufacturing technology scales into
the order of nanometers, leakage current, which leads to static
power consumption, becomes a significant contributor in the
overall power dissipation. In this article, we consider various
system components and study their impact on system-wide energy
consumption under different processor voltage levels as well as
cache configurations. Based on the observation, we efficiently
integrate DVS and DCR techniques together to make decisions
judiciously so that the total energy consumption is minimized.
Our studies show that considering only DVS or DCR and
ignoring the impact from other system components may lead
to incorrect conclusions in overall energy savings. Experimental
results demonstrate that our approach outperforms existing
leakage-aware DVS techniques by 47.6% and leakage-oblivious
DVS + DCR technique by up to 23.5%.

Index Terms—Embedded System, Power Management, Cache,
Energy, Leakage Power.

I. INTRODUCTION

Energy conservation is a primary optimization objective in
embedded systems design since these systems are generally
limited by battery lifetime. Figure 1 shows a system-wide
power composition for a typical System-on-Chip (SoC) [1].
It can be seen that processor, cache subsystem, memory and
bus are the four main components which make compara-
ble contributions to overall power consumption. Therefore,
system-wide energy optimization techniques should consider
all of them in order to reflect practical benefits and achieve
overall energy reduction. Various low-power techniques exist
which tune different components in the system at runtime.
Dynamic voltage scaling (DVS) [2] of the processor takes
the advantage of the fact that linear reduction in the supply
voltage can quadratically reduce the power consumption while
linearly slows down the operating frequency. At the same
time, memory hierarchy, especially the cache subsystem, has
become comparable to the processor with respect to the con-
tribution in overall energy consumption [3]. Dynamic cache

This work was partially supported by NSF grant CCF-0903430 and SRC
grant 2009-HJ-1979.

The authors are with the Department of Computer and Information Science
and Engineering at the University of Florida, Gainesville FL 32611-6120,
USA (email:{wewang, prabhat}@cise.ufl.edu).

reconfiguration (DCR) offers the ability to tune the cache con-
figuration parameters at runtime to meet application’s unique
requirement so that significant amount of memory subsystem
energy consumption can be saved [4] [5]. The working set
of the application decides the favored cache capacity. Its
spatial and temporal locality reflect the cache line size and
associativity, respectively.

Processor
38.86%

Cache
23.32%

Memory
18.85%

Bus
14.64%

Others
4.34%

Fig. 1. Power composition of a typical SoC.

Real-time multitasking systems bring particular design and
optimization considerations in order to satisfy the imposed
timing constraints. In real-time systems, all tasks have to finish
execution before their deadlines to ensure correct system be-
havior. Earliest Deadline First (EDF) [6] is the most commonly
used real-time scheduling algorithm. Under EDF, a preemptive
task set is said to be schedulable as long as the system utiliza-
tion rate is no more than 1 [7]. Essentially, DVS in real-time
systems slows down the processor, thus saves power/energy, at
the cost of extending task’s execution time. Employing DCR
in such systems also needs to be done in a controlled way.
This is because different cache configurations will lead to
different miss ratios and penalties therefore the total number of
clock cycles is affected. While existing research works exploit
them separately, our proposed research efficiently employs
both DVS and DCR simultaneously to reduce overall energy
consumption in hard real-time systems.

In the last decade, we have observed a continuous CMOS
device scaling process in which higher transistor density
and smaller device dimension have led to increasing leakage
(static) power consumption. This is mainly due to the pro-
portionally reduced threshold voltage level with the supply
voltage which decreases at a speed of 0.85X per generation
[8]. Lower threshold voltage results in larger leakage current
which mainly consists of subthreshold current and reverse
bias junction current. Study has shown that leakage power
is responsible for over 42% of overall power dissipation in

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. NN, MMM YYYY

the 90nm generation [9] and can exceed above half in recent
65nm technology [10]. Static energy is projected to account for
near 70% of the cache subsystem’s budget in 70nm technology
[10]. Leakage power also constitute a major fraction of the
energy consumption of system buses [11]. Memory modules
can also consume significant amount of leakage power [12].
Therefore, decisions must be made judiciously on whether to
slow down the system to save dynamic power or to finish
task execution faster and switch the system to sleep mode to
reduce static power. While existing techniques try to control
the leakage power along with DVS [13], extra consideration
needs to be taken when DCR is also employed and other
system components are taken into account.

Our proposed research in this paper integrates DVS and
DCR together in hard real-time systems to minimize system-
wide energy consumption. Our main contribution is that,
unlike existing DVS approaches which either ignore other
system components but the processor or assume application-
independent constant power values, we systematically incorpo-
rate power consumptions from the processor, cache hierarchy,
buses and main memory based on the same set of applica-
tion simulation statistics. The power estimation framework
that we propose uses separate power analyzers for different
system components and efficiently integrates them together.
We take a step forward by examining the correlation among
the energy models of all the components and find that they
have significant impact on the decision making of both DVS
and DCR. Based on the energy estimation, for each task, we
can generate the profile table which stores overall beneficial
set of voltage levels and cache configurations. While DVS
and DCR decisions are made at design time based on static
slack allocation, task procrastination is carried out at runtime
to achieve more idle energy savings. For real-time embedded
systems, off-line analysis is of great importance since they
normally have highly deterministic characteristics, e.g., task
release time, deadline and execution time, which should be
fully utilized for energy optimization. Furthermore, sophisti-
cated analysis such as memory behavior profiling can only be
carried out during design time. Extensive experiments show
that our approach can result on average 47.6% energy savings
compared to DVS-only systems and up to 23.5% extra savings
compared to leakage-oblivious DVS + DCR technique [14].

The rest of the article is organized as follows. Related works
are discussed in Section II. Section III presents the system
models of our work. Our leakage-aware voltage scaling and
cache reconfiguration technique is described in Section IV.
Section V demonstrates our experimental results. Finally,
Section VI concludes the paper.

II. RELATED WORK

A great deal of research work exists on applying DVS
in real-time systems. A lot of them focus on minimizing
dynamic power consumption and ignoring the static portion
by slowing down the processor as much as possible [15]
[16]. Meanwhile, a number of existing works pay attention
to control processor leakage power in real-time systems [13]
[17] [18] [19] [20]. Jejurikar et al. [13] present a leakage-
aware DVS scheme which does not allow to slow down the

processor speed below a certain level called critical speed
to avoid growing static energy to compensate the reduction
in dynamic energy. They also propose a task procrastination
scheduling technique to maximize processor idle intervals.
Chen et al. [19] address the same problem in a rate-monotone
scheduling system. However, none of the above techniques
considered DCR. Furthermore, they did not take other system
components into account which potentially limits the benefit
of their approaches. Jejurikar et al. [17] and Zhong et al.
[18] proposed leakage-aware DVS techniques for system-
wide energy minimization. However, the system components
considered in their work are only mock units with power con-
sumptions assumed to be application-independent constants.
In other words, their approaches use over-simplified models
and cannot incorporate other power-hungry components whose
power dissipation are determined at runtime. Moreover, cache
reconfiguration is not considered by any of them.

Cache reconfiguration has drawn considerable research ef-
forts in both general-purpose [21] and real-time [4] [5] sys-
tems. Wang et al. employed DCR in soft real-time systems
by dynamically utilizing static profiling information to tune
the cache configuration in order to achieve significant energy
savings for both single-level cache [4] and multi-level cache
hierarchy [5]. Micro-architecture level techniques are proposed
at the aim of saving leakage energy in cache subsystem by
switching unused cache sub-arrays into low-power mode [22].
Chi et al. [23] applied these techniques in real-time systems.
Data compression is also proposed for cache energy reduction
in [24]. However, none of these approaches considers proces-
sor voltage scaling or other system components. Nacul et al.
[14] presented preliminary results to demonstrate the benefit of
combining DVS and DCR together in real-time systems but
they did not consider leakage power which may make their
solution inferior.

III. SYSTEM MODEL

In this section, we describe our task model and energy
models. We assume that DVS and DCR are available in the
target system. We adopt the reconfigurable cache architecture
proposed in [25] which is suitable for embedded systems.
Specifically, we have:
• A voltage scalable processor which supports h different

voltage levels V{v1,v2, ... ,vh}.
• A highly configurable cache hierarchy with reconfig-

urable parameters including cache size, line size and
associativity, in which separate L1 caches and unified L2
cache can be reconfigured individually. Let C{c1,c2, ...
,cl} denote l configurations of the cache hierarchy.

A. Task Model

If each task is uniformly assigned one voltage level and one
cache configuration throughout all its instances, we have:
• A set of m independent periodic tasks T{τ1,τ2,...,τm}.
• Each task τi ∈ T has known period pi and deadline di.
• Task τi ∈ T has energy consumption and execution time

Ei(v j,ck) and Ti(v j,ck) with voltage level v j ∈ V and
cache configuration ck ∈ C, respectively.

WANG AND MISHRA: SYSTEM-WIDE LEAKAGE-AWARE ENERGY MINIMIZATION USING DYNAMIC VOLTAGE SCALING AND CACHE RECONFIGURATION IN MULTITASKING SYSTEMS3

We assume that task deadlines are equal to their periods
and the task set is schedulable by EDF scheduler under the
highest voltage level and largest cache configuration. Let P
denote the task set’s hyper-period (equal to the least common
multiple of all tasks’ periods). Here, ji and ki represent the
indices of selected voltage level and cache configuration for
task τi, respectively. Our objective can be stated as:

min(E =
m

∑
i=1

P
pi
·Ei(v ji ,cki)) (1)

subject to: ∑
m
i=1

Ti(v ji ,cki)

pi
6 1.

B. Energy Model

Our energy models for processor and cache are described
in [26]. Note that, since lower-level memory and buses are
modeled simultaneously in this article, the energy required for
off-chip access (Eo f f chip access) and process stalling (EµP stall)
are now counted during the power estimation of the corre-
sponding components (e.g. for a L2 cache miss, Eo f f chip access
is computed in off-chip buses and DRAM memory).

Bus Energy Model: The average dynamic power consump-
tion of various system buses can be calculated by [27]:

Pdyn
bus =

1
2
·Cbus ·V 2

dd ·ntrans · f (2)

where Cbus is the load capacitance of the bus, Vdd is the supply
voltage, f is the bus frequency and ntrans denotes the average
number of transitions per time unit on the bus. Specifically,
we have ntrans = (∑T−1

t=0 H(B(t),B(t+1)))/T , where T is the total
number of discretized time units and H(B(t),B(t+1)) gives the
Hamming distance between the binary values on the bus at
two neighboring time units in T . Therefore, if CC and tcycle
denote the clock cycle number and cycle length respectively,
the total energy consumption of a bus is determined by its
dynamic power Pdyn

bus and static power Psta
bus:

Ebus = (Pdyn
bus +Psta

bus) ·CC · tcycle (3)

Memory Energy Model: Memory consists of DRAM has
three sources of power consumption: dynamic energy due to
accesses Edyn

mem, static power Psta
mem and refreshing power Pre f

mem.
Specifically, we have:

Edyn
mem = num accesses ·Eaccess (4)

where num access is the number of memory accesses and
Eaccess denotes the dynamic energy required per access. There-
fore, we have: Emem = Edyn

mem +(Psta
mem +Pre f

mem) ·CC · tcycle.

IV. LEAKAGE-AWARE DVS AND DCR

A. Overview

Our approach addresses major challenges including design
space exploration, system-wide energy analysis, configura-
tion selection and task procrastination to significantly reduce
overall energy consumption while meeting all task deadlines.
Figure 2 illustrates the workflow of our approach. Each task
is profiled through simulation which is driven by design space
exploration heuristics. For each simulation, its total system

energy consumption is calculated by our energy estimation
framework and put into the task’s profile table along with
the corresponding execution time. Based on the task set
characteristics and the profile tables as well as the scheduling
policy, processor voltage level and cache configuration can
be selected for each task. Task DVS/DCR assignments and
procrastination algorithm are then used in a one-pass task
scheduling which produces the total energy consumption of
the task set during its hyper-period P. This section describes
each of these steps in detail.

Task Set

(Applications)

Simulation

Energy Estimation

Framework

Tuning

Heuristic

Configuration

Selection Heuristic

DVS/DCR

Assignments

Fig. 2. Workflow of our approach.

B. Two-Level Cache Tuning Heuristic

It is a major challenge to employ multi-level cache recon-
figuration since the exploration space is prohibitively large.
Our previous work [5] has proposed efficient tuning heuristics
for two-level cache hierarchy which can also be applied here.
In this article, we use L1 cache sizes of 4KB, 8KB and
16KB, line size of 16, 32 and 64 bytes with set associativity
of 1-way, 2-way and 4-way. For L2 cache, the capacity is
selected to be 32KB, 64KB and 128KB with line sizes of
64, 128 and 256 bytes and set associativity of 4-way, 8-way
and 16-way. Therefore, there are 18 configurations for each
individual cache and totally 5832 different configurations for
the cache hierarchy [5]. We employ IL1T – Independent Level
One Cache Tuning – in this paper to reduce the simulation
time while still preserve the most amount of accuracy. Other
heuristics described in [5] are also applicable.

C. Power Estimation Framework

Since we do not focus on system design which requires to
minimize development time and costs, our energy estimation
framework, as shown in Figure 3, targets at a specific SoC
micro-architecture and is able to trade more design time
for higher accuracy than the one proposed in [28]. We use
SimpleScalar [29] as the underlying micro-architectural sim-
ulator in our approach. For each application (task) and cache
configuration, we run a simulation and collect the execution
statistics, memory access statistics and bus activity traces.
These information, along with the processor voltage levels,
are provided to energy models for each system components,
based on which the total system energy can be computed.
Note that in our framework, the inputs to each energy model
are all from one micro-architectural simulation thus are more
comprehensive and systematic, as opposed to [28] in which the
inputs are collected separately using instruction-set simulator,

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. NN, MMM YYYY

memory trace profiler, cache simulator and bus simulator.
Furthermore, by doing this, the impact on DVS/DCR decisions
from other system components as well as their correlations,
which is not considered in [28], can be reflected in an accurate
manner. This framework still provides flexibility to allow
different energy models and analyzers to be used.

Micro-architectural

Simulator

Memory Access

Statistics

Bus Activity

Traces

Execution

Statistics

Processor

Energy Model

Cache

Energy Model

Memory

Energy Model

Bus

Energy Model

∑

Cache

Configuration

Processor

Voltage Level

Fig. 3. Overview of our power estimation framework.

D. Critical Speed

The critical speed for processor voltage scaling defines a
point beyond which the processor speed cannot be slowed
down otherwise DVS will no longer be beneficial [13]. The
dynamic power consumption of processor, which is exclu-
sively considered in traditional DVS, is usually a convex
and increasing function of the operating frequency. However,
since lowering processor speed makes the task execution time
longer which leads to higher static energy consumption, the
total energy consumed per cycle in the processor will start
increasing due to further slowdown.

By taking DCR into consideration, we find that cache
configuration has significant impact on the critical speed with
respect to the overall system energy consumption. As de-
scribed in Section III-B, there exists strong correlation among
the energy models of processor, cache hierarchy and other
system components. Since different cache configurations lead
to different miss ratios and miss penalty cycles, the number
of clock cycles (CC) required to execute an application is
decided by the cache configuration, which directly affects
the energy consumption of other components. On the other
hand, the length of each clock cycle (tcycle), which is deter-
mined by the processor voltage/frequency level, also directly
affects the energy consumption of other components. In other
words, DVS and DCR will affect the overall system energy
consumption. On the other hand, due to leakage power, all
system components will have impact on decision making of
DVS/DCR, especially the critical speed. Specifically, when
the processor is slowed down by DVS, increasing static
energy consumed by cache hierarchy, bus lines and memory
will compromise the benefit gained from reduced processor
dynamic energy. Therefore, considering DCR and other system
components effects, we found that the critical speed is going
to increase drastically.

1) Processor + L1 Cache: We use a motivating example in
which a single benchmark1 (cjpeg from MediaBench [30]) is
executed under all processor voltage levels. It can be observed
that in Figure 4, when only processor energy is considered, the
critical speed is achieved at Vdd = 0.7V , which matches the
results in [13]. However, as shown in Figure 5, with respect to
the total amount of energy consumption, combining processor
and L1 caches (both configured to 8KB of capacitance, 32B
line size and 2-way associativity) increases the critical speed
slightly to around Vdd = 0.75V , due to the effect from L1
cache’s leakage power dissipation. This highlights the impor-
tance of considering other system components for accurate
analysis when applying DVS. In other words, if L1 caches are
incorporated, Vdd = 0.7V is no longer a beneficial choice with
respect to the overall energy savings. Note that in Figure 5,
dynamic energy consumption of L1 caches only includes
access energy Eaccess and block refilling energy Eblock f ill .
Energy consumed on buses and lower-level memory hierarchy
during L1 cache misses will be incorporated when we add
the corresponding components into consideration, as shown in
following sections.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Vdd (V)

Critical Speed

EprocDyn
EprocSta

EprocOn
Eproc

Fig. 4. Processor energy consumption Eproc for executing cjpeg: EprocDyn is
the dynamic energy, EprocSta is the static energy and EprocOn is the intrinsic
energy needed to keep processor on.

2) Processor + L1/L2 Cache: Figure 6 shows the impact
on the critical speed if L2 cache (with capacity of 64KB,
line size 128B and 8-way associativity) is considered in the
overall energy consumption. The critical speed increases to
the frequency corresponding to Vdd = 0.85V . For L1 caches,
as shown in Figure 5, dynamic energy dominates and leakage
energy becomes comparable only when the processor voltage
level drops below 0.6V . However, in L2 cache, for cjpeg,
leakage energy dissipation dominates while dynamic energy is
almost negligible. It is expected since L1 access rate is much
higher than L2 while the capacity, thus leakage power, of L2
cache is much larger. Note that, although some other bench-
marks (e.g. qsort from MiBench [31]) shows non-negligible
dynamic energy consumption in L2 cache, the leakage part
still dominates when the voltage level goes below a certain
point. Therefore, when processor voltage decreases, the total

1Although results for cjpeg is shown in this section, similar observations
have been made for other benchmarks.

WANG AND MISHRA: SYSTEM-WIDE LEAKAGE-AWARE ENERGY MINIMIZATION USING DYNAMIC VOLTAGE SCALING AND CACHE RECONFIGURATION IN MULTITASKING SYSTEMS5

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Vdd (V)

Critical Speed

Eproc
EL1Dyn
EL1Sta

EL1
Etotal

Fig. 5. Overall system energy consumption Etotal of the processor and L1
caches for executing cjpeg: EL1Dyn and EL1Sta are the dynamic and static L1
cache energy consumption, respectively.

leakage energy consumption increases drastically due to the
L2 cache. Generally, when DCR is applied, different cache
configurations will lead to different critical speed variations.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Vdd (V)

Critical Speed

Eproc
EL1

EL2Dyn

EL2Sta
EL2

Etotal

Fig. 6. Overall system energy consumption Etotal of the processor, L1
caches and L2 cache (configured to 64KB,128B,8-way) for executing cjpeg:
EL2Dyn and EL2Sta are the dynamic and static L2 cache energy consumption,
respectively.

3) Processor + L1/L2 Cache + Memory: Figure 7 illus-
trates the fact that memory energy consumption also makes the
critical speed increase. The memory we considered is modeled
as a common DRAM with size of 8MB. It can be observed
that memory has a similar effect on the critical speed as L2
cache. In fact, for the configurations we used, the static energy
consumptions are comparable for L2 cache and the memory.
Although DRAM needs to have its capacitor charge refreshed
all the time (which consumes relatively negligible power in
70nm technology [12]), it requires only one transistor to store
one bit. Therefore, it consumes much less leakage power per
bit compared to cache, which is smaller but made of more
power expensive SRAM.

4) Processor + L1/L2 Cache + Memory + Bus: System
bus lines have double effect on the critical speed in overall
system energy consumption. On one hand, since on-chip buses
should have equal frequency as the processor (which makes
them dominate in terms of energy among all system buses),

0.0

3.0

6.0

9.0

12.0

15.0

18.0

21.0

24.0

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Vdd (V)

Critical Speed

Eproc
Ecache

EmemDyn

EmemSta
Emem
Etotal

Fig. 7. Overall system energy consumption Etotal of the processor, L1/L2
caches and memory for executing cjpeg: EmemDyn and EmemSta are the dynamic
and static memory energy consumption, respectively; Ecache represents the
total energy consumption of both L1 and L2 caches.

DVS will lead to dynamic energy reduction in them. On
the other hand, like other system components, static power
dissipation on system buses is also going to increase along
with voltage scaling down, which compensates the dynamic
energy reduction. As a result, system buses make very minor
impact on critical speed as shown in Figure 8.

0.0

3.0

6.0

9.0

12.0

15.0

18.0

21.0

24.0

27.0

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Vdd (V)

Critical Speed

Eproc
Ecache
Emem

EbusDyn

EbusSta
Ebus

Etotal

Fig. 8. Overall system energy consumption Etotal of the processor, L1/L2
caches, memory and system buses for executing cjpeg: EbusDyn and EbusSta
are the dynamic and static bus energy consumption, respectively.

For ease of demonstration, we show how energy consump-
tion (both dynamic and static) of each system components vary
with voltage scaling in Figure 9. When DVS is not applied
(Vdd = 1V), the processor accounts for over half of overall
energy consumption while others also take considerable share.
This observation matches what we have shown in Figure 1.
When the voltage level decreases, we can see that the energy
consumed by the cache hierarchy and memory subsystem
increases drastically and, after certain point, it becomes com-
parable with the processor or even larger. For system buses,
due to the reason explained above, this effect is less significant
compared to cache and memory.

In conclusion, the discussion above leads to several obser-
vations and questions. The critical speed is going to change
as different system components are considered – increases

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. NN, MMM YYYY

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Vdd (V)

Eproc
Ecache

Emem
Ebus

Fig. 9. Processor voltage scaling impact on various system components.

when leakage energy dominant components are added and
decreases when dynamic energy dominant components (e.g.,
DVS-controllable) are added. One would wonder whether DVS
is really practically beneficial since our case study shows that
the critical speed is at Vdd = 0.9V and potentially adding more
components may increase it further? A simple answer is yes
but it has to be evaluated using leakage-aware DVS and DCR.
It is also important to notice that system properties, appli-
cation characteristics and reconfiguration decisions together
will affect the critical speed, which typically varies between
Vdd = 0.65V and 0.9V in our case.

E. Real-Time Voltage Scaling and Cache Reconfiguration

1) Profile Table: We define a configuration point as a pair
of processor voltage level and cache hierarchy configuration:
(v j,ck) where v j ∈ V and ck ∈ C. For each task, we can
construct a profile table which consists of all possible con-
figuration points as well as the corresponding total energy
consumption and execution time. Clearly, all points with the
voltage level lower than the critical speed are eliminated.
Furthermore, non-beneficial configuration points, which is
inferior in both energy and time compared to some other
points, are also discarded. In other words, we only consider
those Pareto-optimal tradeoff points.

An important observation is that cache configurations be-
have quite consistently across different processor voltage lev-
els. For example, the L1 cache configuration favored by cjpeg,
8KB cache size with 32B line size and 2-way associativity,
outperforms all the other configurations in terms of energy.
Similar observations can be made when we fix L1 cache
configuration while vary L2 cache. Therefore, the profile table
for each task actually consists of favored cache hierarchy con-
figurations with voltage levels no higher than the critical speed.
In fact, in many cases, we find that only the most energy-
efficient cache configuration has beneficial voltage level higher
than the critical speed but with much longer execution time
than other entries. It can be explained, for example, as shown
in Figure 8, that Etotal only decreased by 1.78% when Vdd
is lowered down from 1V to 0.9V but the execution time is
increased by 27.45%. Generally speaking, the energy reduction
caused by DVS is not worth the loss in performance when the

voltage level is close to the critical speed.
2) Reconfiguration Selection Heuristics: Existing DVS al-

gorithms are not applicable when DCR is employed since the
energy consumption as well as the impact on task’s execution
time cannot be calculated from energy models. DCR algo-
rithms for real-time systems proposed in [4] [5] are also not
applicable since they only support soft task deadlines. Given a
static slack allocation, we can assign the most energy efficient
configuration point which does not stretch the execution time
over the allocated slack. As long as the slack allocation is
safe, we can always ensure that the schedulability is satisfied.
Therefore, we adapt a heuristic motivated by the uniform
constant slowdown scheme which is proved to be optimal
in ideal DVS [32]. The optimal common slowdown factor
η is given by the system utilization. In our approach, we
only consider a finite number of discrete configuration points.
Therefore, as shown in Algorithm 1, for each task, we select
the configuration point with minimum energy consumption but
equal or shorter execution time compared to the one decided
by η. Note that we use each task’s execution under the highest
voltage in V and largest cache configuration in C as the base
case (vbase,cbase).

Algorithm 1 Configuration selection heuristic.

η = ∑
m
i=1

Ti(vbase,cbase)
pi

for all task τi ∈ T do
T bound

i = Ti(vbase,cbase)/η;
Assign τi with (v ji ,cki) which satisfied:
1) Ei(v ji ,cki) is the minimum;
2) Ti(v ji ,cki)6 T bound

i ;
end for
return (v ji ,cki), ∀i ∈ [1,m]

F. Procrastination

To further control static energy consumption, it is beneficial
to put the system into a sleep mode instead of keep it idle since
the static power could be lower by order-of-magnitude. As dis-
cussed in Section IV-D, taking various system components into
consideration leads to much higher critical speed compared to
DVS-only scenario. In other words, the idle periods are getting
longer. However, bringing the system into sleep mode and vice
versa requires certain amount of overhead in terms of energy
and time. In order to reduce the number of mode switches, we
need to make the busy/idle periods as long as possible. One
way to achieve this is to procrastinate task execution when it
is safe. We adapt the task procrastination algorithm from [33]
into our scheduler. We ensure that when the system gets shut
down, there is no unfinished job in the system to avoid cold
start penalty. Hence, the shutdown overhead consists of the
energy consumed for circuit logic recharging and dirty data
flushing-back in the cache subsystem.

Algorithm 2 outlines our procrastination scheme. A timer is
enabled when idle period starts and disabled when busy period
starts. A newly arrived task during idle period will update the
timer if it has earlier deadline compared to the current earliest
one. Upon timeout, all delayed ready tasks are executed in
EDF order. Arriving tasks during busy period are allowed to

WANG AND MISHRA: SYSTEM-WIDE LEAKAGE-AWARE ENERGY MINIMIZATION USING DYNAMIC VOLTAGE SCALING AND CACHE RECONFIGURATION IN MULTITASKING SYSTEMS7

preempt as usual. Note that time represents the current time
instant and (v ji ,cki) stands for the chosen configuration point
for task τi. Here, isEarlier[i] records whether the current job
of τi’s deadline is earlier than all the pending tasks in the
system when it arrives.

Algorithm 2 Task procrastination algorithm.
isEarlier[i] is initialized to be all false;
Current earliest deadline of delayed jobs δ = 0;
On arrival of a new job of task τr:
dr = pr · d time

pr
e; actUtil = ∑

m
i=1

Ti(v ji ,cki)

pi
;

if System is in sleep mode or is idle then
if timer is disabled then

timer = b(1−actUtil) · prc;
δ = dr; isEarlier[r] = true;

else
if dr < δ then

for all τi in ready task queue do
if isEarlier[i] is true then

delayed = delayed +
time−pi·b time

pi
c

pi
;

end if
timer = b(1−actUtil−delayed) · prc;
δ = dr; isEarlier[r] = true;

end for
end if

end if
end if

V. EXPERIMENTS

A. Experimental Setup

To evaluate the effectiveness of our approach, we se-
lect benchmarks from MediaBench [30], MiBench [31] and
EEMBC [34] to from four task sets with each consists of
5 to 8 tasks. While DVS techniques usually use synthetic
tasks for evaluation, we choose real benchmarks so that bus
and memory hierarchy behaviors of real applications can be
revealed. Table I lists our task sets. Task Set 1 consists of tasks
from MediaBench, Set 2 from EEMBC, Set 3 from MiBench
and Set 4 is a mixture of all three suites. In Set 4, the two
benchmarks from EEMBC are set to iterate 100 times in order
to make their size comparable with others.

We adapt processor constants described in Section III-B
from [13]: Vbs =−0.7V , Ld = 37, α = 1.5. Energy and power
values used in energy models for the memory hierarchy are
collected from CACTI [12]. The on-chip buses and off-chip
buses have capacitance of 5pF and 60pF , respectively. The
on-chip buses have equal frequency as the processor (decided
by the current voltage level) while off-chip buses (from L1 to
L2 and from L2 to memory) have a frequency of 400MHz and
200MHz, respectively. The bus static power is assumed to be
50% of the average dynamic power consumption, which is a
conservative estimation [11].

We assume cache dirty data write back and circuit logic
recharging penalty for shutdown to be 85µJ and 300µJ.
Therefore, the total shutdown overhead is 385µJ [13]. Based
on our energy model, idle power dissipation for the system,
which comes from the static energy consumption of processor,

cache hierarchy, bus lines and memory, is assumed to be
240 + 200 + 58 + 291 = 789mW . System in sleep mode is
assumed to consume 80µW of power. Hence, the shutdown
threshold interval is 0.49ms and any interval whose length is
shorter than this threshold will not lead to a shutdown. In
this paper, the energy estimation framework (whose input is
gathered from SimpleScalar [29]) as well as the scheduling
simulator are implemented in C++.

TABLE I
TASK SETS CONSISTING OF REAL BENCHMARKS.

Set Tasks
1 cjpeg, djpeg, mpeg2, pegwit, rawcaudio
2 A2TIME01, BaseFP01, BITMNP01, RSPEED01, TBLOOK01
3 CRC32, susan, dijkstra, rijndael, adpcm, qsort, FFT, stringsearch

4 cjpeg, rawdaudio, pegwit, A2TIME01, RSPEED01, pktflow,
FFT, dijkstra

B. Results

We consider the following techniques:
• DVS: Traditional DVS without DCR which assigns the

lowest feasible2 voltage level.
• CS-DVS: Leakage-aware DVS without DCR which as-

signs lowest feasible voltage level above the critical speed
decided by processor energy consumption.

• CS-DVS-G: Leakage-aware DVS without DCR which
assigns lowest feasible voltage level above the critical
speed decided by system-wide energy consumption.

• DVS-DCR: Traditional DVS + DCR which assigns the
configuration point for minimizing the dynamic energy
consumption of processor and cache subsystem.

• CS-DVS-DCR: Leakage-aware DVS + DCR which as-
signs the most energy-efficient while feasible configura-
tion point above the critical speed decided by the energy
consumption of processor and cache subsystem.

• CS-DVS-DCR-G: Leakage-aware DVS + DCR which
assigns the most energy-efficient while feasible config-
uration point above the critical speed decided by system-
wide energy consumption.

• CS-DVS-DCR-G-P: Leakage-aware DVS + DCR for
system-wide energy minimization which also employs
task procrastination.

1) Task Set: For all the task sets described in Table I,
we compare all the above listed techniques across various
system utilizations (from 0.1 to 0.9 in a step of 0.1). All the
results are the average of all task sets and are normalized to
DVS scenario. Figure 10 shows the normalized system-wide
overall energy consumption using different approaches. The
first observation is that, for DVS-only approaches, considering
other system components (CS-DVS-G) can achieve 12.8%
additional energy savings on average (up to 26.6%) compared
with traditional leakage-aware DVS (CS-DVS). Generally,
applying DVS and DCR together (DVS-DCR) outperforms
traditional DVS (DVS) and CS-DVS-G across all utilization
rates by 66.3% and 42.1% on average, respectively. Our
approach, system-wide leakage-aware DVS + DCR (CS-DVS-
DCR-G), outperforms CS-DVS-G by 47.6% on average. It can

2“Feasible” means that it satisfies the slack allocation in Section IV-E.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. NN, MMM YYYY

be observed that leakage-aware and leakage-oblivious DVS +
DCR approaches behave similarly when the system utilization
ratio is beyond 0.5. It is because both of them are inclined to
select similar configuration points which have voltage levels
above the critical speed (Vdd is around 0.8 to 0.9). In other
words, in these scenarios, DVS-DCR does not make inferior
DVS decisions, which can lead to dominating leakage power,
due to limited available slack. However, when the utilization
ratio is low, CS-DVS-DCR-G can achieve around 4.6 - 23.5%
more energy savings than DVS-DCR since CS-DVS-DCR-G
does not lower down the voltage level below the critical speed.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
ne

rg
y

C
on

su
m

pt
io

n
N

or
m

al
iz

ed
to

D
V

S

Utilization

DVS
CS-DVS

CS-DVS-G
DVS-DCR

CS-DVS-DCR-G

Fig. 10. System-wide overall energy consumption using different approaches.

Figure 11 (a) shows the reduction in static energy con-
sumption by using CS-DVS-DCR-G compared to DVS-DCR
as well as CS-DVS-DCR. CS-DVS-DCR-G gains averagely
about 26.5% static energy savings over DVS-DCR across
all utilizations and around 44.4% in low utilization cases.
Compared with CS-DVS-DCR, taking memory and system
buses into consideration results in 7.1% static energy sav-
ings on average (up to 14.4%). This improvement is not as
significant as the difference between CS-DVS and CS-DVS-
G since, as shown in Section IV-D, memory and bus lines
have relatively less impact on the critical speed compared
with cache subsystem. In our study, dynamic procrastination
does not bring remarkable savings with respect to overall
energy consumption. The reason is that the shutdown threshold
is relatively short compared with the execution time of real
benchmarks in our approach. Therefore, even without procras-
tination, the idle periods during system execution normally
are longer than the threshold which makes them beneficial to
shutdown the system. In other words, the total sleep time for
both CS-DVS-DCR-G and CS-DVS-DVS-G-P are close. It is
expected, however, if the task sizes are small, reductions of
overall energy will be more significant [13]. To illustrate the
effectiveness of procrastination, Figure 11 (b) shows the result
in idle energy savings. It can be observed that 26.9% savings
on average can be achieved across all utilization rates by using
CS-DVS-DCR-G-P.

VI. CONCLUSION

Leakage power can adversely impact any system energy op-
timization techniques including both dynamic voltage scaling

and cache reconfiguration. Employing both DVS and DCR
together can lead to greater system energy savings than using
them independently. In this paper, we presented an efficient
approach to integrate DVS and DCR that is aware of leakage
power. Our energy estimation framework comprehensively
incorporates various system components which makes the
analysis more accurate and effective. Our studies demonstrate
that considering only one aspect (e.g., dynamic energy) or
one component (e.g., DVS-capable processor) can lead to
inaccurate conclusion in terms of overall energy, since critical
speed will vary depending on the various components in the
system. We focus on reducing system-wide dynamic and static
energy consumption. We also integrate task procrastination to
further save the energy consumption when the system is idle.
Our approach is shown to be superior than both leakage-aware
DVS techniques by around 47.6% and outperform leakage-
oblivious DVS + DCR techniques by up to 23.5%.

REFERENCES

[1] K. Lahiri and A. Raghunathan, “Power analysis of system-level on-
chip communication architectures,” in CODES+ISSS ’04: Proceedings of
the 2nd IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis. New York, NY, USA: ACM, 2004, pp.
236–241.

[2] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava, “Power
optimization of variable-voltage core-based systems,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 18,
pp. 1702–1714, 1999.

[3] A. Malik, B. Moyer, and D. Cermak, “A low power unified cache archi-
tecture providing power and performance flexibility,” in Proceedings of
International Symposium on Low Power Electronics and Design, 2000,
pp. 241–243.

[4] W. Wang, P. Mishra, and A. Gordon-Ross, “SACR: Scheduling-aware
cache reconfiguration for real-time embedded systems,” in Proceedings
of IEEE International Conference on VLSI Design, 2009, pp. 547–552.

[5] W. Wang and P. Mishra, “Dynamic reconfiguration of two-level caches
in soft real-time embedded systems,” in Proceedings of IEEE Computer
Society Annual Symposium on VLSI, 2009, pp. 145–150.

[6] G. Buttazzo, Hard Real-Time Computing Systems. Kluwer, 1995.
[7] J. Liu, Real-Time Systems. Prentice Hall, 2000.
[8] B. Doyle, R. Arghavani, D. Barlage, S. Datta, M. Doczy, J. Kavalieros,

A. Murthy, and R. Chau, “Transistor elements for 30nm physical gate
lengths and beyond,” Intel Technology Journal, vol. 6, pp. 42–54, 2002.

[9] J. Kao, S. Narendra, and A. Chandrakasan, “Subthreshold leakage
modeling and reduction techniques,” in ICCAD ’02: Proceedings of the
2002 IEEE/ACM international conference on Computer-aided design.
New York, NY, USA: ACM, 2002, pp. 141–148.

[10] N. S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. S. Hu, M. J.
Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law
meets static power,” Computer, vol. 36, no. 12, pp. 68–75, 2003.

[11] R. Rao, H. Deogun, D. Blaauw, and D. Sylvester, “Bus encoding for
total power reduction using a leakage-aware buffer configuration,” Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 13,
no. 12, pp. 1376 – 1383, dec. 2005.

[12] HP, CACTI, HP Laboratories Palo Alto, CACTI 5.3,
http://www.hpl.hp.com/, 2008.

[13] R. Jejurikar, C. Pereira, and R. K. Gupta, “Leakage aware dynamic
voltage scaling for real-time embedded systems,” in Proceedings of
Design Automation Conference, 2004, pp. 275–280.

[14] A. C. Nacul and T. Givargis, “Dynamic voltage and cache reconfigu-
ration for low power,” in Proceedings of Design, Automation and Test
Conference in Europe, 2004, p. 21376.

[15] R. Jejurikar and R. Gupta, “Energy-aware task scheduling with task
synchronization for embedded real-time systems,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 25,
pp. 1024–1037, 2006.

[16] S. Zhang, K. Chatha, and G. Konjevod, “Approximation algorithms
for power minimization of earliest deadline first and rate monotonic
schedules,” in Proceedings of International Symposium on Low Power
Electronics and Design, 2007, pp. 225–230.

WANG AND MISHRA: SYSTEM-WIDE LEAKAGE-AWARE ENERGY MINIMIZATION USING DYNAMIC VOLTAGE SCALING AND CACHE RECONFIGURATION IN MULTITASKING SYSTEMS9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
ne

rg
y

N
or

m
al

iz
ed

to
D

V
S-

D
C

R

Utilization

DVS-DCR
CS-DVS-DCR

CS-DVS-DCR-G

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
ne

rg
y

N
or

m
al

iz
ed

to
C

S-
D

V
S-

D
C

R
-G

Utilization

CS-DVS-DCR-G
CS-DVS-DCR-G-P

(b)
Fig. 11. Results: (a) Static energy consumption using DVS-DCR and cs-DVS-DCR; (b) Idle energy consumption using cs-DVS-DCR and cs-DVS-DCR-P.

[17] R. Jejurikar and R. Gupta, “Dynamic voltage scaling for systemwide
energy minimization in real-time embedded systems,” in Proc. Interna-
tional Symposium on Low Power Electronics and Design ISLPED ’04,
9–11 Aug. 2004, pp. 78–81.

[18] X. Zhong and C. Xu, “System-wide energy minimization for real-time
tasks: Lower bound and approximation,” in Proceedings of International
Conference on Computer-Aided Design, 2006, pp. 516–521.

[19] J.-J. Chen and T.-W. Kuo, “Procrastination for leakage-aware rate-
monotonic scheduling on a dynamic voltage scaling processor,” in
LCTES ’06: Proceedings of the 2006 ACM SIGPLAN/SIGBED confer-
ence on Language, compilers, and tool support for embedded systems.
New York, NY, USA: ACM, 2006, pp. 153–162.

[20] W. Wang and P. Mishra, “PreDVS: Preemptive dynamic voltage scaling
for real-time systems using approximation scheme,” in Proceedings of
Design Automation Conference, 2010, pp. 705–710.

[21] A. Gordon-Ross and F. Vahid, “A self-tuning configurable cache,” in
Proceedings of Design Automation Conference, 2007, pp. 234–237.

[22] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar,
“Gated-vdd: a circuit technique to reduce leakage in deep-submicron
cache memories,” in ISLPED ’00: Proceedings of the 2000 international
symposium on Low power electronics and design. New York, NY, USA:
ACM, 2000, pp. 90–95.

[23] J.-W. Chi, C.-L. Yang, Y.-J. Chen, and J.-J. Chen, “Cache leakage control
mechanism for hard real-time systems,” in Proceedings of the 2007
international conference on Compilers, architecture, and synthesis for
embedded systems. New York, NY, USA: ACM, 2007, pp. 248–256.

[24] E. Hallnor and S. Reinhardt, “A unified compressed memory hierarchy,”
2005, pp. 201 – 212.

[25] C. Zhang, F. Vahid, and W. Najjar, “A highly configurable cache for low
energy embedded systems,” ACM Transactions on Embedded Computing
Systems, vol. 6, pp. 362–387, 2005.

[26] W. Wang and P. Mishra, “Leakage-aware energy minimization using
dynamic voltage scaling and cache reconfiguration in real-time systems,”
in Proceedings of IEEE International Conference on VLSI Design, 2010,
pp. 357–362.

[27] W. Fornaciari, D. Sciuto, and C. Silvano, “Power estimation for archi-
tectural exploration of hw/sw communication on system-level buses,” in
Proc. Seventh International Workshop on Hardware/Software Codesign
(CODES ’99), May 3–5, 1999, pp. 152–156.

[28] C. Talarico, J. W. Rozenblit, V. Malhotra, and A. Stritter, “A new
framework for power estimation of embedded systems,” Computer,
vol. 38, no. 2, pp. 71–78, 2005.

[29] D. Burger, T. M. Austin, and S. Bennett, “Evaluating future micropro-
cessors: The simplescalar tool set,” University of Wisconsin-Madison,
Tech. Rep., 1996.

[30] C. Lee, M. Potkonjak, and W. H. Mangione-smith, “Mediabench: A
tool for evaluating and synthesizing multimedia and communications
systems,” in Proceedings of International Symposium on Microarchitec-
ture, 1997, pp. 330–335.

[31] M. Guthaus, J. Ringenberg, D.Ernest, T. Austin, T. Mudge, and
R. Brown, “Mibench: A free, commercially representative embedded

benchmark suite,” in Proceedings of IEEE International Workshop on
Workload Characterization, 2001, pp. 3–14.

[32] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, “Dynamic and
aggressive scheduling techniques for power-aware real-time systems,” in
Proceedings of Real-Time Systems Symposium, 2001, pp. 95–105.

[33] Y.-H. Lee, K. Reddy, and C. Krishna, “Scheduling techniques for re-
ducing leakage power in hard real-time systems,” in Real-Time Systems,
2003. Proceedings. 15th Euromicro Conference on, July 2003, pp. 105–
112.

[34] EEMBC. EEMBC, The Embedded Microprocessor Benchmark Consor-
tium. http://www.eembc.org/.

Weixun Wang (S’08) received his B.E. degree
in software engineering from the Software Insti-
tute, Nanjing University, Nanjing, China, in 2007.
He is currently pursuing his Ph.D. degree in the
Department of Computer and Information Science
and Engineering, University of Florida, USA. His
research interests include the area of design au-
tomation of embedded systems with focus on dy-
namic cache reconfiguration, energy optimization,
temperature management, design space exploration
and lossless data compression.

Prabhat Mishra (S’00-M’04-SM’08) received the
B.E. degree from Jadavpur University, India, the
M.Tech. degree from the Indian Institute of Tech-
nology, Kharagpur, and the Ph.D. degree from the
University of California, Irvine – all in computer sci-
ence. He is currently an Associate Professor with the
Department of Computer and Information Science
and Engineering, University of Florida. His research
interests include design automation of embedded
systems, reconfigurable architectures, and functional
verification. He has published two books, nine book

chapters and more than 70 research articles in premier journals and con-
ferences. His research has been recognized by several awards including an
NSF CAREER Award in 2008, two best paper awards (VLSI Design 2011
and CODES+ISSS 2003), several best paper award nominations (including
DAC 2009 and VLSI Design 2009), and 2004 EDAA Outstanding Disserta-
tion Award from the European Design Automation Association. Dr. Mishra
currently serves as Information Director of ACM Transactions on Design
Automation of Electronic Systems, Guest Editor of IEEE Design & Test of
Computers, and as a program/organizing committee member of several ACM
and IEEE conferences.

