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ABSTRACT Quantum computers present a compelling platform for the study of open quantum systems,
namely the non-unitary dynamics of a system. Here, we investigate and report digital simulations of
Markovian, non-unitary dynamics that converge to a unique steady state. The steady state is programmed as
a desired target state, yielding semblance to a quantum state preparation protocol. By delegating ancilla
qubits and systems qubits, the system state is driven to the target state by repeatedly performing the
following steps: (1) executing a designated system-ancilla entangling circuit, (2) measuring the ancilla
qubits, and (3) re-initializing ancilla qubits to known states through active reset. While the ancilla qubits
are measured and reinitialized to known states, the system qubits undergo a non-unitary evolution and
are steered from arbitrary initial states to desired target states. We show results of the method by
preparing arbitrary qubit states and qutrit (three-level) states on contemporary quantum computers. We
also demonstrate that the state convergence can be accelerated by utilizing the readouts of the ancilla qubits
to guide the protocol in a non-blind manner. Our work serves as a nontrivial example that incorporates and
characterizes essential operations such as qubit reuse (qubit reset), entangling circuits, and measurement.
These operations are not only vital for near-term noisy intermediate-scale quantum (NISQ) applications but
are also crucial for realizing future error-correcting codes.

INDEX TERMS Benchmarking, open quantum systems, quantum computing, quantum control, quantum
measurement, quantum steering, quantum state preparation

I. INTRODUCTION
Quantum computers have gained increasing interest due to
ability to manipulate entanglement, leading to increased the-
oretical and algorithmic capabilities. Generally, the descrip-
tion of quantum information processing is discussed in terms
of a closed quantum system. Namely, in a closed system
the quantum dynamics of a state arises directly from the
solution of the Schrödinger equation. In reality however,
quantum computers are examples of open quantum systems,
whereby the unknown degrees-of-freedom of an environment
influence the dynamics of the system. For example, inter-
actions with an environment introduce decoherence, a loss
of quantum information as the information decays from the
system into the environment. Furthermore, quantum comput-
ers must interact with the classical world, whereby a mea-
surement apparatus couples with our system and provides a
readout. While ideally a quantum computer does not interact
with an environment and undergoes a unitary and reversible
operation, measurement itself introduces a non-unitary and
non-reversible operation as it couples with an environment.
This presents a compelling opportunity to engineer and study

properties of open quantum systems by simulating them on
quantum computers.

The study of open quantum systems begins by presenting a
microscopic model, whereby our system (S) interacts with an
environment (E), as depicted in Figure 1a. The environment
is considered to be a large blob of degrees-of-freedom. The
joint dynamics of the system and environment is provided by
the Schrödinger equation. However, in reality, it is difficult
to model and monitor the environmental degrees-of-freedom,
so instead only the dynamics of the system is considered and
the environmental degrees-of-freedom are traced away. The
solution to the dynamics of the system are now expressed in
terms of local operators, where the environment introduces
non-unitary jump operators or stochastic events to the system.
Various approximations may be placed on the interaction,
such as whether the system and environment are initially
uncorrelated or whether the environment’s state changes sig-
nificantly over the course of the evolution [1], [2].

An alternative model of open quantum system, the colli-
sion model [3], has recently shown success in ease of use,
computational complexity, as well as describability of the
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(a) Microscopic model. (b) Collision model.

FIGURE 1: A representation of the microscopic (a) and
collision (b) model to describe open quantum systems. In
the microscopic model, the environment is expressed as
collection of continuous modes, while in the collision model
it is expressed as a discrete collection of quantum systems.

dynamics. An overview of the collision model is shown in
Figure 1b. Instead of viewing the environment as a large
blob of degrees-of-freedom, the environment is a collection
of discrete packets, such as a collection of ancilla qubits.
The ancillas are initial uncorrelated, interact discretely and in
order with the system, and then are forgotten. Consequently,
the dynamics of the system are inherently Markovian [4], as
there is no environmental history that is introduced to the
system. However, non-Markovian behavior may be modeled
by introducing interactions between the ancillas or assuming
initial correlations between the system and the ancillas [5]–
[7]. In this work, we consider a particular example of open
quantum system: a Markovian process that converges to a
unique target state, resembling a method for quantum state
preparation as the system is steered towards that target. In
other words, the interaction between the ancillas are specif-
ically chosen such that the asymptotic state of the system
converges.

A. QUANTUM STATE PREPARATION
One of the primary requirements in quantum computing is
the ability to prepare an arbitrary quantum state [8], [9].
This requirement is fulfilled by: (1) initializing the quantum
computer to a known fiducial state (|0⟩⊗n) of n-qubits, and
(2) applying a series of discrete quantum gates to the known
state to obtain a desired final state (|ψ⊕⟩ = U |0⟩⊗n) [10].
Initialization of the quantum computer is commonly achieved
by waiting for the system to thermalize to the ground state
(passive reset) – with the waiting time roughly correlated
to T1 coherence times [11], [12]. Although the waiting time
for qubits to thermalize is feasible for today’s contemporary
quantum computers, as technology improves and the coher-
ence times of large collection of qubits increases, the waiting
time will dominate in comparison to the program duration.
Moreover, the passive reset is not applicable for scenarios
when we need to initialize to an arbitrary (non-fiducial)
state. Alternatively, recent efforts investigate active reset such
as through projective measurements [13], [14]. In reality, a
desired state may not be an eigenstate of a measurement
operator and thus leads to probabilistic outcomes. Therefore,
when the state of the qubits is collapsed via measurement,

single-qubit rotations are applied to correct the state based on
the readout outcomes [14]. However, such an approach faces
two main challenges: first, measurement itself can be a long
and error-prone operation depending on the underlying tech-
nology [15], [16]; and secondly, arbitrary state preparation
requires carefully calibrating the necessary quantum gates,
as well as extreme fine-tuning on large quantum computers
to guarantee an appropriate fidelity.

Alternative strategies for initializing fiducial states have
been proposed via engineered dissipative dynamics [17]–
[19], reversible [20], [21] or irreversible [22], [23] algorith-
mic cooling [24]. The methods assume Markovian dynamics,
whereby a system state is driven to a pure steady state.
However, for real world open quantum systems undergoing
non-Markovian dynamics [25], [26], a successful state re-
set implies not only purification, but also erasure of initial
correlations between qubits and the environment [27]–[29].
Furthermore, passive reset, active reset, and strategies based
on dissipative dynamics and algorithmic cooling are not
applicable for scenarios when we need to initialize to an
arbitrary (non-fiducial) state.

In addition to careful calibration of unitary quantum gates,
near-term and far-term quantum computers must also ef-
fectively perform mid-circuit measurement and qubit reuse.
Recent demonstrations of NISQ algorithms necessitate both
of these operations, such as in circuit cutting [30], [31] and
error mitigation techniques [32], [33]. Furthermore, quan-
tum error-correcting codes involve repeated measurements
of ancilla qubits for error detection, a key part for realizing
fault-tolerant quantum computer [34], [35]. However, despite
the importance of these operations, efficient and effective
characterization of these operations remains an open prob-
lem. Using quantum computers to simulate the dynamics of
open quantum systems may provide an avenue to address
these challenges, and provide a holistic measure capturing
the essential operations necessary for near-term and far-term
quantum computers.

B. QUANTUM STEERING

Historically, an important yet perplexing feature of quantum
mechanics is the apparent non-local correlations (or entan-
glement) between distant particles. Schrödinger famously in-
troduced the term quantum steering in concern of the ability
to remotely steer a particle’s state through measurements on
another particle that is entangled with it [36], [37]. Recently,
quantum steering has been creatively exploited in developing
a protocol for preparing arbitrary quantum states irrespective
of their initial (mixed) state [38]. In essence, the protocol
derives the necessary interaction between the system and
ancillias in the collision model (Figure 1b). The protocol
consists of a repetition of simple steps:

1) a fixed unitary operation U couples ancilla qubits and
system qubits;

2) a measurement is conducted on the ancilla qubits,
decoupling it from the system qubits;
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3) the ancilla qubits are reinitialized to known simple
states.

As the ancilla qubits are measured, the back-action on the
system qubits steers them from arbitrary (unknown) mixed
states to a desired final state. The protocol has been theo-
retically analyzed in preparing a two-qubit system to arbi-
trary (mixed or pure) states [39], noting the strength of the
entangling operator U for preparing classical, discorded, or
entangled target states. Subsequently, the protocol’s rate of
convergence was studied in preparing an arbitrary qubit state
where it is remarked that significant speedup can be achieved
with slight compromise to the fidelity of the final target state
[40]. Extensions to the protocol have been proposed where
instead of ignoring the results of measurement, the ancilla
readouts are utilized to perform online decisions in navi-
gating the Hilbert space [41]. By utilizing the readouts, the
protocol’s convergence may be improved and the entangling
operation U may be changed via a feedback mechanism
without collapsing the system state. The variations of the
protocol can be summarized as follows: (a) blind passive
steering where readouts are ignored and U remains fixed, (b)
non-blind passive steering where readouts are utilized and U
remains fixed, (c) blind active steering where readouts are
ignored and U is changed with each iteration, and (d) non-
blind active steering where readouts are utilized and U is
changed with each iteration.

In this paper, we demonstrate the (non-)blind passive
steering protocol on contemporary cloud-accessible quantum
computers by delegating ancilla and system qubits (qutrits)
that undergo N -repetitions of an operation U implemented
as a digital quantum circuit. After repeating the protocol
steps, we show that the state of the system approaches a
desired state. In summary, we make the following major
contributions.

• We realize measurement-induced steering [38] for arbi-
trary state preparation on physical quantum computers.

• We develop quantum circuits to implement the steering
protocol with primary focus on a qubit-qubit coupled
system (an ancilla qubit to steer a qubit) and a qubit-
qutrit coupled system (an ancilla qubit to steer a qutrit.)

• We also investigate the non-blind approach, where in-
stead of disregarding the measurement results, we take
advantage of the measurement readouts to accelerate the
convergence.

• Furthermore, we show that the quantum steering op-
erator can be divided into local and non-local opera-
tions using Cartan decomposition [42], [43]. The non-
local operations convey the strength of the entanglement
necessary to perform quantum steering. Furthermore,
this decomposition can be viewed as a graphical rep-
resentation for a qubit-qubit coupled system, providing
visualization for non-local operations.

II. DIGITAL IMPLEMENTATION OF MIQS
The goal of the measurement-induced quantum steering
(MIQS) protocol is to prepare a desired target state |ψ⊕⟩,

n = 1 n = 2 n = N

|0⟩ |0⟩ . . . |0⟩

. . .

A: |0⟩
U U U

|0⟩

S: ρS |ψS⊕⟩

(a) Circuit diagram for Steering.

System

(b) Layout of ibmq_perth. (c) Convergence on Bloch sphere.

FIGURE 2: The measurement-induced steering protocol con-
ceptually consists of (a) passively steering a system (qubit or
qutrit) to an arbitrary state via coupling to an ancilla qubit that
is exposed to an environment for measurement and simple
state reset (i.e., to |0⟩). A specifically chosen unitary operator
U(J), parameterized by an arbitrary coupling strength J ,
acts upon the system-ancilla. By repeatedly applying the
unitary and measuring the ancilla, a back-action is induced
on the system whereby the average of all readout outcomes
steer the system to a desired state. We experimentally realize
the protocol on IBM’s superconducting quantum computers,
such as ibm_perth with the device connectivity graph shown
in (b). To select our system qubit (qutrit), we choose the
transmon with the best measurement discrimination between
the computational states. The ancilla qubit is then selected as
nearest neighbor given by the device connectivity. The Bloch
sphere (c) shows the results of passive steering a system qubit
on ibm_perth to prepare an equal superposition state (shown
as yellow dots) where the initial states are arbitrary (shown
as black dots).

irrespective of the initial state. This is achieved by exploiting
the back-action caused by measuring part of an entangled
system, steering our system to the target state. In this section,
we first provide a review of the formal specification of the
MIQS protocol. Next, we describe the circuit implementation
of the MIQS protocol, focusing on steering a qubit and a
qutrit, providing quantum circuits that satisfy the steering
conditions. Finally, we explore the properties of the gener-
ated circuits.

A. FORMULATION OF MIQS PROTOCOL
Suppose we have a system of ancilla qubits initialized to
the state |ψA⟩ (density matrix ρA) and system qubits in an
arbitrary state ρS . The general MIQS protocol involves the
following steps:
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U =

σxσz σyσy
H H Hy Hy

Rz(J) Hy Rz(−J) Hy

(a) A Pauli-based quantum circuit representation of the ancilla-system entan-
gling operator U for the target state |0⟩ ⊗ |+⟩ = |0⟩ ⊗ 1√

2
(|0⟩+ |1⟩).

FIGURE 3: An overview of the quantum steering protocol.

1) Couple the ancilla qubits and system qubits with a
composite unitary operator U . The state of the ancilla-
system after the n-th application of the unitary evolu-
tion is ρn+1

A−S = UρA ⊗ ρnSU
†.

2) The ancilla qubits are then decoupled from the system,
giving the density state of the system as:

ρn+1
S = TrA

[
ρn+1
A−S

]
= TrA

[
UρA ⊗ ρnSU

†] (1)

3) The ancilla qubits are reinitialized to their initial states
and the steps are repeated.

Figure 2a provides a representation of the quantum circuit for
these steps. The goal is to steer the system state to a desired
target state |ψ⊕⟩ (ρ⊕). The dynamics of U should be chosen
such that the following steering inequality is satisfied:

⟨ψ⊕| ρn+1
S |ψ⊕⟩ ≥ ⟨ψ⊕| ρnS |ψ⊕⟩ . (2)

In other words, with each repetition of the steps in the
MIQS protocol, the state of our system should get closer
to our desired pure target state |ψ⊕⟩. The general theory
under which Equation 2 will be satisfied is derived in [38].
In brevity, if the quantum dynamics is given as the time
evolution U = exp(−iHδt) of a Hamiltonian H , then for
H to satisfy Equation 2 it has the following form

H =
∑

n

(
O

(n)
A |ψA⟩ ⟨ψA|

)
⊗ Ω

(n)
S + h.c., (3)

where n labels the ancilla qubits. The Hamiltonian consists of
direct product of operators O(n)

A that rotate the ancillas from
their initial state to an orthogonal subspace and operators
Ω

(n)
S that rotate the system to an orthogonal subspace.
Rather than physically engineering and realizing a system

with the satisfactory Hamiltonian (Equation 3), we instead
simulate the Hamiltonian on a quantum computer through the
application of discrete unitary operators [44], [45].

B. QUBIT-QUBIT MIQS PROTOCOL
In this section, we derive the unitary operator U that steers
a qubit to a desired state. An arbitrary target state of a qubit
(excluding global phase) has the form

|ψ⊕⟩ = cos(θ/2) |0⟩+ eiϕ sin(θ/2) |1⟩ , (4)

with 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π. A Hamiltonian that
satisfies Equation 2 is

HA−S =
J

2
(− cos(ϕ) cos(θ)σxAσ

x
S − cos(ϕ)σyAσ

y
S

+sin(ϕ)σyAσ
x
S + sin(θ)σxAσ

z
S − sin(ϕ) cos(θ)σxAσ

y
S) (5)

where J is an arbitrary coupling constant, and σ{x,y,z}
u are the

standard Pauli matrices acting on the individual subsystem
u. Assuming the standard computational basis, the matrix
corresponds to

H =
J

2




0 0 α −β∗
−

0 0 −β+ −α
α −β∗

+ 0 0
−β− −α 0 0


 (6)

with α = sin θ and β± = eiθ(cos θ ± 1). A quantum circuit
that reproduces the unitary operator

U = exp(−iH) (7)

will essentially swap the ancilla-qubit space with the system-
qubit space.

In Section II-D we provide the optimal quantum circuits
that implements the operator with single qubit rotations and
CNOT gates. However, for the remainder of this section
we provide an illustrative example with a simple circuit
construction.
Example: A systematic method to construct the quantum
circuit is to consider each Pauli string in the Hamiltonian H .
As an example, consider the case when ϕ = 0, then Equa-
tion 5 simplifies to

ĤA−S =
J

2
(− cos(θ)σxAσ

x
S︸ ︷︷ ︸

HXX

+sin(θ)σxAσ
z
S︸ ︷︷ ︸

HXZ

−σyAσ
y
S︸ ︷︷ ︸

HY Y

). (8)

Therefore, the unitary evolution operator is given as

UA−S = exp
(
−iĤA−S

)
= UXX+XZ ◦ UY Y ; (9)

with two commuting terms

UXX+XZ = exp(iαHXX − iβHXZ), (10)

UY Y = exp

(
i
J

2
HY Y

)
, (11)

where α = J cos(θ)
2 and β = J sin(θ)

2 . The circuit decompo-
sition is done in two main steps. First, the non-commuting
terms in Equation 10 are decomposed using an approxi-
mation. Next, all the Pauli Hamiltonians, HXX , HXZ , and
HY Y , are decomposed to their circuit representations.

A nice simplification occurs when either sin(θ) = 0 or
cos(θ) = 0, leaving either UXX or UXZ terms in combi-
nation with UY Y . This specifically occurs when the target
state |ψ⊕⟩ = |+⟩ = 1√

2
(|0⟩+ |1⟩). With θ = π/2, the

Hamiltonian in Equation 8 simplifies to

Ĥ =
J

2
(σxAσ

z
S − σyAσ

y
S) . (12)
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Since the Pauli operators HXZ and HY Y commute, we can
express the evolution operator as

UA,S = exp

(
−iJ

2
σxAσ

z
S

)
◦ exp

(
i
J

2
σyAσ

y
S

)
(13)

and obtain the quantum circuit as shown in Figure 3a. The
|+⟩ state is particularly interesting due to its prevalence
in quantum algorithms, primarily in preparing entangled
Bell states by applying a subsequent CNOT operation. Ap-
pendix B provides an analytical analysis of steering to the
|+⟩ state.

C. QUBIT-QUTRIT MIQS PROTOCOL
In the previous section, we show a derivation of the quantum
circuit to steer a qubit to a desired state. In this section, we
derive a quantum circuit to prepare an arbitrary qutrit state.
Control of qutrits is typically harder to do via conventional
means compared to qubits, therefore, there is additional
benefit to using the MIQS protocol.

An arbitrary qutrit state (excluding global phase) can be
written in terms of four parameters as

|ψ⊕⟩ = sin(ξ/2) cos(θ/2) |0⟩
+ eiϕ01 sin(ξ/2) sin(θ/2) |1⟩
+ eiϕ02 cos(ξ/2) |2⟩ , (14)

where 0 ≤ θ, ξ ≤ π quantify the magnitude of the compo-
nents of |ψ⊕⟩ while 0 ≤ ϕ01, ϕ02 ≤ 2π describe the phases
of |0⟩ relative to |1⟩ and |2⟩, respectively.

A Hamiltonian that steers the qutrit will have the following
form

H = σ+ ⊗ |ψ⊕⟩ ⟨ψ⊕|⊥1 + σ+ ⊗ |ψ⊕⟩ ⟨ψ⊕|⊥2 + h.c. (15)

where σ+ is the raising operator and |ψ⊕⟩⊥i are orthogonal
states to our desired state. We note that we may rewrite
the Hamiltonian in terms of σx and σy Pauli-matrices and
λj Gell-Mann matrices, with some coupling αi,j between
them. Similar to the previous section, we may take the strings
consisting of Pauli and Gell-Mann terms and map them to
simple building blocks for our quantum circuits.

For our experimental realization of a qutrit state, we will
focus on one particular state: an equal superposition as de-
fined by

|ψ⊕⟩ =
1√
3
(|0⟩+ |1⟩+ |2⟩) . (16)

We may express the orthogonal subspace as being spanned
by two vectors

|ψ⊕⟩⊥1 =
1√
3
(|0⟩+ ν |1⟩+ ν∗ |2⟩) , (17)

|ψ⊕⟩⊥2 =
1√
3
(|0⟩+ ν∗ |1⟩+ ν |2⟩) (18)
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FIGURE 4: The Weyl Chamber representing coordinates of
non-local two-qubit unitaries. All possible two-qubit steering
operators U are represented by the blue line. The coordinates
are given by the coupling parameter J , namely [J, J, 0].
Maximum entanglement is achieved when J = π/2, cor-
responding to the point A2 in the chamber. Individual points
correspond to the maximum fidelity achieved when executing
the steering protocol with a steering operator given by a
choice of J .

where ν = exp(i2π/3). Thus, a Hamiltonian that will steer
the overall qutrit state to the desired target |ψ⊕⟩ has the
following matrix form

HA−S =
1

3




03×3

2 2 2
−1 −1 −1
−1 −1 −1

2 −1 −1
2 −1 −1
2 −1 −1

03×3




(19)

again showing that overall operation moves both subsystems
to their orthogonal subspace.

D. GEOMETRICAL CONSIDERATIONS
We have derived the quantum circuits that steer qubit and
qutrit states to their respective desired states. The quantum
circuits specifically entangle the ancilla and systems states
such that they satisfy target state convergence given by
Equation 2. This section presents the quantum circuits from
a geometrical point of view, offering insight to the kinds of
entanglement necessary.

The machinery for providing our insight is based on the
Cartan decomposition of the su(d1d2) Lie algebra, where
d1 = 2 and d2 = 2, 3 for the qubit or qutrit case, respectively
[42], [43].
Definition 2.1: A Cartan decomposition of a Lie algebra g
is defined as an orthogonal split g = k⊕m satisfying

[k, k] ⊂ k, [m,m] ⊂ k, [k,m] = m. (20)
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A Cartan subalgebra denoted by a refers to a maximal
Abelian algebra within m.

Picking basis elements one by one, and finding a Cartan
decomposition directly through Definition 2.1 is difficult
in practice. Instead, partitioning the Lie algebra into k and
m is done by an involution: a Lie algebra homomorphism
θ : g → g, such that θ(θ(g)) = g for any g ∈ g and
preserves all commutators. The involution is then used to
split the Lie algebra by defining subspaces via θ(k) = k
and θ(m) = −m. Cartan’s classification revealed that there
are only three types of decomposition for su(n). However,
we utilize the decomposition given by the corresponding
involution θ(g) = −gT for all g ∈ g (referred in literature
as an AI type decomposition). The result of the Cartan
decomposition is the ability to write any unitary operator U
as

U = K1AK2 (21)

where K1 and K2 are elements of eik and A ∈ eia are
elements defined by the Cartan subalgebra.

It is well-known that an arbitrary operator acting on two-
qubits U ∈ U(4) can be decomposed as product of a gate
U ∈ SU(4) and a global phase shift eiθ. Since the global
phase does not impact the underlying quantum mechanics,
we focus specifically on the SU(4). We are particularly
interested in the operations that are non-local, giving insight
to the necessary entanglement. Such operations are then
given as elements in SU(4)\SU(2) ⊗ SU(2). The Cartan
decomposition of su(4), any two-qubit operation can be
written as

U = k1Ak2 (22)

where k1, k2 ∈ SU(2) ⊗ SU(2) and the non-local part
A = exp(i/2(c1σxσx + c2σyσy + c3σzσz)). This represen-
tation allows separation of steering operator into local (K1,
K2) and nonlocal (A) parts. The coefficients ck ∈ [0, π] are
the non-local coordinates, and contain a geometrical structure
[46]. The coefficients for any possible ancilla-qubit steering
operator U(J) is given by

c = [J, J, 0] (23)

Figure 4 displays these parameters for any ancilla-qubit
steering operator U on the Weyl chamber – which is the
symmetry-reduced version of a cube. The point L corre-
sponds to the gate CNOT and all gates that are locally
equivalent, including the CPHASE gate. As shown, CNOT
and CPHASE gates are not locally equivalent to the steering
operator U . Thus, despite being characterized as perfect
entanglers, the CNOT and CPHASE gates do not satisfy the
steering conditions and in fact are unital operators on the
qubit. Therefore, capability of the steering operator to create
entanglement between qubit and ancilla is a necessary but
not sufficient condition to steer the qubit. Digital quantum
computers, fortunately, allow for implementation of arbitrary
unitary operations that satisfy the non-local criteria. Figure 5

UA,S =

U3
3 U1

3

U4
3 U2

3

K3 Z X
1
2 † XJ X

1
2 Z K1

K4 Z X
1
2 † ZJ X

1
2 Z K2

A

FIGURE 5: The optimized decomposition of the qubit-qubit
steering operator. Ki gates are single-qubit rotations pro-
duced by the Cartan decomposition and are parameterized by
θ and ϕ of a desired state. The non-local operatorA is decom-
posed using two CNOT gates and local qubit rotations along
X and Z axis. The circuit is further simplified by combining
possible local rotations into a single qubit rotation U3 – a
native arbitrary rotation gate on IBM Quantum computers.
The X(J/2) and Z(J/2) gates are defined as ei

π
4 JRx(πJ/2)

and ei
π
4 JRz(πJ/2) respectively. X(1/2) gate is then defined

as Rx(π/2).

is the optimal circuit given by the Cartan decomposition
for the ancilla-qubit steering operator which we execute on
digital quantum computers.

E. RAPID RESET VIA MEASUREMENT READOUTS
In our current description of the protocol, the results of
measuring the ancilla qubits are discarded – i.e. blind passive
steering. Effectively, by averaging all possibilities of readout
outcomes, the state of our system converges to a desired state.
This is advantageous as, in general, classical processing of
data is not required avoiding additional overhead. However,
by utilizing the readout results of the ancilla qubits we can
accelerate convergence of our system state. Contemporary
quantum computers have the infrastructure to process readout
results during the execution of a quantum circuit. Hence, we
take advantage of this capability to demonstrate preparation
of a desired state by utilizing readout results via the non-blind
passive steering protocol.

As a simple demonstration, note in Section II-B that the
steering operator swaps the detector and system spaces.
Therefore, if the ancilla qubit has swapped to its orthogonal
state (a readout of “1"), that means the system qubit has
successfully swapped to the desired state. In general, the
measurement of an ancilla qubit with a readout of “1” is given
by the projection operator

Π1 = |1⟩A ⟨1|A ⊗ IS . (24)

The ancilla-system state after applying the steering operator
U and measuring the ancilla state in “1” is

ρn+1
A−S =

Π1Uρ
n
A−SU

†Π1

p1
(25)

where p1 = Tr
[
UρnA−SU

†Π1

]
is the probability of measur-

ing a “1”. For further analysis and extensions of this idea, we
refer to Reference [41].
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III. EXPERIMENTS
In this section, we describe the different steps followed to
physically prepare states via measurement-induced quantum
steering (MIQS) protocol with the superconducting transmon
qubits and qutrits.

A. EXPERIMENTAL SETUP
The experiments were performed using different IBM
Quantum computers (accessed through IBM Cloud [47]):
ibm_lima, ibm_belem, and ibm_perth. The hardware com-
mands are coded using Qiskit, utilizing the recent additions
of mid-circuit measurements and active reset operations.
Furthermore, we took advantage of Qiskit Pulse [48] – a
pulse-level programming model – which allowed us to define,
calibrate, and execute quantum circuits outside conventional
definitions. The low-level access to the underlying quantum
hardware enables processing quantum information on qutrits
(three-level system), extending the concept of quantum com-
putation on two-level systems. For most operations, we used
gates calibrated by the IBM team.

For each transmon, the local oscillator (LO) frequency is
given by IBM’s calibrated |0⟩ → |1⟩ frequency, which was
kept fixed for the experiments. Transitions between the |1⟩
and |2⟩ states are achieved by using amplitude-modulated
microwave pulses via sinusoidal side-band at a frequency
f12 − f01. This results in an effective shift of frequency for
the pulses from f01 to f12 [49]. Appendix C shows the results
of the calibration. Figure 6 represents the energy levels of the
superconducting transmons architecture.

SystemAncilla

FIGURE 6: The schematic of superconducting computers
that realizes our qubit-qubit and qubit-qutrit coupling.

The MIQS circuits are designed using a combination of:
default single-qubit gates, which operate in the {|0⟩ , |1⟩}
subspace (01); default entangling CNOT gate; and custom
calibrated single-qutrit gates, which operate on the {|1⟩ , |2⟩}
subspace (12). The single-qutrits gates are defined by utiliz-
ing the amplitude of the π1→2 pulse – which we obtained
via a Rabi experiment. We use the default implementation of
the CNOT gate as defined by IBM Quantum. Extended to a
qubit-qutrit system, it acts as a SU(2 × 3 = 6) gate with
the truth table as shown in Table 2. For the control qubit in
the (01) subspace, it acts as a standard qubit CNOT gate but
with an additional phase of π/2 to the |2⟩ state of the target
qutrit [50], [51]. IBM Quantum allows the reuse of qubits

|R − I| ibmq lima |R − I| ibmq belem |R − I| ibm perth
0.000

0.025

0.050
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0.100

0.125
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0.175

0.200

FIGURE 7: Process Tomography of the steering circuit to
prepare |+⟩ on IBM Quantum machines. Both ibm_lima
and ibm_belem are 5-qubit Falcon r4 (year 2020) processors
with a quantum volume of 8 and 16, respectively. ibm_perth
is a 7-qubit Falcon r.511H (year 2021) processor with a
quantum volume of 32. As indicated by the quantum volume
benchmark, ibm_perth qubits are expected to have higher
stability and lifetime.

through mid-circuit measurements and conditional-reset. The
reset is achieved by applying a not-gate conditioned on the
measurement outcome of the qubit. During the execution
of the MIQS protocol, the ancilla qubit is measured and
subsequently reset.

For qubit readout, we used the 0−1 discriminator provided
by IBM Quantum. However, this discriminator is unable to
correctly identify excitations to the |2⟩ state, misclassifying
them as |1⟩. Therefore, to read out the qutrits, we developed
our own custom 0− 1− 2 discriminator to classify in-phase
and quadrature (IQ) points.

For a desired system state |ψ⊕⟩, we construct a batch
of MIQS circuits where the total iterations (N ) of UA,S
is incremented from 1 to a maximum of N . This enables
us to estimate the state of the system as the number of
UA,S iterations varies, and reduces the overhead due to
cloud access to hardware. For each iteration N , we conduct
quantum state tomography on the system qubit. The mea-
surement results from the quantum computer are processed
locally. The estimated state of the system qubit is taken as
an unbiased average over all ancilla qubit outcomes (i.e., a
projective measurement), and estimates of the mixed system
state is computed using maximum likelihood, minimum ef-
fort method [52]. Once we are content with the results, we
fix N = N which provides one MIQS circuit that faithfully
prepares the state |ψ⊕⟩. We repeat this process for different
coupling parameters J , noting the relationship between J ,
numbers of iterations N , and the achieved state |ψ⊕⟩ fidelity.

Before executing the MIQS protocol, we further verify the
correctness of the steering operator UA,S through quantum
process tomography (QPT). QPT is a procedure for exper-
imentally reconstructing a complete description of a noisy
quantum channel E . This is done by preparing a set of input
states {|ai⟩} and performing measurements on a set of opera-
tors {Bj} to estimate probabilities pij = Tr[B†

jE(|ai⟩ ⟨ai|)].
If the input states and measurement operators span the input
and output spaces respectively, then the set {pij} reconstructs
the channel E . For a n-qubit channel, the input space is
constructed via tensor products of {|0⟩ , |1⟩ , |+⟩ = 1√

2
(|0⟩+
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Processor Mean Qubit lifetimes Mean fidelity Blind Steering fidelity

Name Type QV T1[µs] T2[µs] 2Q gate 1Q gate SPAM U |+⟩ Mean |ψ⊕⟩
ibmq_lima Falcon r4T 8 107.3 113.5 0.9898 0.9998 0.973 0.827 0.772 ± 0.034 –
ibmq_belem Falcon r4T 16 108.5 115.9 0.9874 0.9998 0.9775 0.877 0.786 ± 0.033 –
ibm_perth Falcon r5.11H 32 180.2 133.9 0.9781 0.9997 0.987 0.846 0.954 ± 0.026 0.925 ± 0.012

TABLE 1: Table of the processors used to demonstrate the steering protocol. Values in the Processor Quantum Volume (QV),
as well as single-qubit 1Q gate, two-qubit 2Q gate, and State Preparation and Measurement (SPAM) fidelities are provided by
the IBM Quantum team [47]. The Steering operator U fidelity is computed as an average of process tomography results. The
maximum state fidelity of steering to |+⟩ is shown for each processor. The average state fidelity of steering to stabilizer states
was only performed on ibm_perth.

1 16 31
−1

0

1
ibmq lima

1 16 31

N

ibmq belem

1 16 31

ibm perth

|s|
sx
sy

sz

FIGURE 8: Steering experiment on three IBM Quantum (IBMQ) machines. The Bloch vector coordinates (sx,sy ,sz) as well as
purity (|s| =

√
s2x + s2y + s2z) of the recovered qubit state are shown to converge. The target state is |+⟩ = (1, 0, 0). Error bars

are the standard deviations from 40 executions of the protocol.

Control Target Output
|0⟩ |0⟩ |00⟩
|0⟩ |1⟩ |01⟩
|0⟩ |2⟩ |02⟩
|1⟩ |0⟩ |10⟩
|1⟩ |1⟩ |11⟩
|1⟩ |2⟩ i |12⟩

TABLE 2: Truth table for the default IBM CNOT gate where
the control qubit acts on a target qutrit. The operation is
implemented as two consecutive CNOT gates (more details
can be found in Ref. [50]).

|1⟩), |+i⟩ = 1√
2
(|0⟩ + |1⟩)}, and the measurement space

via tensor products of σx, σy , and σz . Thus a total of 4n3n

experiments are conducted to estimate 42n probabilities.
After reconstructing the channel UA−S through QPT, we

extract the error channel by composing with the inverse of
the ideal channel E = U ◦ U−1

ideal. The error channel is con-
verted to the Pauli-transfer matrix representation R, which is
strictly real. In the ideal case, R = I , the identity matrix
– representing no errors. The absolute difference between
the noisy reconstructed R and the ideal |R − I| is shown
in Figure 7. The average gate fidelity of the reconstructed
channels were F = 0.827, F = 0.877, and F = 0.846 for
ibmq_lima, ibmq_belem, and ibm_perth, respectively. While
the average gate fidelities are comparable, we can see clear
differences in matrix entries in Figure 7. Typically, two-
qubit gates will have coherent errors due to imperfections
in calibration from unwanted terms in the cross-resonance

interaction Hamiltonian [53], [54].

B. EVALUATION OF QUBIT-QUBIT PROTOCOL
We employed the MIQS protocol to prepare 1-qubit stabilizer
states. The stabilizer states serve as a suitable unitary 3-
design for the randomized benchmarking protocol. Stabilizer
states can also be defined as the states that are produced
by gates from the Clifford group (H , CNOT , and S gates)
applied to |0⟩ state. We express the system-qubit density state
as

ρS(n) =
1

2
(I + s⃗(n) · σ⃗) (26)

where s⃗(n) is a three-component vector that depends on the
current iteration n of the steering protocol, and σ⃗ is a vector
of the Pauli matrices. The single qubit stabilizers, their vector
coordinates s⃗, and the necessary steering operator UA,S are
summarized in Table 3. Following Section II-B, we develop
the quantum circuits for each desired stabilizer state. We
ran the experiment 30 times, with 1024 shots each, using
quantum process tomography to estimate the density state of
the system at each step n of the MIQS protocol. Figure 8
shows the average result, along with error bars, of running the
circuit from Figure 2a to prepare |ψ⊕⟩ = |+⟩ for n up to 30.
The error bars indicate the decoherence associated with the
system qubit. Namely, for increased n, we see an increase in
uncertainty of the measured density state. We then compute
the fidelity for all stabilizer states, and find their average.
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|ψ⊕⟩ θ ϕ s⃗ UA,S

|0⟩ 0 0 (0, 0, 1) exp
(
−iJ

2

(
σx
Aσ

x
S + σy

Aσ
y
S

))
|1⟩ π 0 (0, 0, -1) exp

(
−iJ

2

(
σx
Aσ

x
S − σy

Aσ
y
S

))
|+⟩ π

2
0 (1, 0, 0) exp

(
−iJ

2

(
σx
Aσ

z
S − σy

Aσ
y
S

))
|−⟩ π

2
π (-1, 0, 0) exp

(
−iJ

2

(
σx
Aσ

z
S + σy

Aσ
y
S

))
|i⟩ π

2
π
2

(0, 1, 0) exp
(
−iJ

2

(
σy
Aσ

x
S − σx

Aσ
z
S

))
|−i⟩ π

2
3π
2

(0, -1, 0) exp
(
−iJ

2

(
σx
Aσ

z
S − σy

Aσ
x
S

))
TABLE 3: Single qubit stabilizers parameterized by angles θ
and ϕ the steering operator UA,S for the MIQS protocol.
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(a) Average state fidelity between ρn and target state.
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FIGURE 9: Convergence of qubit fidelity throughout the
execution of the steering protocol. (a) Depicts the estimated
fidelity across three IBM quantum machines, with the best
fidelity being achieved by ibm_perth. (b) Shows that the
steering inequality given by Equation 2 is satisfied.

Figure 9a shows the average fidelity for all single-qubit
stabilizer states. Furthermore, Figure 9b confirms that the
steering inequality (Equation 2) is satisfied. The quantum
computer ibmq_perth, achieved the highest overall fidelity
and stability.

As noted in Section II-D, the qubit-qubit operator UA,S
can be characterized by the coupling parameter J . In theory,
the parameter is associated with the strength of entanglement
necessary. To experimentally analyze the role that J plays,
we prepare the stabilizer states with varying coupling J .
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(a) Average fidelity of preparing stabilizer states versus the
number of repetitions N with different coupling strengths J .
For certains values of J , the fidelity decreases at first before
increasing.
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(b) Average fidelity of steering to all stabilizer states with
different coupling strengths J . The number of repetitions of
the protocol (vertical dots) is optimally chosen for each J .
Maximum fidelity of 93±1% is observed for J = π/2+π/8.

FIGURE 10: Preparation of qubit stabilizer states with vari-
ous coupling parameter J . The fidelity is given as an average
of all stabilizer states. All experiments are performed on
ibm_perth.

Figure 10a shows the fidelity of preparing the |+⟩ state for
varying J on ibmq_perth. Although J = π/2 achieves the
fastest convergence, it does not correspond to the highest
fidelity. Figure 10b shows the average of steering all the
stabilizer states as computed by

F =
1

6

6∑

i=1

⟨ψi| ρi |ψi⟩ . (27)

On average, the best fidelity tends to arise in an intermediate
range of J values. Namely, lower J values correspond to a
strong coupling gates, which require increased engineering
effort for high-fidelity entangling gates. On the other hand,
higher J values correspond to weak coupling gates, and while
these may easier to implement the effects of decoherence
begin to dominate. Table 1 summarizes the details and the
published backend characteristics of the quantum computers.

Figure 11 takes that average number of repetitions (appli-
cation of ancilla-system entanglement operation in Figure 2a)
needed to obtain a fidelity F > 0.9 and compares it against
the non-blind steering approach. Note that we end the proto-
col once the readout of the ancilla is a 1. Each bar in the figure
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FIGURE 11: Histogram of protocol repetitions (effort) for
preparing stabilizer states with varying steering operators
determined by coupling strength J . Blind steering exhibits a
Poissonian process [41], with an exponential decaying count
frequency (log scale). The mean number of repetitions is
N blind

mean ≈ 3.8. The non-blind approach has a 2.5 times
improvement compared to the blind approach with a mean
repetition of N non−blind

mean ≈ 1.6. The cumulative distribution
function (CDF) is also shown, further displaying the faster
convergence of the active protocol.

indicates what percentage of runs lead to the desired fidelity.
For example, the leftmost bar shows that the passive quantum
steering can reach the desired fidelity 10% of the time (e.g.,
out of 100 runs) if we apply the entanglement operation only
once (n=1 in Figure 2a).

C. EVALUATION OF QUBIT-QUTRIT PROTOCOL
Quantum control beyond the two-level system has been
exploited in superconducting quantum processors since the
beginning of this technology. Examples include utilizing
the higher levels for qubit readout [55]–[57], faster qubit
initialization [58], and spin-1 quantum simulation [59]. Steps
towards ternary quantum computation with superconducting
transmon devices have developed in the last 10 years [60]–
[67]. Recently, these efforts have led to the implementation
of high-fidelity single-qutrit gates [51], [68].

Many physical devices, such as superconducting trans-
mons, naturally have higher-energy states which are often
ignored to realize qubits. However, controlling the higher-
energy states can be tricky, requiring additional techniques
to produce a desired evolution. Our goal is to prepare a
qutrit in an arbitrary state utilizing an ancilla qubit. However,
controlling qutrits can be a difficult task. There are various
factors that need to be calibrated, such as frequency of the
drive, amplitidue of the drive, leakage, etc. We believe MIQS
can simplify initialization of a qutrit, by coupling it to a qubit.

We demonstrate the protocol by the preparing an equal
superposition qutrit state

|ψ⊕⟩ =
1√
3
(|0⟩+ |1⟩+ |2⟩) (28)

via a qubit-qutrit operator as defined by Equation 19. The
protocol is repeated N times, where at each step n we

perform qutrit quantum state tomography (see Appendix D).
Figure 12 shows the estimated average fidelity at each step n
on ibmq_perth. In comparison with the qubit case, the qutrit
fidelity has increased error as a result of: (1) measurement
error for classifying the |2⟩ state, (2) coherence time of the
|2⟩ state, (3) heightened complexity of performing full qutrit
state tomography.
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FIGURE 12: Average qutrit state fidelity between ρn and
the desired target state |ψ⊕⟩ = 1√

3
(|0⟩+ |1⟩+ |2⟩). The

errors are primarily from inherent measurement error in
discriminating the qutrit state, weaker T1 coherence time of
the |1⟩ → |2⟩ subspace, and increased overhead in perform-
ing qutrit state tomography. We obtained a state fidelity of
80± 9%.

IV. CONCLUSIONS AND OUTLOOKS
In this work, we simulate a simple open quantum system on
a quantum computer following a specific case of the collision
model: measurement-induced steering.

We experimentally demonstrate measurement-induced
steering on contemporary superconducting quantum com-
puter to prepare arbitrary qubit and qutrit states. By applying
a simple repetition of gates and ancilla measurements, we
generate arbitrary qubit states with fidelity 93 ± 1% and
arbitrary qutrit states with fidelity 80 ± 9%. To achieve this,
we generate optimal quantum circuits that implement the
steering operator, and experimentally reconstruct the density
states via quantum state tomography to obtain the fidelity.
We explored the dependence of a tunable parameter that re-
lates the gate entanglement strength and fidelity convergence
with the number of repetitions of the protocol. Additionally,
we noted that by taking advantage of readout outcomes,
we may accelerate the convergence. Furthermore, for qutrit
functionality, we calibrate qutrit gates using the pulse-level
programming model Qiskit Pulse via cloud access to IBM
Quantum devices.

Traditionally, the fidelity of an initialized state and the
fidelity of a quantum gate are considered independently. We
demonstrate that by utilizing the programmability of a digital
quantum processor to simulate the dynamics of a simple open
quantum system to reach a target state, we gain insight to
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capabilities and performance of a quantum processor. The
success of the protocol – achieving high state initialization
fidelity – depends primarily on the fidelity of the quantum
gates and stability of qubits. Therefore, from a quantum
engineers point of view, the task of state preparation may be
considered a byproduct of achieving high gate fidelity.

Future work in utilizing steering for state preparation on
experimental quantum devices consists of several challenges
and possible directions:

Entangled-state preparation: highly-entangled states are
crucial for implementing error-correcting codes and perform-
ing quantum information processing. However, preparing an
arbitrary entangled state via steering requires appropriately
coupling to measurement-capable ancilla qubits. Contempo-
rary superconducting quantum devices have restrictive device
connectivity between qubits, which introduces additional
overhead to transfer quantum information (i.e. via SWAP).
Trapped ion quantum computers may be better suited for
this task due to all-to-all coupling between qubits. Unfor-
tunately, compared to superconducting qubits, measurement
operations on trapped ion qubits are more disruptive due
to stray light [69]. Assessing the feasibility of steering on
various contemporary hardware platforms remains an open
challenge.

Device-specific measurement: it is rarely the case that
measurements are conducted on a qubit directly. Instead,
measurement typically observes what effect a system |ψ⟩ has
on an environment. Generally, the system is coupled with an
apparatus |θ⟩ to give an overall state |Ψ⟩ = U |θ⟩ ⊗ |ψ⟩
after an entangling operation U . Then a measurement is
conducted on the apparatus which disentangles it from the
system. For example, superconducting transmon qubits are
measured through a readout resonator which couples with
the transmon. A frequency shift of the resonator is observed
depending on the state of the transmon [70]. Therefore,
assuming an appropriate entanglement U , it is possible to
utilize quantum steering to prepare arbitrary system quantum
states by coupling and measuring an apparatus – thereby
reducing the overall use of expensive qubits to act as ancillas.

Parameterized quantum algorithms: many near-term quan-
tum algorithms utilize parameterized quantum circuits to
prepare quantum states such that an expectation value is
minimized [71]. Unfortunately, parameterized circuits suffer
from barren plateaus whereby a classical optimizer is unable
to solve the high-dimensional non-convex optimization [72].
Quantum steering provides theoretical guarantee to state
initialization, and may overcome pitfalls in traditional param-
eterized quantum circuits. Namely, active steering provides a
feedback mechanism whereby the optimization may be aided
by conducting local decisions rather than finding a global
optimal directly.

Steering quantum gates: certain systems contain a dark
space that is spanned by several dark states. A closed (non-
)adiabatic trajectory can be used to induce a unitary operator
in the dark space [73], [74]. In other words, the generalization
of the Berry phase – a non-abelian holonomy – can be used

to realize quantum gates [75]. An intriguing direction is to
study the role that a steering protocol may play in realizing
quantum gates via a holonomy.

APPENDIX.
A. OPERATOR-SUM REPRESENTATION
To analyze the recurrence relation given by Equation (1), it
is helpful to utilize the operator sum representation. Specif-
ically, we may diagonalize the state of the ancilla qubits,
ρA =

∑
i pi |ψi⟩ ⟨ψi|, and evaluate the partial trace:

ρn+1
S = TrA

[
U

(∑

i

pi |ψi⟩A ⟨ψi|A ⊗ ρnS

)
U†
]

=
∑

k

⟨k|A U
(∑

i

pi |ψi⟩A ⟨ψi|A ⊗ ρnS

)
U† |k⟩A

=
∑

k

∑

i

Ak,iρ
n
SA

†
k,i.

(29)

The Kraus operators Ak,i =
√
pi ⟨k|U |ψi⟩ express the evo-

lution of the system ρS assuming that it is initially separable
from the ancilla. In our work, we prepare the ancillas to
known states, such as |ψA⟩ = {|0⟩ , |1⟩}. Therefore, we have
a fixed |ψi⟩ and need only Kraus operators Ak. Hence, the
evolution is

ρn+1
S =

∑

k

AkρnA
†
k (30)

where k enumerates the possible measurement outcomes of
the ancilla.

B. ANALYSIS OF STEERING TO |+⟩
The ancilla-system entanglement operator that drives the
system to |+⟩ is given by Equation 13. The Kraus operators
that govern system-qubit evolution are given by:

A0 = ⟨0A|U |1A⟩ =
cos J − 1

2
IS +

1− cos J

2
σxS

A1 = ⟨1A|U |1A⟩ =
sin J

2
(σyS + iσzS) .

(31)

By solving the operator-sum evolution given by Equation 30,
we have the following recurrence relations for the compo-
nents of s⃗(n)

sx(n) = 1− cos2n(J)sx(0) + cos2n(J)sx(0),

sy(n) = cosn(J)sy(0),

sz(n) = cosn(J)sz(0). (32)

This relation explicitly shows that

lim
n→∞

s(n) = (1, 0, 0); 0 < J < π. (33)

In other words, the system state converges exponentially to
our desired |+⟩ ⟨+| = (I + σx)/2 state with respect to
the number of steps n and does not depend on the initial
conditions. Furthermore, the fastest convergence is achieved
in one step with J = π/2.
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C. CHIP CHARACTERIZATION
In this paper, we used the IBM Quantum Falcon Processors
ibmq_lima, ibmq_belem, and ibm_perth. Qiskit Pulse was
used to perform pulse-level control, particularly to establish
qutrit operations.
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FIGURE 13: Spread of active reset fidelity in initializing |0⟩
on different IBM Quantum computers. Active reset measures
the qubit, classically checks the readout, and then rotates the
qubit if necessary.

In the steering protocol, the ancilla qubit must be reset to
a known state. This is achieved on IBM Quantum Computers
via a mid-circuit qubit active reset. We benchmark the prob-
ability of the measurement result |0⟩ as shown in Figure 13.
Applying several consecutive active resets improves the fi-
delity of preparing |0⟩.
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(b) Rabi 1 → 2 experiments per-
formed to calibrate the amplitude
of the π1→2 pulse on ibm_perth.

FIGURE 14: Frequency and amplitude sweeps to define
qutrit operations in the |1⟩ → |2⟩ subspace of the supercon-
ducting transmon.

For the transmons that implements our qutrit, we first
found the transition frequency f12. Figure 14a shows this
sweep in frequency to find the excitation. We then performed
a Rabi experiment to obtain the amplitude of the π1→2 pulse
to define rotations in the (12) sub-space. Figure 14b shows
the result of this calibration.

The measurement discriminator to classify qutrit states is
shown in Figure 15, with an accuracy of 0.917. To improve
the accuracy of the discriminator, measurement error miti-
gation was performed by correcting the average counts via
a correction matrix. The matrix was generated by prepar-
ing 6 basis input states (|00⟩ , |01⟩ , |02⟩ , |10⟩ , |11⟩ , |12⟩)

FIGURE 15: Discriminator to classify the measurement re-
sults for a superconducting transmon qutrit. The accuracy of
the discriminator is 0.917.

and computing the corresponding probabilities of measuring
counts in other basis states.

D. QUTRIT QUANTUM STATE TOMOGRAPHY
In the qubit case, an arbitrary qubit density state

ρ =
1

2
(I + axσx + ayσy + azσz), (34)

with real parameters aj , can be recovered by computing the
expectation values of the Pauli matrices. For example the
expectation value of the σx Pauli matrix

⟨σx⟩ =
1

2
(ax · 2) = ax (35)

yields the coefficient ax of our density state. We utilized
the fact that Pauli matrices follow the identity Tr(σασβ) =
2δα,β . The expectation value of the Pauli matrices has a direct
relation with the density matrix of the state. Therefore by
computing the expectation values of an appropriate set of
observables we can compute the density state.

In general, given an observable M , we may diagonalize it
by a unitary matrix U and a diagonal matrix with real entries
Λ corresponding to the eigenvalues

⟨ψ|M |ψ⟩ = ⟨ψ|U†ΛU |ψ⟩ = ⟨ψ′|Λ |ψ′⟩
=
∑

i

⟨ψ′|i⟩ ⟨i|Λ |i⟩ ⟨i|ψ′⟩ =
∑

i

λi| ⟨i|ψ′⟩ |2.

(36)

Therefore, we let the quantum computer perform the op-
eration U , and then measure in a standard basis |i⟩. The
expectation value of the observable is then recovered by
multiplying the outcomes by the eigenvalues λi.

In our qutrit case, a general density state has the form

ρ =
1

3
I3 + n⃗ · λ⃗ (37)

where n⃗ = (n1, n2, . . . , n8) are 8 real parameters and λ⃗ =
(λ1, λ2, . . . λ8) are 3× 3 Gell-Mann matrices. Similar to the
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Pauli matrices, the Gell-Mann matrices satisfy the identity
Tr(λαλβ) = 2δα,β . Therefore, computing the expectation
value ⟨λi⟩ of a qutrit density state will uncover the coefficient
ni.
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