
A

Directed Test Generation for Validation of Multicore Architectures

Xiaoke Qin and Prabhat Mishra, University of Florida

Functional validation is widely acknowledged as a major challenge for multicore architectures. Directed
tests are promising since a significantly smaller number of directed tests can achieve the same coverage
goal compared to constrained-random tests. SAT-based bounded model checking is effective for automat-
ed generation of directed tests (counterexamples). While existing approaches focus on clause forwarding
between different bounds to reduce the test generation time, this paper proposes a novel technique that
exploits temporal, structural, and spatial symmetry in multicore designs at the same time. Our proposed
technique enables the reuse of the knowledge learned from one core to the remaining cores in multicore
architectures (structural symmetry), from one bound to the next for a give property (temporal symmetry),
as well as from one property to other properties (spatial symmetry). The experimental results demonstrate
that our approach can significantly (3-10 times) reduce overall test generation time compared to existing
approaches.

Categories and Subject Descriptors: B.7.2 [INTEGRATED CIRCUITS]: Design Aids—–Verification

General Terms: Algorithms, Verification

Additional Key Words and Phrases: multicore architecture, bounded model checking, SAT solving, test gen-
eration

1. INTRODUCTION
Multicore architectures are widely used in today’s desktop and embedded computing
systems to circumvent the power wall and memory wall encountered by single core ar-
chitectures. While more and more cores are integrated into the same chip to boost the
throughput, their increasing complexity also introduces significant verification chal-
lenges. As a result, conventional random test based simulation becomes inadequate
to achieve the required coverage within ever decreasing time-to-market window. Di-
rected tests are promising to solve this problem, because a drastically small number of
directed tests are required to achieve the same coverage goal compared to random tests.
Unfortunately, most directed tests are currently manually written, which is time con-
suming and error-prone. Fully automatic directed test generation schemes are desired
to accelerate the verification process of multicore architectures.

Model checking appears to be a good candidate for automatic test generation. To ac-
tivate a particular scenario, we can feed the negated version of a property to the model
checker, and use the resultant counterexample as a directed test (discussed in Sec-
tion 3.1). However, BDD-based symbolic model checking is not suitable for test gener-
ation involving large designs and complex properties due to the state space explosion
problem. SAT-based bounded model checking (BMC) [Biere et al. 1999; Clarke et al.

This work was partially supported by NSF CAREER award 0746261.
Author’s addresses: X. Qin and P. Mishra, Department of Computer and Information Science and Engineer-
ing, University of Florida, Gainesville, FL 32611.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ YYYY ACM 1084-4309/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:2 X. Qin et al.

2001] is proposed to address this problem, which tries to falsify a property on the s-
tates reachable from the initial state within a fixed number (k) of time steps (discussed
in Section 3.2). This is implemented by unrolling the design k times, then encoding the
design and the property description as a satisfiability (SAT) problem. Next, a SAT
solver is used to find a satisfying assignment for all variables (if any), which can be
translated into a counterexample (a directed test).

When SAT-based BMC is applied to generate directed tests for multicore architec-
tures, there are three different categories of symmetry in the corresponding SAT in-
stances. The first category is the temporal symmetry. It occurs because the SAT in-
stance is encoded by unrolling the same architecture for multiple times. This regulari-
ty has already been exploited by existing research [Strichman 2001; 2004] to accelerate
the SAT solving process. On the other hand, the structural similarity of multiple cores
also introduces a second category of symmetry or structural symmetry. This symmetry
appears among the CNF clauses for different cores at the same time step. Intuitively,
we can also exploit structural symmetry by reusing the knowledge obtained from one
core to other cores. Unfortunately, this intuitive reasoning is hard to implement be-
cause it is very difficult to reconstruct the symmetry from the CNF formula. The high
level information is lost during CNF synthesis, and it is inefficient as well as com-
putationally expensive to recover through “reverse engineering” methods. The third
category of symmetry or spatial symmetry is the artifact of solving multiple related
properties for the same multicore design. It creates the opportunity to share learn-
ing across increasing bounds, different cores as well as related properties at the same
time.

In this paper, we address the directed test generation challenges for multicore archi-
tectures by developing a novel BMC based test generation technique, which enables
the reuse of learned knowledge from one core to the remaining cores in the multicore
architecture. Instead of direct synthesis of the CNF for the multicore design, we com-
pose the CNF description of the entire design using CNF formulae for cores and the
memory subsystem. Since the CNF representation of cores are generated by perform-
ing variable substitution of the CNF for one of them, the correct mapping information
is easily obtained. In this way, we are able to translate and reuse the conflict claus-
es learned on any core to other cores. We prove that the CNF description generated
by our approach has the same satisfiability as original methods. We also extend our
proposed approach to reduce the test generation time for multiple properties. Our ex-
perimental results demonstrate that our approach can remarkably reduce the overall
test generation time.

The rest of the paper is organized as follows. Section 2 describes related work on
BMC and directed test generation. Section 3 briefly discusses the background on SAT-
based BMC. Section 4 describes our test generation methodology for multicore archi-
tectures. Section 5 extends this approach in the context of multiple properties. Sec-
tion 6 discusses the implementation details of our approaches. Section 7 presents our
experimental results. Finally, Section 8 concludes the paper.

2. RELATED WORK
Model checking techniques are promising for functional verification and test gener-
ation for complex systems [Gargantini and Heitmeyer 1999; Mishra and Dutt 2004;
Koo and Mishra 2006; Qin and Mishra 2012]. Due to the state explosion problem,
conventional symbolic model checking approaches are not suitable for large designs.
SAT-based bounded model checking is introduced by Biere et al. [Biere et al. 1999] as
an alternative solution. Although BMC cannot prove the validity of a safety property
to hold globally when no counterexample is found within a specific bound, it is quite
effective to falsify a design when the bound is not large. The reason is that SAT solvers

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Directed Test Generation for Validation of Multicore Architectures A:3

usually require less space and time than conventional binary decision diagram based
model checkers [Moskewicz et al. 2001]. Therefore, SAT-based BMC is suitable for
directed test generation, where a counterexample typically exists within a relatively
small bound.

A great deal of work has been done to reduce the SAT solving time during BMC
[Strichman 2004; Hooker 1993; Whittemore et al. 2001; Chen and Mishra 2010; Qin
et al. 2010; Qin and Mishra 2011]. The basic idea is to exploit the regularity of the SAT
instances between different bounds. For example, incremental SAT solvers [Hooker
1993; Whittemore et al. 2001] reduce the solving time by employing the previously
learned conflict clauses. Generated conflict clauses are kept in the database as long
as the clauses which led to the conflicts are not removed. Strichman [Strichman 2004]
proposed that if a conflict clause is deduced only from the transition part of a SAT
instance, it can be safely forwarded to all instances with larger bounds, because the
transition part of the design will still be in the SAT instance when we unroll the de-
sign for more times. Besides, the learned conflict clauses can also be replicated across
different time steps. However, the existing approaches did not exploit the symmetric
structure within the same time step. In directed test generation for multicore architec-
tures, same knowledge about the core structure needs to be re-discovered for each core
independently, which can lead to significant wastage of computational power.

When BMC is applied in circuits, Kuehlmann [Kuehlmann 2004] proposed that the
unfolded transition relation can be simplified by merging vertices that are functional-
ly equivalent under given input constraints. In this way, the complexity of transition
relation is greatly reduced. Since this technique is based on the AIG representation of
logic designs, it is difficult to use for accelerating the solving process of CNF instances,
which are directly created from high level specifications. Verification and validation
based on high level specification are proved to be effective. For example, Bhadra et al.
[Bhadra et al. 2008] used executable specification to validate multiprocessor systems-
on-chip designs. Chen et al. [Chen and Mishra 2010][Chen et al. 2010] proposed di-
rected test generation based on high level specification. To accelerate the test gener-
ation process, conflict clauses learned during checking of one property are forwarded
to speed up the SAT solving process of other related properties, although the bound
is required as an input. Similarly, the simultaneous SAT solver [Khasidashvili et al.
2005] enabled the learned clauses to be reused by properties. These approaches did not
take the advantage of structural symmetry in multicore architectures.

When SAT instance contains symmetric structure, symmetry breaking predicate
[Aloul et al. 2002; Aloul et al. 2003; Darga et al. 2004; Tang et al. 2005; Miller
et al. 2006] can be used to speed up the SAT solving by confining the search to non-
symmetric regions of the space. By adding symmetry breaking predicates to the SAT
instance, the SAT solver is restricted to find the satisfying assignments of only one
representative member in a symmetric set. However, this approach cannot effectively
accelerate the directed test generation for multicore processors, because the properties
for test generation are usually not symmetric with respect to each core. Thus, the sym-
metric regions in the entire space are usually small despite the fact that the structure
of each core is identical. On the other hand, in component analysis for SAT solving,
Biere et al. [Biere and Sinz 2006] proposed that each component can be solved individ-
ually to accelerate the solving process. However, the symmetric structure is not used at
the same time for further speedup.

To the best of our knowledge, our work is the first attempt to simultaneously exploit
temporal, structural, and spatial symmetry to improve test generation time involving
multiple properties for multicore architectures.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:4 X. Qin et al.

3. BACKGROUND
This section briefly describes the basic concepts of directed test generation using model
checking, bounded model checking (BMC), and acceleration techniques for BMC.

3.1. Directed Test Generation with Model Checking

Fig. 1. Directed test generation using model checking

Figure 1 shows the general framework of the directed test generation based on model
checking. In order to create directed tests, the formal model of the design specification
and a suitable fault model (coverage criteria) are provided as inputs. A set of proper-
ties are then generated for the desired behaviors (faults) that should be activated in
the simulation based validation stage. For example, when a graph model of the de-
sign and a functional coverage fault model are provided, a coverage-driven property
generation can be used [Mishra and Dutt 2004]. After that, a model checker is em-
ployed to check whether there exists some states which violate the negated version of
the property. It reports a counterexample, if it finds a violation. This counterexample
contains a sequence of input information (e.g., instruction sequences for a processor
design), which will drive the system from an initial state to a state, which does not
satisfy the negated version of the property. In other words, the generated counterex-
ample satisfies the original property. Therefore, we can use it as a test to activate the
corresponding property or behavior during simulation-based validation.

3.2. Bounded Model Checking for Test Generation
Although model checking is effective for directed test generation, the capacity of the
conventional symbolic model checking is usually limited. Bounded model checking
(BMC) was proposed to address this problem by checking whether there is a coun-
terexample for the property within a given bound [Clarke et al. 2001]. Given a design
D, a safety property p, and a bound k, BMC will unroll the design k times and encode
it using the following formula:

BMC(M,p, k) = I(s0) ∧
k−1∧
i=0

R(si, si+1) ∧
k∨

i=0

¬p(si) (1)

where I(s0) is the initial state of the system, R(si, si+1) represents the state transition
from state si to state si+1, and p(si) checks whether property p holds on state si. The
formula is then transformed to CNF and checked by a SAT solver. If the SAT solver
finds some assignment which makes the CNF true, it implies that the property does
not hold at bound k, i.e., M 2k p. If no such assignment is found, we conclude that
the property holds up to k, or M �k p. In directed test generation, the negated version
of the property is checked by BMC. The SAT solver will find an assignment of all
input and state variables, which satisfies Equation (1). As a result, we can extract the

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Directed Test Generation for Validation of Multicore Architectures A:5

assignment sequence of input variables and use it as a test to activate the desired
property in the system.

Many techniques and heuristics are employed in SAT solvers to accelerate the solv-
ing process. Modern SAT solvers like zChaff [Princeton] and GRASP [Marques-Silva
and Sakallah 1999] adopt the Davis-Putnam-Logemann-Loveland (DPLL) [Davis and
Putnam 1960; Davis et al. 1962] algorithm and conflict-driven non-chronological back-
tracking. The basic idea behind these techniques is to save the knowledge learned
during resolving current conflict to avoid the same conflict in the future [Zhang et al.
2001; Zhang et al. 2004]. A conflict occurs, when the current assignment of some vari-
ables, through a set of clauses, implies that one variable must be true and false at the
same time. In this case, conflict analysis will trace back along the implication relations
and find the closest assignment of variables that led to the conflict. We can forbid such
assignment from occurring again by adding a carefully designed clause, i.e., conflict
clause, to the original CNF. Generally, conflict clauses are only meaningful within the
same SAT instance. However, when the set of clauses that led to the conflict clause
are shared by multiple SAT instances, we can also forward conflict clauses across in-
stances.

In practice, designers usually require multiple directed tests to validate different
aspects of the same design. In this case, the total test generation time can be reduced
by property clustering [Chen and Mishra 2010]. Since the knowledge learned during
the solving process of a single property can be shared among similar properties, we
can reduce total time consumption by clustering properties into different groups and
solving all the properties in the same group together. In order to create directed tests,
the formal model of the design, a set of properties for the desired behaviors (faults) are
accepted as inputs. Next, the SAT instances are grouped into different clusters based
on their similarity and then solved simultaneously to create the test suite, which can
be used to trigger the desired behaviors during simulation-based validation.

4. TEST GENERATION FOR MULTICORE ARCHITECTURES
Our technique for directed test generation is motivated by previous works on incre-
mental SAT-based BMC [Strichman 2004]. Based on the temporal symmetry between
different bounds, these methods accelerate the SAT solving process by passing the
knowledge (deduced conflict clauses) in the temporal direction. Nevertheless, the SAT
instances generated for multicore designs also exhibit remarkable structural symme-
try. Figure 2 depicts the high level structure of a system with 2 cores. Both cores are
identical1 and connected to memory subsystem with a bus. Figure 3 shows the SAT
solving process when we perform BMC for bounds 0, 1, 2, and 3 on this multicore
architecture using the technique proposed in [Strichman 2004]. We use solid dots to
represent different SAT instances and lines to indicate the conflict clause forwarding
paths. Although different cores have identical structures, this structural symmetry is
not exploited.

Intuitively, it should be beneficial if the knowledge or conflict clauses can also be
shared “vertically” among different cores as shown in Figure 4, because the solving
effort spent on a single core can be reused by other cores to save overall time con-
sumption. Unfortunately, the structural symmetry is difficult to recover from the CNF
representation of the SAT instance. The reason is that most clauses contain auxiliary
variables introduced during the CNF encoding process. Since these auxiliary variables
are unlabeled, the correspondence between clauses from different cores cannot be es-

1For ease of illustration, we first discuss our approach using a two-core architecture with homogeneous cores.
However, our technique is applicable to general multicore architectures. The application of our approach on
heterogeneous cores will be presented in Section 4.2.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6 X. Qin et al.

Fig. 2. Abstracted architecture of a two core system

tablished directly. Although the structural symmetry can be partially recovered by
solving a graph automorphism problem [Aloul et al. 2002; Aloul et al. 2003; Darga
et al. 2004], it may require impractical time for large designs, because no polynomial
time solution is found for graph automorphism problem. The underlying reason for
this dilemma is that the high level information is lost after the CNF encoding. In other
words, a single flattened CNF SAT instance is not suitable to exploit the structural
symmetry.

Fig. 3. Incremental SAT solving technique [Strichman 2004]

Fig. 4. Test generation for multicore architectures

Instead of using a monolithic CNF as input, our approach solves this problem by
composing the CNF description of the system using CNF formulae for one core, bus
and the memory subsystem. Since the cores are identical, their CNF representations
are identical as well. We just need to perform variable name substitution to obtain the
CNF for all other cores. As shown in Theorem 1, when the state variables are sub-
stituted by the correct names, the system CNF composed by these replicated CNF for
cores, bus as well as memory subsystem will have the same satisfiability behavior as

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Directed Test Generation for Validation of Multicore Architectures A:7

the original monolithic CNF representation. Since both the state variables and aux-
iliary variables in replicated cores are assigned by our algorithm, it is easy to obtain
the correct mapping between variables and clauses in different cores. The structural
symmetry can then be effectively exploited during the SAT solving process. Before we
describe our algorithm in details, we first introduce some notations.

DEFINITION 1. Symmetric Component (SC) is a set of identical finite state ma-
chines (FSM). For the jth FSM within a SC, we denote its initial condition and tran-
sitional constraints as I(sis0,j) and R(sisi,j , s

in
i,j , s

is
i+1,j , s

out
i+1,j) (0 ≤ i ≤ k − 1), where

sini,j , s
out
i+1,j , s

is
i,j are its input variables, output variables, and internal state variables at

the ith (i+ 1th) time step. It should be noted that a symmetric component itself can also
be viewed as FSM, whose input and output variables are the collection of all the input
and output variables of FSMs within it.

Fig. 5. FSM representation of Figure 2 at time step i

In a multicore system with NS identical cores, we model the set of all cores as a
symmetric component FS . Other asymmetric components, such as bus and memory
subsystem, are modeled as a single finite state machine FA. We also map the input
and output of FA to the output and input of FS so that different cores can perform
communication through bus and memory subsystem. Formally, we denote the initial
condition and transition constraints of FA as I(sA0) and R(sAi , s

Sout
i , sAi+1, s

Sin
i+1) (0 ≤

i ≤ k − 1), where sAi represent internal state variables in bus and memory subsystem
at the ith time step. Moreover, sSin

i = {sini,j |1 ≤ j ≤ NS} and sSout
i = {souti,j |1 ≤ j ≤

NS} are the input and output variables of the symmetric component FS , which is
the combination of the inputs and outputs of all cores. For example, Figure 5 shows
the FSM representation of the system in Figure 2. The symmetric component FS is
composed of Core 1 and Core 2. The rest of the system is represented by FA. In the ith

time step, the internal state variable of FS are {sisi,1, sisi,2} and sAi . The input and output
variables of FS (also the output and input variable of FA) are sSin

i = {sini,1, sini,2} and
sSout
i = {souti,1 , s

out
i,1 }, respectively.

The BMC formula of the multicore system can be expressed as

BMC(M,p, k) = I(s0) ∧
k−1∧
i=0

R(si, si+1) ∧
k∨

i=0

¬p(si)

=I(sA0) ∧
NS∧
j=1

I(sis0,j) ∧
k−1∧
i=0

(R(sAi , s
Sout
i , sAi+1, s

Sin
i+1) ∧

NS∧
j=1

R(sisi,j , s
in
i,j , s

is
i+1,j , s

out
i+1,j)) ∧

k∨
i=0

¬p(si)

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8 X. Qin et al.

ALGORITHM 1: Test Generation for Multicore Architectures
Input: i) CNF formulae CNFA

I , CNFS
I (1), CNFA

R (i), CNFS
R (i, 1), CNF p(k)

ii) Number of cores NS

iii) Maximum bound Kmax

Output: Test testp
Bound k ←− 0
Initialize variable mapping table T
Common Clause Set CCS ←− ∅
if All cores have the same initial state then

Generate CNFS
I (j) using CNFS

I (1) for 1 < j ≤ NS

Add Clauses in CNFS
I (j) to CCS for 1 ≤ j ≤ NS

end
Update T

Add Clauses in CNFA
I to CCS

while k ≤ Kmax do
Generate CNFS

R (k, j) using CNFS
R (k, 1) for 1 < j ≤ NS

Add Clauses in CNFS
R (k, j) to CCS 1 ≤ j ≤ NS

Update T

Add Clauses in CNFA
R (k) to CCS

Step1: (ConflictC, testp)←− SAT(CCS
∪

CNF p(k),T)
Step2: CCS ←− CCS

∪
Filter(ConflictC)

if testp ̸= null then return testp
k ←− k + 1

end

The basic idea of our approach is to generate CNF formula

BMC ′(M,p, k) = CNFA
I ∧

NS∧
j=1

CNFS
I (j) ∧

k−1∧
i=0

(CNFA
R (i) ∧

NS∧
j=1

CNFS
R(i, j)) ∧ CNF p(k)

and perform SAT solving on BMC ′(M,p, k) instead of solving the CNF formula di-
rectly synthesized from BMC(M,p, k), where CNFA

I , CNFS
I (j), CNFA

R (i), CNFS
R(i, j)

and CNF p(k) are the CNF representations of I(sA0), I(sis0,j), R(sAi , s
Sout
i , sAi+1, s

Sin
i+1),

R(sisi,j , s
in
i,j , s

is
i+1,j , s

out
i+1,j) and

∨k
i=0 ¬p(si), respectively.

It should be noticed that we use symmetric term CNFS
I (j) to model the initial state

constraints of each homogeneous core, because the processor cores are usually config-
ured to the reset state before testing. When the cores are homogeneous, different cores
usually have the same reset (initial) state. Thus, the initial state constraints are also
symmetric. However, the initial states in different cores can be different, when the reset
state of each core are different by design. In this case, the initial states are no longer
symmetric and should be presented in CNFA

I part. The corresponding CNF formula
therefore becomes

BMC ′(M,p, k) = CNFA
I ∧

k−1∧
i=0

(CNFA
R (i) ∧

NS∧
j=1

CNFS
R(i, j)) ∧ CNF p(k)

where CNFA
I is the conjunction of the CNF representations of I(sA0) and I(sis0,j).

Algorithm 1 shows our test generation method for multicore architectures. It ac-
cepts the CNF representation of one core, bus, the memory subsystem as well as the
properties at different time steps as inputs and produces corresponding directed tests.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Directed Test Generation for Validation of Multicore Architectures A:9

As indicated before, we first generate the CNF representations of the initial condition
and transition constraints of all other FSMs in FS based on the input CNF formulae
CNFS

I (1) 2 and CNFS
R(i, 1), which are the initial condition and transition constraints

of the first FSM (Core 1). It is accomplished by replacing variable in CNFS
I (1) and

CNFS
R(i, 1) with corresponding variables for other FSMs (cores). At the same time, we

maintain a table T 3 to record the symmetric set of variables for both state variables
and auxiliary variables. After that, we invoke the SAT solving process on the conjunc-
tion of clauses in CCS and CNF p(k), which is equivalent to BMC ′(M,p, k) defined
above. Next, we perform the following two steps.

(1) During SAT solving, analyze any conflict clause cls found by the SAT solver. If cls is
purely deduced by the clauses which belong to a single FSM, replicate and forward
cls to all other FSMs. This is implemented by substituting the variables in cls by
their counterparts for each FSM in FS based on table T . At the same time, we also
replicate the cls in temporal direction, as discussed in [Strichman 2004].

(2) After the solving process, only keep new conflict clauses that are deduced indepen-
dent of CNF p(k), and merge them into CCS.

If the satisfied assignment, or a counterexample testp is found in step 1, the algo-
rithm returns it as a test. Otherwise, the algorithm repeats for each bound k until the
maximum bound is reached.

Fig. 6. Test generation for multicore architectures

We use the same example in Figure 2 to illustrate the flow of Algorithm 1. The two
different clause forwarding paths employed in our approach are shown in Figure 6.
Suppose (¬ai ∨ bi ∨ ci+1) and (ai ∨ ¬di+1) are two clauses within CNFS

R(i, 1) (transi-
tion constraint of Core 1). In the first iteration for k = 0, two clauses (¬a′i ∨ b′i ∨ c′i+1)

and (a′i ∨ ¬d′i+1) will be produced during the generation of CNFS
R(i, 2) (transition con-

straint of Core 2). In the subsequent SAT solving process, suppose a conflict clause
(bi ∨ ci+1 ∨ ¬di+1) is deduced based on (¬ai ∨ bi ∨ ci+1) and (ai ∨ ¬di+1), it will be for-
warded to Core 2, because its two parent clauses are all from the CNF formula for
Core 1. Therefore, (b′i ∨ c′i+1 ∨ ¬d′i+1) can now be used by Core 2 to prevent the par-
tial assignment {b′i, c′i+1, d

′
i+1} = {0, 0, 1}, which will result in a conflict on a′i. Such

2Only when all cores have the same initial state
3As discussed in Section 6, a physical table is not required, instead a mapping function is used in our
framework.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10 X. Qin et al.

forwarding of conflict clauses is not possible using Strichman’s approach [Strichman
2004], which only considers temporal symmetry but not structural symmetry.

In the remainder of this section, we prove the correctness of our approach and dis-
cuss application of our approach in the context of heterogeneous multicore architec-
tures.

4.1. Correctness of Our Proposed Approach
To prove the correctness of our test generation approach, we need to ensure that the
produced CNF formula BMC ′(M,p, k) in Algorithm 1 has the same satisfiability as
BMC(M,p, k).

THEOREM 1. BMC(M,p, k) and BMC ′(M,p, k) have the same satisfiability.

PROOF. Clearly, we have

BMC(M,p, k) = I(s0) ∧
k−1∧
i=0

R(si, si+1) ∧
k∨

i=0

¬p(si)

=I(sA0) ∧
NS∧
j=1

I(sis0,j) ∧
k−1∧
i=0

(R(sAi , s
Sout
i , sAi+1, s

Sin
i+1) ∧

NS∧
j=1

R(sisi,j , s
in
i,j , s

is
i+1,j , s

out
i+1,j)) ∧

k∨
i=0

¬p(si)

By their definitions, CNF formulae CNFA
I , CNFS

I (j), CNFA
R (i), CNFS

R(i, j)
and CNF p(k) are CNF representation of propositional formulae I(sA0), I(sis0,j),
R(sAi , s

Sout
i , sAi+1, s

Sin
i+1), R(sisi,j , s

in
i,j , s

is
i+1,j , s

out
i+1,j) and

∨k
i=0 ¬p(si), where 0 ≤ i ≤ k − 1

and 1 ≤ j ≤ NS .
Therefore, BMC(M,p, k) has the same satisfiability as

BMC ′(M,p, k) = CNFA
I ∧

NS∧
j=1

CNFS
I (j) ∧

k−1∧
i=0

(CNFA
R (i) ∧

NS∧
j=1

CNFS
R(i, j)) ∧ CNF p(k)

because the auxiliary variables introduced during CNF conversion do not change the
satisfiability. In other words, BMC(M,p, k) and BMC ′(M,p, k) have the same satisfi-
ability.

In fact, the value of state variables in a satisfying assignment of BMC ′(M,p, k)
also satisfy BMC(M,p, k) and therefore can be used as a counterexample of the
property p. The reason is that the value of the variables in a satisfying assignmen-
t of BMC ′(M,p, k) will also satisfy all CNF formulae CNFA

I , CNFS
I (j), CNFA

R (i),
CNFS

R(i, j) and CNF p(k). Thus, the value of the state variables will satisfy corre-
sponding propositional formulae I(sA0), I(s

j
0), R(sAi , s

A
i+1), R(sji , s

j
i+1) and

∨k
i=0 ¬p(si).

Hence, they together will satisfy BMC(M,p, k), which is a conjunction of above propo-
sitional formulae. Therefore, the correctness of our algorithm is justified.

4.2. Test Generation for Heterogeneous Multicore Architecture
So far, we discussed our algorithm using homogeneous cores. This section describes the
application of our approach in the presence of heterogeneous cores. In a heterogeneous
multicore system, if all cores are completely different, there is no structural symmetry.
Therefore, it is not possible to reduce the test generation time. However, most real
systems usually employ a cluster of identical cores for same computational purpose.
In this case, we can first group them into symmetric components based on their types,

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Directed Test Generation for Validation of Multicore Architectures A:11

then apply our algorithm to each symmetric component. For example, in the 5-core
system shown in Figure 7, core 5 is used for monitoring and Core 1-4 are identical
cores for computation. We can define Core 1-4 as the symmetric component and apply
our algorithm on them. In general, we can apply our algorithm on each cluster of
identical cores in a system.

Fig. 7. Multicore system with different types of cores

However, when the heterogeneous cores are not completely different, i.e., only some
functional units in them are different, our proposed algorithm can be employed in a
more efficient way. Recall that the FSMs in a symmetric component are not restrict-
ed to cores. We can actually define the symmetric component in such a way that it
includes only the identical functional units in different cores. For example, Figure 8
shows a system with heterogeneous cores. Both of the cores are pipelined with five
stages: fetch, decode, execute, memory access, and writeback. The only difference is
that they have different implementation in the execute stage EX. In this case, we de-
fine our symmetric component FSas the set of all functional units in two cores except
EX. These two execution stages as well as bus and memory subsystem are modeled in
the asymmetric part FA. Of course, the input and output of FS here will include not
only the input and output variable of the cores, but also all the interface variables be-
tween EX and other stages. In this way, the information learned from all other stages
of one core can still be shared by the other core. Clearly, the correctness of our ap-
proach is still guaranteed, because the selection of the symmetric component satisfies
its definition.

Fig. 8. Multicore system with different types of execution units

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12 X. Qin et al.

5. TEST GENERATION INVOLVING MULTIPLE PROPERTIES
Section 4 describes how to improve test generation time for a given property in a multi-
core architecture, but in reality, the same multicore design is validated using multiple
different properties. Existing research [Chen and Mishra 2010] suggests that the over-
all test generation time can be effectively reduced by exploiting the similarity among
similar properties, i.e., spatial symmetry. If we can group similar properties into clus-
ters, and reuse the knowledge we learned during solving different properties within
each cluster, we may be able to avoid unnecessary repetition of solving effort during
the test generation of similar properties.

(a) Algorithm 1 (b) Chen et al. [Chen and Mishra 2010]

(c) A naive combination of (a) and (b) (d) Variable assignments during
checking p1 at k = 3

Fig. 9. Different incremental SAT solving techniques

Figure 9 illustrates the clause forwarding paths in two different techniques: i) direct
application of Algorithm 1 on each property and ii) test generation for multiple prop-
erties with known bounds [Chen and Mishra 2010]. In this example, there are three
properties p1, p2, and p3 with bounds 3, 2, and 1 respectively. We use solid dots to rep-
resent different SAT instances (conjunction of the mutlicore design and property CNF
clauses) and lines to indicate the conflict clause forwarding paths. Algorithm 1 solved
each property separately, and passed the knowledge (deduced conflict clauses) “hori-
zontally” within instances for the same property (Figure 9a). Although the knowledge
is shared among different cores within same property, there is no knowledge reused
across different properties. In contrast,Chen et al. [Chen and Mishra 2010] solved one
“base” property first, (e.g., p2 in this case), then forward the learned clause “vertically”
between other SAT instances for different properties, as shown in Figure 9b. As dis-
cussed in Section 2, their work did not consider multicore architectures, and was not
designed to exploit structural symmetry..

Clearly, since multiple properties are checked on the same design, this spatial sym-
metry can be effectively exploited if we can appropriately forward conflict clauses “ver-
tically” between properties while solving each property “horizontally”. In this way, the
knowledge learned during checking a property for a specific bound can benefit other

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Directed Test Generation for Validation of Multicore Architectures A:13

properties. One intuitive way to combine the two approaches, as shown in Figure 9c, is
to choose some property as base property (p2 in Figure 9c), check this property for dif-
ferent bounds, and then forward the learned conflict clauses to other SAT instances for
other properties. Unfortunately, this naive combination has three problems. First, it is
very hard to choose the base property, that can yield a set of beneficial conflict clauses
which can be shared by other properties. Unlike [Chen and Mishra 2010], where each
property has only one SAT instance for the known bound, in general, it is not possible
to predict the total number of SAT instances to be solved. As a result, it is impossible
to apply the clustering technique proposed in [Chen and Mishra 2010], to determine
the base property. Secondly, even if we correctly find the optimal base property, it is
still difficult to choose the suitable bound for the remaining properties (e.g., p1 and p3
in Figure 9c), to forward clauses, because SAT instances with inappropriate bounds
may be solved trivially. Moreover, the learning during checking non-base properties is
wasted. For example, in Figure 9d, suppose (¬ai∨bi∨ci+1), (ai∨¬di+1) and (ai∨¬ei+1)
are clauses within the transition constraint of the system at time step i + 1. In the
SAT solving process of p2 with bound k = 2, a conflict clause (b0 ∨ c1 ∨ ¬d1) is deduced
based on (¬a0 ∨ b0 ∨ c1) and (a0 ∨¬d1) to prevent the assignment {b0, c1, d1} = {0, 0, 1},
which will result in a conflict on a0. During the solving process of p1 with bound k = 2,
the SAT solver may explore the assignment {b0, c1, d1} = {0, 0, 1} if Strichman’s ap-
proach [Strichman 2004] is employed. Such assignment can be avoided by using [Chen
and Mishra 2010] (as shown in Figure 9b and Figure 9c), because the learned conflict
clause (b0 ∨ c1 ∨ ¬d1) is forwarded to p1.

However, learned clauses are only allowed to be forwarded from the base property
(p2 in this case). The knowledge learned during solving non-base properties will not
be reused. As indicated in Figure 9d, conflict clause (b0 ∨ c1 ∨ ¬e1) is deduced based
on (¬a0 ∨ b0 ∨ c1) and (a0 ∨ ¬e1) during the solving process of p3 with bound k = 1.
Since p3 is not a base property, this information will not be reused by p1. Therefore,
during the solving process of p1 with bound k = 2, the SAT solver will still try to make
the assignment {b0, c1, e1} = {0, 0, 1}. When the number of properties is large, this
may cause a great waste of computational power, because we have to explore the same
search space for many times, if the space is not visited during the solving process of
the base property.

Our approach to solve this problem is based on the effective identification of conflict
clauses that can be shared by other SAT instances across properties and bounds. In
fact, for any bound k0 ≥ 0, all SAT instances generated during BMC (Equation (1))
with k ≥ k0 clearly share the transition clauses I(s0) ∧

∧k0−1
i=0 R(si, si+1), although their

property terms
∨k

i=0 ¬p(si) are different. This observation implies that all conflict caus-
es deduced based on these common clauses during solving process of any SAT instance
can be forwarded to any other SAT instances with k ≥ k0, because all of them have the
same set of clauses that led to the conflict clause. Therefore, if we check all properties
together for k = 0, 1, 2, ..., all conflict clauses can be safely shared by all subsequent
SAT instances. In this way, we are able to utilize temporal, structural, as well as s-
patial symmetry at the same time. As discussed in Section 6, since only one copy of
the transition relation is maintained, solving several properties together causes minor
increase in total number of original clauses.

Algorithm 2 outlines our test generation method for clustered properties. It can be
viewed as a natural extension of Algorithm 1. The only differences is that Algorithm 2
accepts a cluster of properties as input and produces the entire test set. For each prop-
erty p at each bound k, Algorithm 2 performs SAT solving using the same technique
as Algorithm 1 (Step 1), and keeps only new conflict clauses that are deduced indepen-

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14 X. Qin et al.

ALGORITHM 2: Test Generation For Properties in a Cluster

Input: i) CNF formulae CNFA
I , CNFS

I (1), CNFA
R (i), CNFS

R (i, 1)
ii) Number of cores NS

iii) Properties P ,
iv) Maximum bound Kmax

Output: Test Set TS
Bound k ←− 0
Initialize variable mapping table T
Common Conflict Clause Set CCS ←− ∅
if All cores have the same initial state then

Generate CNFS
I (j) using CNFS

I (1) for 1 < j ≤ NS

Add Clauses in CNFS
I (j) to CCS for 1 ≤ j ≤ NS

end
TS ←− ∅
Update T Add Clauses in CNFA

I to CCS
while P ̸= ∅ and k ≤ Kmax do

Clause Set CSk
T ←− BMC(D, true, k)

Generate CNFS
R (k, j) using CNFS

R (k, 1) for 1 < j ≤ NS

Add Clauses in CNFS
R (k, j) to CCS 1 ≤ j ≤ NS

Update T

Add Clauses in CNFA
R (k) to CCS

for p ∈ P do
Create CNF p(k)

Step1: (ConflictC, testp)←− SAT(CCS
∪

CNF p(k),T)
Step2: CCS ←− CCS

∪
Filter(ConflictC)

if testp ̸= null then
remove p from P
TS ←− TS

∪
testp

end
end
k ←− k + 1

end
return TS

dent of CNF p(k) in CCS. In this way, the knowledge reuse across different properties
are achieved implicitly.

Fig. 10. Test generation for multiple properties

We use the same example in Figure 9 to illustrate the flow of Algorithm 2. The clause
forwarding path are shown in Figure 10. In the first iteration for k = 0, suppose we

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Directed Test Generation for Validation of Multicore Architectures A:15

randomly pick p2 from the property set. At the beginning, the common conflict clause
set CCS is empty. Thus, p2 is solved directly. Since the bound of p2 is 2, the SAT in-
stance is not satisfiable and no test is generated. However, all conflict clauses deduced
based on clauses in CS0

T are now recorded in CCS, and will be used to accelerate the
solving process of both p1 and p3 at bound 0. Similarly, the conflict clauses generated
during solving p1 at k = 0 will be used to speed up p3 at k = 0 (assumes p3 is solved
last). In the next iteration, all instances will be solved with the help of conflict clauses
learned by all three SAT instances at k = 0, because all conflict clauses are recorded in
CCS. Eventually, three tests will be generated at bound 3, 2, and 1 for p1, p2 and p3, re-
spectively. In the case of Figure 9d, since both (¬a0∨b0∨c1), (a0∨¬d1) and (a0∨¬e1) are
clauses from the transition constraint of the system, both (b0∨c1∨¬d1) and (b0∨c1∨¬e1)
will be recorded in CCS based on Algorithm 2. Therefore, during the solving process of
p1 with bound k = 2, the SAT solver will skip the assignment {b0, c1, d1} = {0, 0, 1} and
{b0, c1, d1} = {0, 0, 1}. In this way, the unnecessary waste of time is avoided. Reuse of
learning accross a set of related properties enables Algorithm 2 to perform better than
Algorithm 1, as demonstrated in Figure 11.

6. IMPLEMENTATION DETAILS
Our test generation algorithm for multicore architectures is built around NuSMV mod-
el checker [NuSMV] and zChaff SAT solver [Princeton]. We first model the system us-
ing SMV language, then use NuSMV to generate the CNF formulae CNFA

I , CNFS
I (1),

CNFA
R (i), CNFS

R(i, 1) and CNF p(k) in DIMACS format as the input of Algorithm 1.
zChaff is employed as the internal SAT solver. In this section, we briefly explain CNF
generation process and the implementation of Step 1 and Step 2 in Algorithm 1 and
Algorithm 2.

The generation of CNF descriptions for a single core, bus and memory subsystem
using NuSMV is straightforward. The only practical consideration is that all variables
are represented by their indices in CNF clauses. As a result, it is important to avoid
the same index to be used by two different variables. Since NuSMV does not offer any
external interface to control the index assignment, we modified the source code to make
the index space suitable for our purpose. The basic idea is to make the assignment of
indices satisfy the following two constraints: 1) the indices of variables from the same
core at the same time step are assigned continuously; 2) the indices of variables of
the same time step across cores are assigned continuously as well. For example, in a
2-core system with each core having 100 variables, in time step 1 for Core 1 we can use
indices from 1-100 (controlled by the first constraint) whereas the second constraint
indicates that the variables for Core 2 at time step 1 should be 101-200. Therefore,
201-300 can be used to represent variables of Core 1 in time step 2, and so on. Based
on these two constraints, the computation of the indices of symmetric variables can be
efficiently implemented as increasing or decreasing by a certain offset.

During SAT solving, we also need to track the dependency of generated conflict claus-
es to determine whether they can be forwarded to other cores. This can be easily im-
plemented within zChaff, which provides clause management scheme to support incre-
mental SAT solving. For each clause in its clause database DB, zChaff uses a 32-bit
group ID to track the dependency. Each bit identifies whether that clause belongs to a
certain group. When a conflict clause is deduced based on clauses from multiple group-
s, its group ID is a “OR” product of the group ID of all its parent clauses, i.e., this clause
belongs to multiple groups. zChaff also allows user to add or remove clauses by group
ID between successive solving processes. If one clause belongs to multiple groups, it is
removed when any of these groups are removed. With these mechanisms, the step 1
and 2 in Algorithm 1 and Algorithm 2 can be implemented efficiently as follows:

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16 X. Qin et al.

(1) Add clauses in CNFS
I (j) and CNFS

R(i, j) with group ID j, 1 ≤ j ≤ NS

(2) Add clauses in CNFA
I , CNFA

R (i) with group ID NS + 1.
(3) Add clauses in CNF p(k) with group ID NS + 2.
(4) When a new conflict clause is obtained during SAT solving, if it only belongs to a

single group with ID smaller than NS + 1, replicate this clause to all other cores
with proper group ID.

(5) After solving all clauses in DB with zChaff, remove clauses with group ID NS + 2.

The overhead introduced by dependency identification and tracking in our algo-
rithms is negligible compared to the improvement in SAT solving time. At the same
time, since the indices of variables in symmetric cores are carefully assigned, the map-
ping table T is not maintained explicitly, but implemented as a simple mapping func-
tion, which is used to generate forwarding clauses for different cores. In that way, we
avoid the potential caching overhead which may deteriorate the performance of the
SAT solver.

7. EXPERIMENTS
We have evaluated the applicability and usefulness of our test generation technique
on different multicore architectures.

7.1. Experimental Setup
As described in Section 6, the designs and properties are described in SMV language
and converted to required CNF formulae (DIMACS files) using modified NuSMV [NuS-
MV]. We used zChaff [Princeton] as our SAT solver to implement our test generation
algorithm. Experiments were performed on a PC with 3.0GHz AMD64 CPU and 4G-
B RAM. First, we present results of our approach using a multicore design that is
composed of different number of identical cores, one bus, and memory subsystem. The
pipeline inside each core has five stages: fetch, decode, execute, memory access, and
writeback. Besides, every core has its own cache, which is connected with the memory
through the bus. Each core is described using 314 lines of SMV code. We also assume
that all cores have the same reset (initial) state. Next, we will present (in Figure 13)
the applicability of our approach on heterogeneous multicore architectures.

In order to activate the desired system behaviors, we used different number of prop-
erties on designs with different complexity. Our experiments also use very complex
properties such as: “if the value in a memory location which is initialized as one by
core1, is increased by one by all other cores, it should be equal to the number of cores
when it is readback by core0”. It should be noted that the corresponding property is not
symmetric with respect to all cores. Our property clustering approach for designs giv-
en in graph models is similar to [Chen and Mishra 2010]. The properties are grouped
together by their similarity on structural or textual overlap.

7.2. Results
We compared our approach with Strichman’s approach [Strichman 2004] and original
BMC [Clarke et al. 2001]. Algorithm 1 and Algorithm 2 represent our approaches de-
scribed in Section 4 and Section 5, respectively. Each approach was used to solve a se-
quence of SAT instances for the same property with varying bounds until a satisfiable
instance is found. The input SAT instances for Strichman’s approach and the origi-
nal BMC was directly synthesized from BMC(M,p, k) to improve their performance.
When our approach was applied, we performed the SAT solving on BMC ′(M,p, k) as
described in Section 4. We also tried to compare with [Aloul et al. 2003]. Unfortu-
nately, the implementation [ALOUL 2003] failed to produce the symmetry breaking
predicates due to the large size of our input CNF (more than 600k clauses).

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Directed Test Generation for Validation of Multicore Architectures A:17

Fig. 11. Test generation time with different number of cores

Figure 11 presents the average test generation time for different number of cores.
The original BMC failed to produce results within 3000 seconds on several properties
for the 16 core system. Therefore, its time is omitted. As expected, the time consump-
tion increases with the number of cores. Both our approach and Strichman’s approach
[Strichman 2004] are remarkably faster than original BMC [Clarke et al. 2001]. By ef-
fective utilization of both structural and temporal symmetry, Algorithm 1 outperforms
[Strichman 2004] (which only considers temporal symmetry) by nearly 2 times. Since
multiple properties are checked on the same design, Algorithm 2 further reduces the
average solving time by exploiting the spatial symmetry, which outperforms [Strich-
man 2004] by 3-4 times.

Table I. Test generation time for 8 core system
Prop. Bound BMC STR’04 Algorithm 1 Algorithm 2 Speedup over Speedup over

Time(s) Time(s) BMC STR’04
1 28 79 56 25 19 4.16 2.95
2 22 67 44 21 17 3.94 2.59
3 32 93 62 30 12 7.75 5.17
4 28 208 94 17 9 23.11 10.44
5 33 * 342 148 130 - 2.63
6 20 413 124 47 15 27.53 8.27
7 20 * 125 48 26 - 4.81
8 23 883 140 63 22 40.14 6.36
9 25 2106 157 128 105 20.06 1.50

10 25 1991 106 101 21 94.81 5.05
Total - 5840 1250 628 376 15.53 3.32

* represent run times exceeding 3000 sec.

Table I shows a more detailed comparison of different approaches on the 8 core sys-
tem for 10 most time consuming properties. The first column represents the names of
properties used. The second column shows the corresponding bounds or time steps to
activate each property. The next three columns present the test generation time (in
seconds) for each property using the original BMC [Clarke et al. 2001], Strichman’s
approach [Strichman 2004] (STR’04), and our approaches (Algorithm 1 and Algorith-
m 2), respectively. The first three techniques are applied to each property indepen-
dently, while Algorithm 2 is applied to property clusters. The time is calculated as the
summation of the time to solve all the SAT instances from k = 0 to the bound of the
property. The time calculation also includes the time consumed by non-SAT-solving
steps in Algorithm 1 and Algorithm 2. The last two columns indicate the speedup of

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:18 X. Qin et al.

Algorithm 2 over [Clarke et al. 2001] and [Strichman 2004]. It can be seen that Algo-
rithm 1 outperforms both [Clarke et al. 2001] and [Strichman 2004] by 2 and 10 times,
repectively. Due to the reuse of knowledge across different properties, Algorithm 2 out-
performs Algorithm 1 by 40%. We also performed these experiments with asymmetric
initial states constraints. The results suggest that our approaches still perform 2-10
times faster than existing approaches. This can be explained by the fact that the initial
constraints only produces a quite small amount of clauses, which is much less than the
clauses produced by the unrolled transition relations.

Table II. Detailed test generation information

k [Strichman 2004] Our approach (Algorithm 1)
#Cls in DB #Decision #Fwd Cls Time(s) #Cls in DB #Decision #Fwd Cls Time(s)

19 721427 40045 25608 2.4 756149 21231 4441 1.2
20 762855 71854 27329 3.6 857103 30049 26685 2.7
21 827272 56692 22824 3.4 900428 35687 24534 3.1
22 893382 203112 102202 15.4 965925 30873 6834 1.9
23 954998 2652411 142585 97.3 1029266 1228603 261989 52.8

Total - 3024114 320548 122.1 - 1346443 324483 61.7

To inspect the reason of our improvement over [Strichman 2004], we analyze the
behavior of the SAT solver. Table II shows details of the last five SAT instances imme-
diately before the bound was found during the BMC of property 8 on the 8-core system
(highlighted entry in Table I). The first column in Table II is the time step of each SAT
instance. The next four columns contain the real size of the clause database before
the solving process, the number of decisions made by zChaff, the number of forwarded
conflict clauses and the time consumption in [Strichman 2004]. Similar information of
our approach is represented in the last four columns. Compared to [Strichman 2004],
the total number of decisions made by the SAT solver is much smaller when our ap-
proach is applied. At the same time, the number of forwarded clauses are comparable.
In other words, Algorithm 1 saves the time to rediscover the same knowledge for each
core, without the overhead of forwarding too many conflict clauses. Similar effects can
also be observed during the application of Algorithm 2.

Fig. 12. Test generation time with different interactions

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Directed Test Generation for Validation of Multicore Architectures A:19

Fig. 13. Test generation time with heterogeneous cores

We also investigated the impact of different number of cores involved in the inter-
action on the test generation time. In this experiment, we use a processor with eight
3-stage cores. They are connected to the memory subsystem using snoopy protocol.
The desired test should trigger all cores perform read and write operation on the same
shared memory variable in certain order. The results are given in Figure 12. When the
interaction involves only a small number of cores, the difference in test generation time
of [Clarke et al. 2001], [Strichman 2004], and our approach is quite small. However,
when more and more cores are involved, our approach outperforms both [Clarke et al.
2001] and [Strichman 2004] remarkably, due to the usage of symmetry information.

To illustrate the effectiveness of our approach in a more general scenario, we mea-
sure the test generation time on a system with heterogeneous cores. We use cores with
different implementations in their fetch, issue, execution stages, and repeat the previ-
ous test generation experiments. As discussed in Section 4.2, we only replicate learned
conflict clauses within the symmetric components. Figure 13 shows the result. The
“fetch” curve corresponds to a system where the 8 cores are identical except their fetch
stages. Similarly, curves marked as “Issue” and “Execution” represent cores with differ-
ent issue and execution stages, respectively. We also show the test generation time for
homogeneous cores using our approach (“None”) and [Strichman 2004] as reference. It
can be observed that due to less scope of knowledge reuse, the time consumption of our
approach for heterogeneous cores are generally larger than homogeneous cores. Nev-
ertheless, our approach still outperforms [Strichman 2004] especially for complicated
interactions involving many cores.

8. CONCLUSIONS
Functional verification of multicore architectures is challenging due to the increased
design complexity and reduced time-to-market. Directed tests are promising because
it requires significantly less number of tests to achieve the same coverage requirement
compared to random tests. Unfortunately, the automatic generation of directed tests
is time consuming due to the limitation of current model checking tools. Existing in-
cremental SAT approaches have only exploited the temporal symmetry in BMC across
different time steps. In this paper, we presented a novel approach for directed test gen-
eration of multicore architectures that exploits temporal, structural, as well as spatial
symmetry in SAT-based BMC. The CNF description of the design is synthesized using
CNF for cores, bus and memory subsystem to preserve the mapping information be-
tween different cores. As a result, the symmetric high level structure, i.e., structural

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:20 X. Qin et al.

symmetry, is well preserved and the knowledge learned from a single core can be effec-
tively shared by other cores during the SAT solving process. We also exploit the spatial
symmetry of the same design by reusing the knowledge across different properties. The
experimental results using homogeneous as well as heterogeneous multicore architec-
tures demonstrated that the test generation time using our approach is remarkably
smaller (3-10 times) compared to existing methods.

REFERENCES
ALOUL, F. A. 2003. Shatter. http://www.aloul.net/Tools/shatter/.
ALOUL, F. A., MARKOV, I. L., AND SAKALLAH, K. 2003. Shatter: efficient symmetry-breaking for boolean

satisfiability. In Proceedings of the Design Automation Conference. ACM, New York, NY, USA, 836–839.
ALOUL, F. A., RAMANI, A., MARKOV, I. L., AND SAKALLAH, K. 2002. Solving difficult SAT instances in the

presence of symmetry. In Proceedings of the Design Automation Conference. ACM, New York, NY, USA,
731–736.

BHADRA, J., TROFIMOVA, E., AND ABADIR, M. S. 2008. Validating power architecture technology-based
mpsocs through executable specifications. IEEE Trans. Very Large Scale Integr. Syst. 16, 388–396.

BIERE, A., CIMATTI, A., CLARKE, E. M., AND ZHU, Y. 1999. Symbolic model checking without BDDs. In
Proceedings of TACAS. Springer-Verlag, London, UK, 193–207.

BIERE, A. AND SINZ, C. 2006. Decomposing SAT problems into connected components. Journal on Satisfia-
bility, Boolean Modeling and Computation 2, 191–198.

CHEN, M. AND MISHRA, P. 2010. Functional test generation using efficient property clustering and learning
techniques. IEEE Trans. on CAD of Integrated Circuits and Systems 29, 3, 396–404.

CHEN, M., QIN, X., AND MISHRA, P. 2010. Efficient Decision Ordering Techniques for SAT-based Test
Generation. In Proceedings of Design, Automation & Test in Europe. European Design and Automation
Association, 3001 Leuven, Belgium, Belgium, 490–495.

CLARKE, E., BIERE, A., RAIMI, R., AND ZHU, Y. 2001. Bounded model checking using satisfiability solving.
Formal Methods in System Design 19, 1, 7–34.

DARGA, P. T., LIFFITON, M. H., SAKALLAH, K. A., AND MARKOV, I. L. 2004. Exploiting structure in sym-
metry detection for cnf. In Proceedings of the Design Automation Conference. ACM, New York, NY, USA,
530–534.

DAVIS, M., LOGEMANN, G., AND LOVELAND, D. 1962. A machine program for theorem-proving. Communi-
cation of ACM 5, 7, 394–397.

DAVIS, M. AND PUTNAM, H. 1960. A computing procedure for quantification theory. Journal of ACM 7, 3,
201–215.

GARGANTINI, A. AND HEITMEYER, C. 1999. Using model checking to generate tests from requirements
specifications. In ACM SIGSOFT Software Engineering Notes. Vol. 24. ACM, New York, NY, USA, 146–
162.

HOOKER, J. N. 1993. Solving the incremental satisfiability problem. Journal of Logic Programming 15, 1-2,
177–186.

KHASIDASHVILI, Z., NADEL, A., PALTI, A., AND HANNA., Z. 2005. Simultaneous SAT-based model checking
of safety properties. In Proceedings of Haifa Verification Conference. 56–75.

KOO, H.-M. AND MISHRA, P. 2006. Functional test generation using property decompositions for validation
of pipelined processors. In Proceedings of Design, Automation & Test in Europe. European Design and
Automation Association, 3001 Leuven, Belgium, Belgium, 1240–1245.

KUEHLMANN, A. 2004. Dynamic transition relation simplification for bounded property checking. In Pro-
ceedings of the 2004 IEEE/ACM International conference on Computer-aided design. IEEE Computer
Society, Washington, DC, USA, 50–57.

MARQUES-SILVA, J. P. AND SAKALLAH, K. A. 1999. GRASP: A Search Algorithm for Propositional Satisfi-
ability. IEEE Transactions on Computers 48, 506–521.

MILLER, A., DONALDSON, A., AND CALDER, M. 2006. Symmetry in temporal logic model checking. ACM
Comput. Surv. 38, 3, 8.

MISHRA, P. AND DUTT, N. 2004. Graph-based functional test program generation for pipelined processors.
In Proceedings of Design, Automation & Test in Europe. European Design and Automation Association,
3001 Leuven, Belgium, Belgium, 182–187.

MOSKEWICZ, M. W., MADIGAN, C. F., ZHAO, Y., ZHANG, L., AND MALIK, S. 2001. Chaff: engineering an
efficient SAT solver. In Proceedings of the Design Automation Conference. ACM, New York, NY, USA,
530–535.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Directed Test Generation for Validation of Multicore Architectures A:21

ITC-IRST AND CMU. NuSMV. http://nusmv.irst.itc.it/.
PRINCETON. zChaff. http://www.princeton.edu/∼chaff/zchaff.html.
QIN, X., CHEN, M., AND MISHRA, P. 2010. Synchronized generation of directed tests using satisfiability

solving. In Proceedings of the International Conference on VLSI Design. IEEE Press, Piscataway, NJ,
USA, 351–356.

QIN, X. AND MISHRA, P. 2011. Efficient directed test generation for validation of multicore architectures.
In Proceedings of International Symposium on Quality Electronic Design. IEEE Press, Piscataway, NJ,
USA.

QIN, X. AND MISHRA, P. 2012. Efficient Decision Ordering Techniques for SAT-based Test Generation. In
Proceedings of Design, Automation & Test in Europe. European Design and Automation Association,
3001 Leuven, Belgium, Belgium.

STRICHMAN, O. 2001. Pruning techniques for the SAT-based bounded model checking problem. In Proceed-
ings of Correct Hardware Design and Verification Methods (CHARME). 58–70.

STRICHMAN, O. 2004. Accelerating bounded model checking of safety properties. Formal Methods in System
Design 24, 1, 5–24.

TANG, D., MALIK, S., GUPTA, A., AND IP, C. 2005. Symmetry reduction in sat-based model checking. In
Computer Aided Verification, K. Etessami and S. Rajamani, Eds. Lecture Notes in Computer Science
Series, vol. 3576. Springer Berlin / Heidelberg, 283–284.

WHITTEMORE, J., KIM, J., AND SAKALLAH, K. 2001. SATIRE: A new incremental satisfiability engine. In
Proceedings of the Design Automation Conference. ACM, New York, NY, USA, 542–545.

ZHANG, L., MADIGAN, C. F., MOSKEWICZ, M. H., AND MALIK, S. 2001. Efficient conflict driven learning in
a boolean satisfiability solver. In Proceedings of the International conference on Computer-aided design.
IEEE Press, Piscataway, NJ, USA, 279–285.

ZHANG, L., PRASAD, M. R., AND HSIAO, M. S. 2004. Incremental deductive & inductive reasoning for
SAT-based bounded model checking. In Proceedings of the International conference on Computer-aided
design. IEEE Press, Piscataway, NJ, USA, 502–509.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

