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Functional validation is a major bottleneck in pipelined processor design due to the combined
effects of increasing design complexity and lack of efficient techniques for directed test genera-

tion. Directed test vectors can reduce overall validation effort since shorter tests can obtain the
same coverage goal compared to the random tests. This article presents a specification-driven
directed test generation methodology. The proposed methodology makes three important contri-
butions. First, a general graph model is developed that can capture the structure and behavior

(instruction-set) of a wide variety of pipelined processors. The graph model is generated from
the processor specification. Next, we propose a functional fault model that is used to define
the functional coverage for pipelined architectures. Finally, we propose two complementary test
generation techniques: test generation using model checking, and test generation using template-

based procedures. These test generation techniques accept the graph model of the architecture
as input and generate test programs to detect all the faults in the functional fault model. Our
experimental results on two pipelined processor models demonstrate several orders-of-magnitude

reduction in overall validation effort by drastically reducing both test generation time and number
of test programs required to achieve a coverage goal.

Categories and Subject Descriptors: D.3.4 [Software]: Programming Languages—Processors;
I.6.7 [Computing Methodologies]: Simulation and Modeling—Simulation Support Systems

General Terms: Verification, Algorithms

Additional Key Words and Phrases: Model Checking, Test Generation, Functional Validation

1. INTRODUCTION

Functional validation is a major bottleneck in processor design due to the combined
effects of increasing design complexity and decreasing time-to-market. Simulation-
based validation is the most widely used form of processor verification using test
programs that consist of instruction sequences. There are three types of test gen-
eration techniques: random, directed, and constrained-random. The directed tests
can reduce overall validation effort since shorter tests can obtain the same coverage
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goal compared to the random tests. Certain heuristics and design abstractions are
used to generate directed random testcases. However, due to the bottom-up na-
ture and localized view of these heuristics the generated testcases may not yield a
good coverage. As a result, directed test generation is mostly performed by human
intervention. Hand-written tests entail laborious and time consuming effort of ver-
ification engineers who have deep knowledge of the design under verification. Due
to the manual development, it is infeasible to generate all directed tests to achieve
a coverage goal. The problem is further aggravated due to the lack of a compre-
hensive functional coverage metric. Automatic directed test generation based on a
comprehensive functional coverage metric is the alternative to address this problem.

We propose a directed test program generation scheme using behavioral knowl-
edge of the pipelined architecture specified in an Architecture Description Language
(ADL). The specification is used to generate a graph model of the processor archi-
tecture. We define a functional fault model based on the graph coverage. This fault
model and the specification are used to generate the directed test programs. We
explore two alternatives for directed test generation: test generation using model
checking and test generation using template-based procedures. We compare these
two methods in terms of their applicability and limitations and propose initial ideas
to address some of the practical challenges in applying them on real designs. Model
checking based test generation have been proposed in the past to validate software
designs [Ammann et al. 1998]. To the best of our knowledge, this technique has not
been studied before in the context of top-down validation of pipelined processors.
This article makes three important contributions. First, a general graph model is
developed that can capture the structure and behavior (instruction-set) of a wide
variety of pipelined processors. Second, we propose a functional fault model that is
used to define the functional coverage for pipelined architectures. Finally, two com-
plementary test generation techniques are presented that accept the graph model
of the architecture as input and generate test programs to detect all the faults in
the functional fault model.

To define a useful functional coverage metric, we need to define a fault model of
the design that is described at the functional level and independent of the imple-
mentation details. In this article, we present a functional fault model for pipelined
processors. The fault model should be applicable to a wide variety of today’s mi-
croprocessors from various architectural domains (such as RISC, DSP, VLIW and
Superscalar) that differ widely in terms of their structure (organization) and be-
havior (instruction-set). We have developed a graph model that can capture a wide
spectrum of pipelined processors, coprocessors, and memory subsystems. We have
defined functional coverage based on the effects of faults in the fault model applied
at the level of the graph model. We have developed model-checking based as well
as template-based procedures to generate tests that activate the faults in the graph
model. We applied our methodology on two pipelined processors: a VLIW imple-
mentation of the MIPS architecture [Hennessy and Patterson 2003], and a RISC
implementation of the SPARC V8 architecture [Sparc V8 ]. Our experimental re-
sults demonstrate two important aspects of our technique. First, it shows how our
functional coverage can be used in an existing validation flow that uses random or
directed-random test programs. Second, it demonstrates that the required number
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of test sequences generated by our algorithms to obtain a given fault (functional)
coverage is an order of magnitude less than the random or constrained-random test
programs.

The rest of the article is organized as follows. Section 2 presents related work
addressing test generation for processor validation. Section 3 – 8 present various
steps in our specification-driven test generation methodology followed by a case
study in Section 9. Finally, Section 10 concludes the article.

2. RELATED WORK

There has been a lot of research in the area of processor validation using simulation-
based techniques as well as formal methods. Various researchers have also proposed
hybrid approaches to develop improved validation methodology [Parthasarathy et
al. 2002; Bhadra et al. 2004]. In this section we present related work address-
ing test generation for functional validation of pipelined processors. Traditionally,
validation of a microprocessor has been performed by applying a combination of
random and directed test programs using simulation techniques. There are many
successful test generation frameworks in industry today. For example, Genesys-Pro
[Adir et al. 2004], used for functional verification of IBM processors, combines
architecture and testing knowledge for efficient test generation. Many techniques
have been proposed for generation of directed test programs [Aharon et al. 1995;
Fine and Ziv 2003].

Ur and Yadin [1999] have presented a method for generation of assembler test
programs that systematically probe the micro-architecture of a PowerPC proces-
sor. Iwashita et al. [1994] use an FSM based processor modeling to automatically
generate test programs. Campenhout et al. [1999] have proposed a test generation
algorithm that integrates high-level treatment of the datapath with low-level treat-
ment of the controller. Ho et al. [1995] have presented a technique for generating
test vectors for verifying the corner cases of the design. Recently, Wagner et al.
[2005] have presented a Markov model driven random test generator with activity
monitors that provides assistance in locating hard-to-find corner-case design bugs
and performance problems. None of these techniques provides a comprehensive
metric to measure the coverage of the pipeline interactions. An extensive survey
on coverage metrics in simulation-based verification is presented by Tasiran et al.
[2001]. Piziali [2004] has presented a comprehensive study on functional verification
coverage measurement and analysis.

Model checking based techniques have been successfully used in processor verifi-
cation. Ho et al. [1998] extract controlled token nets from a logic design to perform
efficient model checking. Jacobi [2002] used a methodology to verify out-of-order
pipelines by combining model checking for the verification of the pipeline control,
and theorem proving for the verification of the pipeline functionality. Compositional
model checking is used to verify a processor microarchitecture containing most of
the features of a modern microprocessor [Jhala and McMillan 2001]. Parthasarathy
et al. [2004] have presented a safety property verification framework using sequen-
tial SAT and bounded model checking. Model checking based techniques are also
used in the context of proving properties or test generation by generating counterex-
amples. Clarke et al. [1995] have presented an efficient algorithm for generation
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of counterexamples and witnesses in symbolic model checking. Bjesse et al. [2004]
have used counterexample guided abstraction refinement to find complex bugs. This
article explores the use of model checking in the context of specification-driven test
generation for pipelined processors.

Many researchers have proposed techniques for generation of functional test pro-
grams for manufacturing testing of microprocessors ([Krstic et al. 2002], [Thatte
and Abraham 1980]). These techniques use stuck-at fault coverage to demonstrate
the quality of the generated tests. To the best of our knowledge, there are no pre-
vious approaches that describe functional fault models for pipelined architectures,
use it to define functional coverage, and generate test programs to detect all the
functional faults in the fault model.

3. SPECIFICATION-DRIVEN TEST GENERATION

Figure 1 shows our graph based functional test program generation methodology.
In our specification-driven test program generation scenario, the designer starts
by specifying the processor architecture in an Architecture Description Language
(ADL). We use EXPRESSION ADL [Halambi et al. 1999] in our framework. How-
ever, our methodology is independent of the ADL. This is due to the fact that all
the analysis and test generation techniques, presented in this article, operate on
the graph model. Therefore, we can use any ADL in our framework that has infor-
mation regarding structure and behavior of the processor such as LISA [Zivojnovic
at al. 1996], MDES [Gyllenhaal et al. 1996] etc. and thereby enable the generation
of the graph-based model of the processor from the ADL specification.

(Designer’s Manual)

Validation

(Negated Version)

(Procedures)

(Graph Model)

Coverage Mesurement

Automatic

Feedback

Manual ADL Specification
Fault

Model

Architecture Specification

Properties

Model

Checker
TestGen

Processor Model

Counterexamples  /  Test Programs

Fig. 1. Test Program Generation Methodology

Test programs are generated from the specification based on the functional fault
model using two different test generation techniques: test generation using model
checking and test generation using template-based procedures. This methodology
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has four important steps: ADL specification, processor (graph) model generation,
development of fault model, and test generation. Section 4 briefly outlines how
to capture a pipelined processor using an ADL specification. Section 5 presents
the graph model generation approach followed by the description of the functional
fault models in Section 6. Finally, the test generation techniques are presented in
Section 7 and Section 8.

4. THE ADL SPECIFICATION

In this section we briefly describe how to specify a pipelined processor using EX-
PRESSION ADL [Halambi et al. 1999]. As mentioned earlier, any ADL can be used
that captures both the structure and the behavior of the processor. The EXPRES-
SION ADL contains information regarding the structure, behavior and mapping
(between structure and behavior) of the processor as shown in Figure 2.

EXPRESSION

Structure SpecificationBehavior Specification

Operations Specification

Operation Mappings

Instruction Specification

Architecture Components

Pipeline/Data−transfer Paths

Memory Subsystem

Fig. 2. The EXPRESSION ADL

The structure contains the description of each component and the connectivity
between the components. There are four types of components: units (e.g., ALUs),
storages (e.g., register files), ports, and connections (e.g., buses). A portion of the
ADL description of the MIPS processor (shown in Figure 7) is shown below.

# Components specification
( ExecUnit IALU

(capacity 1) (timing (add 1) (sub 1) . . . )
(opcodes (add sub . . . )) (latches . . . ) . . .

)
. . . . . .
# Pipeline and data-transfer paths
(pipeline Fetch Decode Execute MEM WriteBack)
(Execute IALU MUL FADD DIV)
(MUL MUL1 MUL2 MUL3 MUL4 MUL5 MUL6 MUL7)
(FADD FADD1 FADD2 FADD3 FADD4)
(dtpaths (WriteBack RegFile) (RegFile Decode) . . . )
. . . . . .

Each component has a list of attributes. For example, the IALU unit has in-
formation regarding the number of instructions executed per cycle, timing of each
instruction, supported opcodes, and so on. The connectivity is established using
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pipeline and data-transfer paths. The pipeline edges specify instruction transfer
between units via pipeline latches, whereas the data transfer edges specify data
transfer between components, typically between units and storages or between two
storages. For example, the above ADL specification describes the five-stage pipeline
as {Fetch, Decode, Execute, MEM, Writeback}. In this particular case, the execute
stage has four parallel paths: IALU, MUL, FADD and DIV. Furthermore, each
path can contain pipelined or multi-cycle execution units. For example, the FADD
path consists of four pipeline stages: FADD1 to FADD4.

The behavior is organized into operation groups, with each group containing
a set of operations having some common characteristics. Each operation is then
described in terms of it’s opcode, operands, behavior, and instruction format. Each
operand is classified either as source or as destination. Furthermore, each operand is
associated with a type that describes the type and size of the data it contains. The
instruction format describes the fields of the operation in both binary and assembly.
For example, the binary format for the following add operation has opcode (0101)
field from 26th bit to 29th bit.

(OPCODE add

(OPERANDS (SRC1 reg) (SRC2 reg/imm16) (DST reg))

(BEHAVIOR DST = SRC1 + SRC2)

(FORMAT cond(31-30) 0101 dst(25-21) src1(20-16) src2(15-0))

)

The mapping functions map components in the structure to operations in the
behavior. It defines, for each functional unit, the set of operations supported by
that unit (and vice versa). For example, the operation add is mapped to the IALU
unit of the MIPS processor.

5. ARCHITECTURE MODEL OF A PIPELINED PROCESSOR

Modeling plays a central role in the generation of test programs for validation
of pipelined processors. In this section, we briefly describe how the graph model
captures the structure and behavior of the processor using the information available
in the architecture manual.

5.1 Structure

The structure of an architecture pipeline is modeled as a graph with the components
as nodes and the connectivity as edges. We consider two types of components: units
(e.g., ALUs) and storages (e.g., register files). There are two types of edges: pipeline
edges and data transfer edges. A pipeline edge transfers instruction (operation)
between two units. A data-transfer edge transfers data between units and storages.

For illustration, we use a simple multi-issue architecture consisting of a processor,
a co-processor and a memory subsystem. Figure 3 shows the graph-based model
of this architecture that can issue up to three operations (an ALU operation, a
memory access operation, and a coprocessor operation) per cycle. In the figure,
oval boxes denote units, dotted ovals are storages, bold edges are pipeline edges,
and dotted edges are data-transfer edges. A path from a root node (e.g., Fetch) to a
leaf node (e.g, WriteBack) consisting of units and pipeline edges is called a pipeline
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PROCESSOR
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MEMORY
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Fig. 3. A Structure Graph of a Simple Architecture

path. For example, one of the pipeline path is {Fetch, Decode, ALU, WriteBack}.
A path from a unit to main memory or register file consisting of storages and data-
transfer edges is called a data-transfer path. For example, {MemCntrl, L1, L2,
MainMemory} is a data-transfer path.

5.2 Behavior

The behavior of the architecture is typically captured by the instruction-set (ISA)
description in the processor manual. It consists of a set of operations1 that can be
executed on the architecture. Each operation in turn consists of a set of fields (e.g.
opcode, arguments etc.) that specify, at an abstract level, the execution semantics
of the operation. We model the behavior as a graph where the nodes represent
the fields of each operation and the edges represent orderings between the fields.
Figure 4 describes a portion of the behavior (consisting of two operation graphs)
for the example processor shown in Figure 3.

Nodes are of two types: opcode and argument. The opcode nodes represent
the opcode (i.e. mnemonic), and the argument nodes represent argument fields
(i.e., source and destination arguments). In Figure 4, the ADD and STORE nodes
are opcode nodes, while the others are argument nodes. Edges are also of two
types: operation and execution. The operation edges link the fields of the operation
and also specify the syntactical ordering between them. On the other hand, the
execution edges specify the execution ordering between the fields. In Figure 4, the
solid edges represent operation edges while the dotted edges represent execution

1In this article we use the terms operation and instruction interchangeably.
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edges. For the ADD operation, the operation edges specify that the syntactical
ordering is opcode followed by DEST, SRC1 and SRC2 arguments (in that order),
and the execution edges specify that the SRC1 and SRC2 arguments are executed
(i.e., read) before the ADD operation is performed. Finally, the DEST argument
is written.

Operation Edge

Execution Edge

Argument Node

Opcode Node

SRC1STORE SRC OFFSET

SRC2ADD DEST SRC1

Fig. 4. A Fragment of the Behavior Graph

The architecture manual also provides information regarding the mapping be-
tween the structure and behavior. We define a set of mapping functions that map
nodes in the structure to the nodes in the behavior (and vice-versa). The unit-to-
opcode (opcode-to-unit) mapping is a bi-directional function that maps unit nodes
in the structure to opcode nodes in the behavior. The unit-to-opcode mappings for
the architecture in Figure 3 include mappings from Fetch unit to opcodes {ADD,
STORE}, ALU unit to opcode ADD, AddrCalc unit to opcode STORE etc. The
argument-to-storage (storage-to-argument) mapping is a bi-directional function that
maps argument nodes in the behavior to storage nodes in the structure. For exam-
ple, the argument-to-storage mappings for the ADD operation are mappings from
{DEST, SRC1, SRC2} to RegisterFile.

6. FUNCTIONAL FAULT MODELS

In this section, we present fault models for various functions in a pipelined pro-
cessor. We categorize various computations in a pipelined processor into register
read/write, operation execution, execution path and pipeline execution. The fault
models described in this section represents various types of faults in a pipelined
processor. It is important to note that these fault models are by no means the
“golden” model rather it is a representative model which can be refined or modified
for improved verification methodology.

The fault models were developed in a way such that we test simple ones first and
ensure that the components are working correctly and then we test the complete
system consisting of complex components. For example, the register read/write fault
model ensures that the registers are working correctly. Next, the operation execution
fault model ensures each operation works correctly assuming that the registers
can be read and written correctly. It is possible that a pipelined implementation
can have two pipeline paths to execute ALU operations. As long as one of the
pipeline paths is working correctly, the operation execution fault model will be fine.
However, the execution path fault model ensures that an operation works correctly
on all possible paths. So far we considered only one operation at a time and
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assumed other operations in the pipeline will not interfere with this operation. The
pipeline execution fault model considers interactions of multiple operations in the
pipeline. Due to the nature of our fault model, there is some redundancy between
fault models e.g., execution path (considers all possible ways of computing ADD for
example) includes scenarios for operation execution (one possible way of computing
ADD for example). Similarly, pipeline execution has some overlap with other fault
models.

In this section, we outline the underlying fault mechanisms for each fault model,
and describe the effects of these faults at the level of the architecture model pre-
sented in Section 5. We compute functional coverage of a pipelined processor for
a given set of test programs as the ratio between the number of faults detected by
the test programs and the total number of detectable faults in the fault model.

6.1 Fault Model for Register Read/Write

The register read/write fault model assumes that each register can be faulty. In
other words, reading a register will not return a previously written value. The fault
could be due to an error in reading, register decoding, register storage, or prior
writing. The outcome is an unexpected value. If VRi

is written in register Ri and
read back, the output should be VRi

in fault-free case. In the presence of a fault,
output 6= VRi

.

As mentioned earlier, the fault model can be refined or modified for improved
verification methodology. For example, consider two different types of errors in
register read/write functionality: a particular bit is faulty (always 0, always 1 or
not connected to the output) and register selection logic is faulty (e.g., R4 is selected
when R3 is accessed for both read and write). Clearly, none of these faults can be
captured by the current register read/write fault model. The first scenario can
be captured by redefining the fault model for any bit can be faulty under register
read/write (instead of any register can be faulty). Similarly, the second scenario
can be captured by refining the current fault model to define fault in register read,
register write as well as in register selection. The impact of such refinement on test
generation technique is described in Section 8.

6.2 Fault Model for Operation Execution

The operation execution fault model assumes that each operation could be faulty.
In other words, the output of the computation will be different from the expected
output after completion of the operation. The fault could be due to an error in
operation decoding, control generation or final computation. Erroneous operation
decoding might return an incorrect opcode. This can happen if incorrect bits are
decoded for the opcode. Selection of incorrect bits will also lead to erroneous
decoding of source and destination operands. Even if the decoding is correct, due
to an error in control generation an incorrect computation unit can be enabled.
Finally, the computation unit can be faulty. The outcome is an unexpected result.
Let vali, where vali = fopcode

i
(src1, src2, ...), denote the result of computing the

operation “opcodei dest, src1, src2, ...”. In the fault-free case, the destination will
contain the value vali. Under a fault, the destination will not be equal to vali.
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6.3 Fault Model for Execution Path

During execution of an operation in the pipeline, one pipeline path and one or
more data-transfer paths get activated. We define all these activated paths as the
execution path for that operation. An execution path epopi

is faulty if it produces
incorrect result during execution of operation opi in the pipeline. The fault could
be due to an error in one of the paths (pipeline or data-transfer) in the execution
path. A path is faulty if any one of its nodes or edges are faulty. A node is faulty if
it accepts valid inputs and produces incorrect outputs. An edge is faulty if it does
not transfer the data/instruction correctly.

Without loss of generality, let us assume that the processor has p pipeline paths
(PP = ∪p

i=1ppi) and q data-transfer paths (DP = ∪q
j=1dpj). Furthermore, each

pipeline path ppi is connected to a set of data-transfer paths DPgrpi (DPgrpi ⊆
DP ). During execution of an operation opi in the pipeline path ppi, a set of
data-transfer paths DPopi

(DPopi
⊆ DPgrpi) are used (activated). Therefore, the

execution path epopi
for operation opi is, epopi

= ppi ∪ DPopi
. Let us assume,

operation opi has one opcode (opcodei), m sources (∪m
j=1srcj) and n destinations

(∪n
k=1destk). Each data-transfer path dpi (dpi ∈ DPopi

) is activated to read one
of the sources or write one of the destinations of opi in execution path epopi

. Let
vali, where vali = fopcode

i
(∪m

j=1srcj), denote the result of computing the operation

opi in execution path epi. The vali has n components (∪n
k=1valki ). In the fault-free

case, the destinations will contain correct values, i.e., ∀k destk = valki . Under a
fault, at least one of the destinations will have incorrect value, i.e., ∃k destk 6= valki

6.4 Fault Model for Pipeline Execution

The previous three fault models consider only one operation at a time. In other
words, the other operations in the pipeline does not interact or influence the flow
of this operation. The pipeline execution fault model defines the possible errors in
the presence of interactions between multiple operation in the pipeline. An imple-
mentation of a pipeline is faulty if it produces incorrect results due to execution
of multiple operations in the pipeline. The fault could be due to incorrect imple-
mentation of the pipeline controller. The faulty controller might have erroneous
hazard detection, incorrect stalling, erroneous flushing, erroneous data forwarding
or wrong exception handling schemes.

Let us define stall set for a unit u (SSu) as all possible ways to stall that unit.
Therefore, the stall set for the architecture StallSet = ∪∀uSSu. Let us also define
the exception set for a unit u (ESu) as all possible ways to create an exception in
that unit. We define the set of all possible multiple exception scenarios as MESS.
Hence, the exception set for the architecture ExceptionSet = ∪∀uESu ∪ MESS.
Similarly, other interactions can be defined. Let us define all possible pipeline
interactions as PIs. Let us assume a sequence of operations opspi causes a pipeline
interaction pi (i.e., pi ∈ PIs), and updates n storage locations. Let valpi denote
the result of computing the operation sequence opspi. The valpi has n components
(∪n

k=1valkpi). In the fault-free case, the destinations will contain correct values, i.e.,

∀k destk = valki . Under a fault, at least one of the destinations will have incorrect
value, i.e., ∃k destk 6= valki .
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7. TEST GENERATION USING MODEL CHECKING

Algorithm 1 shows the three major steps in test generation using model checking.
We use SMV model checker [SMV ] in our framework. The first step produces one
property (negated version) for each fault. The second step generates the SMV model
of the processor architecture. The final step applies each property and the processor
model to the model checker to generate the counterexample. The counterexample
is analyzed to generate the test program consisting of instruction sequences.

Algorithm 1: Test Generation using Model Checking
Inputs: 1. Graph Model of the architecture (G).

2. Functional fault model (F).
Output: Test programs for detecting all the faults in the fault model.
begin /*** PropertyList = {} ***/

Step 1: for each fault f in the fault model F
propf = GenerateProperty(f); /*SMV version*/
PropertyList = PropertyList ∪ propf ;

endfor

Step 2: design = GenerateSMVmodel(G)
Step 3: TestProgramList = {}

for each property p in the PropertyList
testp = ApplyModelChecking(p, design);
TestProgramList = TestProgramList ∪ testp;

endfor

return TestProgramList.
end

For example, to generate a testcase for assigning a value 5 to a register R7, the
property states that “R7 != 5”. The model checker produces a counterexample
which is converted to a test program. The conversion is straightforward in our
framework since we model the design at the cycle-accurate level and instructions
are modeled as a structure consisting of opcode, source and destination operands.
As a result, the counter-example consists of several instructions at different clock
cycles which can be translated into an actual test by simple text analysis. Based
on the coverage report additional properties can be added or the fault model can
be modified. Section 9.1 presents a case study for test generation using model
checking. The remainder of this section is organized as follows. Section 7.1 describes
how to generate SMV models from the ADL specification. Section 7.2 describes
the procedure for property generation based on fault models. Finally, Section 7.3
describes test generation based on model checking using the generated SMV models
and properties.

7.1 SMV Model Generation for Pipelined Processors

Generation of SMV models from ADL specification is similar to the existing ADL-
driven approaches for cycle-accurate simulator generation [Mishra et al. 2001] and
synthesizable RTL generation [Mishra et al. 2004]. The only difference is that the
SMV generation approach uses the component library described in SMV, whereas
the simulator generation approach uses the component library described in C/C++.

ACM Transactions on Design Automation of Electronic Systems, Vol. xx, No. yy, mm 2008.
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Similarly, the RTL generation approach uses the component library described using
VHDL/Verilog. An alternative way to generate SMV models is to generate Verilog
models from the ADL specification and then convert the Verilog description to SMV
using vl2smv translator [SMV ]. These two approaches are shown in Figure 5.

SMV Description

vl2smv

SMVgen

RTLgen

ADL Specification

Generic SMV

Components

Verilog Models

Fig. 5. Generation of SMV Models

The basic idea of SMV model generation (SMVgen) is to develop a library of
generic components that can be composed to construct a pipelined processor. We
have developed a set of generic components and sub-components (described using
SMV) based on the functional abstraction defined by Mishra et al. [2001]. Sec-
tion 9.1 shows an example Fetch unit (generic component) in SMV library. The
development of generic SMV models is a one-time activity and independent of
the architecture. The SMV description is generated by composing the abstraction
primitives based on the information available in the ADL specification. The SMV
generation process consists of three steps. First, the ADL specification is read
to gather all the necessary details. Next, the functionality of each component is
composed using the generic functions (components) and sub-functions. Finally, the
structure of the processor is composed using the structural details. In the remain-
der of this section we briefly describe how to generate three major components of
the processor: instruction decoder, datapath and controller, using the generic SMV
models.

A generic instruction decoder uses information regarding individual instruction
format and opcode mapping for each functional unit to decode a given instruction.
The instruction format information is available in the operation description. The
decoder extracts information regarding opcode, operands etc. from input instruc-
tion using the instruction format. The mapping section of the EXPRESSION ADL
has the information regarding the mapping of opcodes to the functional units. The
decoder uses this information to perform/initiate necessary functions (e.g., operand
read) and decide where to send the instruction.

The implementation of datapath consists of two parts. First, compose each com-
ponent in the structure. Second, instantiate components (e.g., fetch, decode, ALU,
LdSt, writeback, branch, caches, register files, memories etc.) and establish con-
nectivity using the structural information available in the ADL. To compose each
component in the structure we use the information available in the ADL regarding
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the functionality of the component and its parameters. For example, to compose
an execution unit, it is necessary to instantiate all the opcode functionalities (e.g,
ADD, SUB etc. for an ALU) supported by that execution unit. Also, if the exe-
cution unit is supposed to read the operands, appropriate number of operand read
functionalities need to be instantiated unless the same read functionality can be
shared. Similarly, if this execution unit is supposed to write the data back to
register file, the functionality for writing the result needs to be instantiated.

The controller is implemented in two parts. First, it generates a centralized con-
troller (using generic controller function with appropriate parameters) that main-
tains the information regarding each functional unit, such as busy, stalled etc. It
also computes hazard information based on the list of instructions currently in
the pipeline. Based on these bits and the information available in the ADL, it
stalls/flushes necessary units in the pipeline. Second, a local controller is main-
tained at each functional unit in the pipeline. This local controller generates cer-
tain control signals and sets necessary bits based on the input instruction. For
example, the local controller in an execution unit will activate the add operation if
the opcode is add, or it will set the busy bit in case of a multi-cycle operation.

7.2 Generation of Properties

The properties are generated based on the fault models. For example, if we adopt
a node fault model for a pipelined processor, we need to generate one property for
each node (functional unit or storage) in the graph model of the pipelined processor.
Section 9.1 shows several examples of faults (functional errors) and corresponding
temporal logic properties.

The generated properties are expressed in linear temporal logic (LTL) [Clarke
et al. 1999] where each property consists of temporal operators (G, F, X, U) and
Boolean connectives (∧, ∨, ¬, and →). We generate a property for each fault in
the fault model. Each fault may be related to one (local errors) or more (pipeline
interactions) functions units. Such interactions can be converted in the form of a
property such as F(p1 ∧ p2 ∧ . . .∧ pn) that combines activities pi over n modules
using logical AND operator. The atomic proposition pi is a functional activity at a
node (module) i such as operation execution, stall, exception or NOP. The property
is true when all the pis (i = 1 to n) hold at some time step. Since we are interested
in counterexample generation, we need to generate the negation of the property
first. The negation of the properties can be expressed as:

¬X(p) = X(¬p),¬G(p) = F (¬p)

¬F (p) = G(¬p),¬pUq = pR¬q (1)

For example, the negation of F(p1 ∧ p2 ∧ . . .∧ pn), interaction fault, can be
described as G(¬p1 ∨ ¬p2 ∨ . . .∨ ¬pn) whose counterexamples will satisfy the
original property.

7.3 Test Generation

The model checking based test generation (Algorithm 1) is a promising approach
for automated generation of directed micro-architectural tests to exercise various
intricate interactions and corner cases. Since the complete processor is used during
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model checking, this approach is limited by the capacity restrictions of the model
checking tool. As a result, this approach is not suitable for today’s pipelined pro-
cessors since the time and memory requirements can be prohibitively large in many
test generation scenarios. In fact, test generation may not be possible in various
instances due to state space explosion. We propose a test generation approach us-
ing decomposition of the processor model and properties to make the ADL-driven
test generation applicable in practice.

NoNo

Yes

(for node N)

SMV Description

(Graph node N)

Property

N
 =

 P
a

r
e
n

t 
o

f 
N

N
 =

 P
a

r
e
n

t 
o

f 
N

Architecture Specification

Testcases
Coverage Report

Counterexamples

Generate o/p requirement

(English Document)

(for parent of N)

Manual

Automatic

Simulator

ADL Specification

Properties

(SMV Description)

Extract i/p assignment

(for node N)

Is Primary Input?

Generic

SMV Models

(SMV Description)

Graph Model

SMV
Model Checker

Additional Properties

Fig. 6. Test Generation using Decompositional Model Checking

Figure 6 shows our test generation framework using decompositional model check-
ing. The basic idea is to break one processor level property into multiple module
level properties and apply them to the respective modules. In case the property
was applied to an internal module, the generated counterexample is used to ex-
tract the output requirements for the parent module(s). This iteration continues
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until the primary input assignments (e.g., assignment to register file or instruction
memory) are obtained. These primary input assignments are converted into test
programs consisting of instruction sequences. Since, the model checker is applied
only at the module level, this approach can handle larger designs and reduces the
test generation time. It is important to note that various constraints has to be cap-
tured in an efficient manner to generate a useful test. We model global input and
environmental constraints as part of the design. We model local input constraints
as part of the property during decomposition to ensure that model checker always
generates correct partial counterexamples.

Algorithm 2: Test Program Generation
Inputs: ADL specification of the pipelined processor
Outputs: Test programs to verify the pipeline behavior.
Begin

Generate graph model of the architecture.
Generate properties based on the graph coverage
for each property prop for graph node n

inputs = φ

while (inputs != primary inputs)
Apply prop on node n using SMV model checker
inputs = Find i/p requirements for n from counterexample
if inputs are not primary inputs

Extract output requirements for parent of node n
prop = modify prop with new output requirements
n = parent of node n

endif

endwhile

Convert primary input assignments to a test program
Generate the expected output using a simulator.

endfor

return the test programs
End

Algorithm 2 describes the major steps in Figure 6. A property prop is applied
to a module corresponding to node n in the graph model. As mentioned earlier,
the framework generates the negation of the properties that we want to verify. The
model checker produces a counterexample for the property prop. The counter ex-
ample is analyzed to find the input requirements for the node n. If these inputs
are not the primary inputs of the processor, the output requirements for the parent
node of n is computed. The property is modified based on the output requirements
and applied to the parent node. This iteration continues until primary input as-
signments are obtained. These primary input assignments are converted into test
programs (instruction sequences) by putting random values in the un-assigned in-
puts. Section 9.1 presents a test generation example using the decomposition of
processor model and properties.

Test generation using module level decompositions is very useful but may not be
able to generate tests where module level decompositions are not possible. We have
developed novel design and property decomposition techniques [Koo and Mishra
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2006a] as well as SAT-based bounded model checking techniques [Koo and Mishra
2006b] to address the state space explosion problem in test generation. Our initial
study using Freescale e500 processor [e500 2005] shows promising results [Koo et
al. 2006] in applying decompositional model checking based test generation on
industrial microprocessors.

There are various important issues that need to be considered during test gen-
eration using decompositions. For example, when a test can be obtained by many
possible decompositions, it is difficult to determine the most profitable decomposi-
tion. It is equally difficult to guarantee that a given decomposition is sufficient to
generate a test since a local property may not generate a counterexample. In gen-
eral, when there are multiple decompositions possible, and test generation did not
get counterexample for a local scenario, the algorithm needs to consider other de-
composition scenarios. This may lead to multiple iterations and thereby increased
test generation time. Another major problem in decompositional model checking
based test generation is how to merge the local counterexamples since it may intro-
duce conflicts in parent nodes. We have addressed these issues in [Koo and Mishra
2006a].

The test generation requires the model of the design as well as a property. De-
pending on the complexity of the design and the test generation scenario the prop-
erty can be very complex. Designer may consider to write the testcase directly
instead of writing a property and then take all the trouble of performing decompo-
sitional model checking. There are various reasons why writing a testcase by hand
is not a good idea. When a fault model is available, our framework will be able
to generate the properties automatically for all the faults in the fault model. Of
course, there will be certain corner cases when designers have to write few prop-
erties by hand (on top of the ones generated automatically). It is important to
note that writing a complex property may require few minutes to hours. However,
writing a complex testcase may require days or even weeks. Most importantly, the
hand-written testcase may not even activate the fault since it needs to consider so
many constraints over a period of time.

8. TEST GENERATION USING TEMPLATE-BASED PROCEDURES

In this section, we present test generation procedures for detecting faults covered
by the fault models presented in Section 6. Different architectures have specific
instructions to observe the contents of registers and memories. In this article, we
use load and store instructions to make the register and memory contents observable
at the output data bus.

We first describe a procedure createTestProgram that is used by the test gener-
ation algorithms. Procedure 1 accepts a list of operations as input and returns a
modified list. It assigns appropriate values to the unspecified locations (opcodes
or operands). Next, it creates initialization instructions for the uninitialized source
operands. It also creates instructions to read the destination operands. Finally, it
returns the modified list that contains the initialization operations, modified input
operations, and the read operations (in that order).
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Procedure 1: createTestProgram
Input: An operation list operList.
Output: Modified operation list with initializations.
begin

resOperations = {};
for each operation oper in operList

if there are unspecified fields in oper
assign appropriate opcode/operands;

endif

for each source src of oper
if (src is a register or memory location) then

initOper: initialize src with appropriate value;
resOperations = resOperations ∪ initOper;

endif

endfor

resOperations = resOperations ∪ oper;
for each destination dest of oper

if (dest is not a source for another operation)
readDest: create an instruction to read dest;
resOperations = resOperations ∪ readDest;

endif

endfor

endfor

return resOperations.
end

Consider an input list with one operation “ADD dest/reg R1 src2/imm”. The
operation has two unspecified fields: dest and src2. The createTestProgram function
assigns a register to dest field and an immediate value to src2 field. It also creates
an initialization operation for the source R1. The modified list consists of three
operations: MOVI R1, 0x5 followed by ADD R3 R5 0x23 and STORE R3, Rx,
0x0. We use ‘STORE’ instruction for observability of registers. If an architecture
has a specific instruction for this purpose, that specific instruction should be used
instead of the store instruction.

8.1 Test Generation for Register Read/Write

Algorithm 3 presents the procedure for generating test programs for detecting faults
in register read/write functions. The fault model for the register read/write function
is described in Section 6.1. For each register in the architecture, the algorithm
generates an instruction sequence consisting of a write followed by a read for that
register. The function GenerateUniqueValue returns unique value for each register
based on register name. A test program for register Ri will consist of two assembly
instructions: “MOVI Ri, #vali” and “STORE Ri, Rj , #0”. The move-immediate
(MOVI) instruction writes vali in register Ri. The STORE instruction reads the
content of Ri and writes it in memory addressed by Rj .

As mentioned in Section 6 that the test generation techniques need to be mod-
ified if the fault model is refined. Consider the two refinements of the register
read/write fault model: any bit can be faulty under register read write (instead of
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any register can be faulty), and fault can be in register selection (not just register
read and write). To address the first refinement the test generation technique needs
to generate tests that write and read different sets of values including all 1’s and
all 0’s. The second refinement can be addressed by modifying the test generation
technique that assigns a specific value (say all 1’s) to a register and another value
(say all 0’s) to all other registers, and generates read instructions in a particular
order. This process needs to continue for all registers to ensure that there are no
errors in register selection/decoding.

Algorithm 3: Test Generation for Register Read/Write
Input: Graph model of the architecture G.
Output: Test programs for detecting faults in register read/write.
begin /*** TestProgramList = {} ***/

for each register reg in architecture G
valuereg = GenerateUniqueValue(reg);
writeInst = an instruction that writes valuereg in register reg.
/* The read instruction is created inside createTestProgram() */
testprogreg = createTestProgram(writeInst)
TestProgramList = TestProgramList ∪ testprogreg;

endfor

return TestProgramList.
end

Theorem 8.1. The test sequence generated using Algorithm 3 is capable of de-
tecting any detectable fault in the register read/write fault model.

Proof. Algorithm 3 generates one test program for each register in the architec-
ture. A test program consists of two instructions - a write followed by a read. Each
register is written with a specific value. If there is a fault in register read/write
function, the value read would be different that the written value.

8.2 Test Generation for Operation Execution

Algorithm 4 presents the procedure for generating test programs for detecting faults
in operation execution. The fault model for the operation execution is described in
Section 6.2. The algorithm traverses the behavior graph of the architecture, and
generates one test program for each operation graph using createTestProgram. For
example, a test program for the operation graph with opcode ADD in Figure 4
has three operations: two initialization operations (“MOV R3 #333”, “MOV R5
#212”) followed by the ADD operation (“ADD R2 R3 R5”), followed by the reading
of the result (“STORE R2, Rx, #0”).

Theorem 8.2. The test sequence generated using Algorithm 4 is capable of de-
tecting any detectable fault in the operation execution fault model.

Proof. Algorithm 4 generates one test program for each operation in the archi-
tecture. If there is a fault in operation execution, the computed result would be
different than the expected output.
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Algorithm 4: Test Generation for Operation Execution
Input: Graph model of the architecture G.
Output: Test programs for detecting faults in operation execution.
begin /*** TestProgramList = {} ***/

for each operation oper in architecture G
testprogoper = createTestProgram(oper);
TestProgramList = TestProgramList ∪ testprogoper;

endfor

return TestProgramList.
end

8.3 Test Generation for Execution Path

Algorithm 5 presents the procedure for generating test programs for detecting faults
in execution path. The fault model for the execution path is described in Section 6.3.

Algorithm 5: Test Generation for Execution Path
Input: Graph model of the architecture G.
Output: Test programs for detecting faults in execution path.
begin /*** TestProgramList = {} ***/

for each pipeline path path in architecture G
opgrouppath = operations supported in path.
execpath = path and all data-transfer paths connected to it
operpath = randomly select an operation from opgrouppath

if (operpath activates all edges in execpath)
opspath = operpath

else

opspath = opgrouppath

endif

for all operations oper in opspath

for all source/destination operands opnd of oper
for all possible register values val of opnd

newOper = assign val to opnd of oper.
testprogoper = createTestProgram(newOper).
TestProgramList = TestProgramList ∪ testprogoper;

endfor

endfor

endfor

endfor

return TestProgramList.
end

The algorithm traverses the structure graph of the architecture, and for each
pipeline path it generates a group of operations supported by that path. It randomly
selects one operation from each operation group. There are two possibilities. If
all the edges in the execution path (containing the pipeline path) are activated
by the selected operation, the algorithm generates all possible source/destination
assignments for that operation. However, if different operations in the operation
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group activates different set of edges in the execution path, it generates all possible
source/destination assignments for each operation in the operation group.

Theorem 8.3. The test sequence generated using Algorithm 5 is capable of de-
tecting any detectable fault in the execution path fault model.

Proof. The proof is by contradiction. The only way a detectable fault will be
missed if an pipeline or data-transfer edge is not activated (used) by the generated
test programs. Let us assume, an edge epp is not activated by any operation. If the
epp is not part of (connected to) any pipeline path, the fault is not detectable. Let
us further assume, epp is part of pipeline path pp. If the pipeline path epp does not
support any operations, the fault is not detectable. If it does support operations,
Algorithm 5 will generate operation sequences that exercises this pipeline path and
all the data-transfer paths connected to it. Since, the edge epp is connected to
pipeline path pp, it is activated.

8.4 Test Generation for Pipeline Execution

Algorithm 6 presents the procedure for generating test programs for detecting faults
in pipeline execution. The fault model for the pipeline execution is described in
Section 6.4. The first loop (L1) traverses the structure graph of the architecture in
a bottom-up manner, starting at leaf nodes. The second loop (L2) computes test
programs for generating all possible exceptions in each unit using templates. The
third loop (L3) computes test programs for creating stall conditions due to data
and control hazards in each unit using templates. The fourth loop (L4) creates test
programs to generate stall conditions using structural hazards. Finally, the last loop
(L5) computes test sequences for multiple exceptions involving more than one units.
The composeTestProgram function uses ordered2 n-tuple units and combines their
test programs. The function also removes dependencies across test programs to
ensure the generation of multiple exceptions during the execution of the combined
test program.

An important requirement in test generation is the availability of templates.
In general, it is not possible to create template for one instance and apply for
other instances. Consider the following template that can be used to generate an
exception in the DIV (division) unit. This template consists of only one instruction
where both destination and first source operand is register. However, the second
source operand is zero. As a result, this will cause a divide by zero exception.

DIV <reg> <reg> #0

Clearly, the above template is not helpful in creating an exception in a Decode
unit. There are many possible templates for creating an exception in Decode unit
for example, we can employ an instruction sequence (VLIW instruction) where a
particular slot has an instruction of incorrect type (e.g., ADD operation in multiply
slot for the MIPS processor) to cause an exception of illegal instruction. Similarly,
there are various ways of stalling Decode unit, we can employ the following in-

2The unit closer to completion has higher order
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struction sequence (template) which stalls the unit due to read-after-write (RAW)
hazard involving R1 as both source and destination of two consecutive instructions.

<opcode> R1 <reg> <reg/imm>

<opcode> <reg> R1 <reg/imm>

This assumes that the Decode unit does not have any reservation station, there-
fore, RAW will cause the unit to stall. In the presence of an instruction buffer
(reservation station), we need to use an instruction sequence (template) that will
fill the buffer and stall the unit.

Algorithm 6: Test Generation for Pipeline Execution
Input: Graph model of the architecture G.
Output: Test programs for detecting faults in pipeline execution.
begin /*** TestProgramList = {} ***/

L1: for each unit node unit in architecture G
L2: for each exception (or specific event) exon possible in unit

templateexon = template for exception exon
testprogunit = createTestProgram(templateexon);
TestProgramList = TestProgramList ∪ testprogunit;

endfor

L3: for each hazard haz in {RAW, WAW, WAR, control}
templatehaz = template for hazard haz
if haz is possible in unit

testprogunit = createTestProgram(templatehaz);
TestProgramList = TestProgramList ∪ testprogunit;

endif

endfor

L4: for each parent unit parent of unit
operparent = an operation supported by parent
resultOps = createTestProgram(operparent);
testprogunit = a test program to stall unit (if exists)
testprogparent = resultOps ∪ testprogunit

TestProgramList = TestProgramList ∪ testprogparent;
endfor

endfor

L5: for each ordered n-tuple (unit1, unit2, ..., unitn) in graph G
prog1 = a test program for creating exception in unit1
.....
progn = a test program for creating exception in unitn

testprogtuple = composeTestProgram(prog1 ∪ ... ∪ progn);
TestProgramList = TestProgramList ∪ testprogtuple;

endfor

return TestProgramList.
end

Theorem 8.4. The test sequence generated using Algorithm 6 is capable of de-
tecting any detectable fault in the pipeline execution.
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Proof. Algorithm 6 generates test programs for all possible interactions during
pipeline execution. The first for loop (L1) generates all possible hazard and ex-
ception scenarios for each functional unit in the pipeline. The test programs for
creating all possible exceptions in each node are generated by the second for loop
(L2). The third for loop (L3) generates test programs for creating all possible data
and control hazards in each node. Similarly, the fourth loop (L4) generates tests
for creating all possible structural hazards in a node. Finally, the last loop (L5)
generates test programs for creating all possible multiple exception scenarios in the
pipeline.

9. A CASE STUDY

This section describes case studies of applying different test generation techniques
(model checking and template-based procedures) using different pipelined archi-
tectures. First, we present results using model checking based test generation ap-
proach. Next, we present the results using template-based test generation proce-
dures.

9.1 Test Generation using Model Checking

We applied our methodology on a single-issue MIPS [Hennessy and Patterson 2003]
architecture. Figure 7 shows the simplified version of the VLIW MIPS architecture.
It has five pipeline stages: fetch, decode, execute, memory (MEM), and writeback.
The execute stage has four parallel execution paths: integer ALU, 7 stage mul-
tiplier (MUL1 - MUL7), four stage floating-point adder (FADD1 - FADD4), and
multi-cycle divider (DIV). The oval boxes represent units and dashed boxes repre-
sent storages. The solid lines represent instruction-transfer paths and dotted lines
represent data-transfer paths.

We used SMV model checker [SMV ] for test generation. Therefore, the proper-
ties as well as the processor model are described using SMV language. The SMV
model of the processor is generated from the ADL specification using functional
abstraction [Mishra et al. 2001]. The basic idea is to develop a library consisting
of a set of generic functions and sub-functions (one-time activity and independent
of architecture) and compose them based on the ADL specification. For example,
a simplified version of the instruction fetch unit in the library is shown below.

module Fetch (PC, InstMemory, operation)

{

input PC : integer;

input InstMemory : memory;

output operation : opType;

init(operation.opcode) := NOP;

next(operation) := InstMemory[PC];

}

The SMV description of the MIPS architecture is generated automatically from
the ADL specification using the component library. The SMV description of the
MIPS architecture has 431 lines of code using the pipeline and cycle-accurate com-
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Fig. 7. The VLIW MIPS architecture

ponents from the library [Mishra and Dutt 2002]. The properties are generated
based on the fault model described in in Section 6. For example, the following
property is used to generate a testcase for stalling the decode unit.

hazard: assert G(ID._stall = 0);

Our model checking based framework took two seconds on a 333 MHz Sun
UltraSPARC-II with 128M RAM. The instruction sequence is shown below. The
read-after-write hazard sets the stall bit in this scenario. The ADD operation is
supported by integer ALU (EX) unit. The decode unit (ID) will be stalled in cycle
4 in this case.

Fetch Cycle Opcode Dest Src1 Src2

----------- ------ ---- ---- ----

1 NOP

2 ADD R3, R1, R2

3 ADD R4, R3, R2

Test generation using model checking is fast for such simple properties. However,
the test generation time is very long for complex properties as demonstrated using
the following example.

Example 1: Consider a fragment of the MIPS pipeline containing three internal
registers of the division unit (DIV) as shown in Figure 8. Our goal is to initialize
two registers Ain and Bin with values 2 and 3 respectively at clock cycle 9.
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The two internal input registers for DIV unit are Ain and Bin. The internal
output register for DIV unit is Cout. The input instruction is divInst and the output
is result. In this particular scenario, Ain and Bin receive data from the first and
second source operands of the input instruction (divInst) i.e., Ain = divInst.src1
and Bin = divInst.src2; Cout returns the result of the division i.e., Cout = Ain ÷
Bin; finally the output is fed from Cout i.e., result = Cout.

Fetch

MUL1 FADD1

PC

Decode

IALU
Ain Bin

Cout

DIV

operation

InstMemory

RegFile

result

divInst

Fig. 8. A fragment of the MIPS architecture

The following property generates the instruction sequence to initialize Ain and
Bin with values 2 and 3 respectively at clock cycle 9. The property is written using
SMV language [SMV ]. Informally speaking, it implies that if current clock cycle is
8, in the next cycle DIV.Ain should not be 2 or DIV.Bin should not be 3.

assert G((cycle = 8) -> X((DIV.Ain ~= 2) | (DIV.Bin ~= 3)));

If this property is applied on the complete description of the MIPS processor
(using Algorithm 1) to generate the required test program, it will take 375.98
seconds and 1928568 BDD nodes on a 333 MHz Sun UltraSPARC-II with 128M
RAM. However, the test generation time is drastically reduced if Algorithm 2 is
used that performs design and property decompositions, as demonstrated below.

We modify this global property to make it applicable at module level (as shown
below) and apply to the division unit (DIV) using SMV.

assert G((cycle=8) -> X((Ain ~= 2) | (Bin ~= 3)));

The next step is to analyze the counterexample produced by SMV to extract
the input requirements for the division unit. For example, in this case the input
requirements are simple: divInst.src1 = 2 and divInst.src2 = 3. These input re-
quirements are used to generate the expected output assignments for the decode
unit (parent of the division unit). Also, the cycle count requirement is modified
for the decode unit. The modified property (shown below) is applied to the decode
unit.

assert G((cycle = 7) -> X((divInst.src1 ~= 2) | (divInst.src2 ~= 3)));
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The counterexample is analyzed to extract the input requirements for the decode
unit. The decode has two inputs: operation and RegFile. For example, in this case
the input requirements are: operation.opcode = DIV, operation.src1 = 1, opera-
tion.src2 = 2, RegFile[1] = 2, and RegFile[2]=3. This indicates that the operation
should be a division operation with src1 as R1 and src2 as R2. It also implies that
the register file should have the values 2 and 3 at locations 1 and 2 respectively.
There are two tasks to be done here. First, initialize a register file location with a
specific value at a given a clock cycle t. It is done using a move-immediate instruc-
tion fetched at (t-5). In this case, the move-immediate operations should be done
at clock cycle 2 and 3 to make the data available at cycle 8. The second task is
to convert the remaining input requirements as the expected outputs for the fetch
unit (parent of the decode). The modified property (shown below) is applied to the
fetch unit (Fetch).

assert G((cycle=6) -> X((operation.opcode ~= DIV) |

(operation.src1 ~= 1) | (operation.src2 ~= 2)));

The counterexample is analyzed to extract the input requirements for the fetch
unit. The fetch unit has two inputs: PC and instruction memory. The expected
value for PC is 5 and InstMemory[5] has instruction: DIV Rx R1 R2. These are
primary inputs for the processor. The final test program, shown below, is con-
structed by putting random values in the unspecified fields:

Fetch Cycle Opcode Dest Src1 Src2 Comments

----------- ------ ---- ---- ---- --------------

1 NOP R0 is always 0

2 ADDI R1, R0, #2 R1 = 2

3 ADDI R2, R0, #3 R2 = 3

4 NOP

5 NOP

6 NOP

7 DIV R3, R1, R2

The system took less than a second to come up with the counterexample on a
333 MHz Sun UltraSPARC-II with 128M RAM. This time includes the time taken
by SMV in verifying three module level properties. It also includes the time taken
by our system in traversing the graph and generating the new properties with
input/output computations using counterexamples. The total number of BDD
nodes allocated is 5600. Clearly, Algorithm 2 reduced the test generation time and
the required BDD size by an order of magnitude compared to Algorithm 1.

9.2 Test Generation using Template-based Procedures

We applied our methodology on two pipelined architectures: a VLIW implementa-
tion of the MIPS architecture [Hennessy and Patterson 2003] (shown in Figure 7)),
and a RISC implementation of the SPARC V8 architecture [Sparc V8 ].

9.2.1 Experimental Setup. Figure 9 shows our test generation and coverage
analysis framework using Specman Elite [Cadence ]. We captured executable spec-
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ification of the architectures using “e” language. This includes description of 91
instructions for the MIPS, and 106 instructions for the SPARC V8 architecture.
We refer to these as specifications. We implemented a VLIW version of the MIPS
architecture (shown in Figure 7) using “e” language. We used the LEON2 pro-
cessor [LEON2 ] that is a VHDL model of a 32-bit processor compliant with the
SPARC V8 architecture. We refer these models (VLIW MIPS and LEON2) as
implementations.

Test Generation

Coverage Estimation

Simulator

Architecture Specification

Directed

Random

Specman Elite

(ADL Description)

ISA Specification

("e" Description)

Coverage

Specification

Pipelined Implementation

("e" or HDL Description)

External Test Programs
(Tests generated using our approach)

Fig. 9. Test Generation and Coverage Measurement

Our framework generates test programs in three different ways: random, constrained-
random, and our approach. Specman Elite [Cadence ] is used to generate both
random and constrained-random test programs from the specification. Several con-
straints are used for constrained-random test generation. For example, to generate
test programs for register read/write, we used the highest probability for choos-
ing register-type operations in MIPS. Since register-type operations have 3 register
operands, the chances of reading/writing registers are higher than immediate type
(2 register operands) or branch type (one register operand) operations. The test
programs generated by our approach uses the algorithms described in Section 8.

To ensure that the generated test programs are executed correctly by the imple-
mentation, our framework applies the test programs on the implementation as well
as the specification, and compares the contents of the program counter, registers
and memory locations after execution of each test program. We have performed
micro-architectural validation of the pipelined processor by converting the assembly
test sequences generated by our method into the testbenches for RTL simulation of
the implementation. The simulator shows how instructions go through the pipeline
stages on a cycle-by-cycle basis as well as whether the stored results in register
files and memory are correct or not. Capturing when and which instructions move
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from one stage to the next ensures that the generated tests exercise the target
micro-architectural artifacts.

The Specman Elite framework allows definition of various coverage measures that
enables us to compute the functional coverage described in Section 6. We defined
each entry in the instruction definition (e.g. opcode, destination and sources) as a
coverage item in Specman Elite. The coverage for the destination operand gives the
measure of which registers are written. Similarly, the coverage of source operands
gives the measure of which registers are read. We used a variable for each register
to identify a read after a write. Computation of coverage for operation execution is
done by observing the coverage of the opcode field. The computation of coverage for
execution path is performed by observing if all the registers are used for computation
of all/selected opcodes. This is performed by using cross coverage of instruction
fields in Specman Elite that computes every combination of values of the fields.
Finally, we compute the coverage for pipeline execution by maintaining variables
for stalls and exceptions in each unit. The coverage for multiple exceptions is
obtained by performing cross coverage of the exception variables (events) that occur
simultaneously. Currently, we consider only two simultaneous exceptions.

9.2.2 Results. In this section, we compare the test programs generated by our
approach against the random and constrained-random test programs generated by
the Specman Elite. Table I shows the comparative results for the MIPS architec-
ture. The rows indicate the fault models, and the columns indicate test generation
techniques. An entry in the table has two numbers. The first one represents the
minimum number of test programs generated by that test generation technique for
that fault model. The second number (in parenthesis) represents the functional
coverage obtained by the generated test programs for that fault model.

Table I. Test Programs for Validation of MIPS Architecture

Fault Models Test Generation Techniques
Random Constrained Our Approach

Register Read/Write 3900 (100%) 750 (100%) 130 (100%)

Operation Execution 437 (100%) 443 (100%) 182 (100%)

Execution Path 12627 (100%) 1126 (100%) 320 (100%)

Pipeline Execution 30000 (25%) 30000 (30%) 626 (100%)

The number 100% implies that the generated test programs covered all the faults
in that fault model. For example, the Random technique covered all the faults in
“Register Read/Write” function using 3900 tests. The number of test programs
for operation execution are similar for both random and constrained-random ap-
proaches. This is because the constraint used in this case (same probability for all
opcodes) may be the default option used in random test generation approach.

It is clear that the test generated by our approach requires a significantly less
number of tests to obtain the 100% coverage. However, it is also important to
compare the test generation time as well as test application time for all the ap-
proaches. The average time to generate one testcase using random or constrained
random approaches are comparable to our template based test generation approach
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– typically ranges in the order of seconds. Our model checking based test genera-
tion approach requires several minutes on an average for test generation (10-20X
slower). However, since the number of tests required to obtain a coverage goal using
our approach is drastically less (100-1000X), the overall time for test generation is
either comparable or less by orders or magnitude. It is important to note that it
may not be always possible to achieve 100% functional coverage using random and
constrained tests irrespective of how many such tests are generated. The average
time to run a test (test application time) is comparable (in the order of minutes)
irrespective of how they are generated since the length of each test is typically
10-100 instructions. However, since number of tests generated by our approach
is drastically less, the overall validation time will be reduced by several orders of
magnitude compared to random and directed random tests.

Table II shows the comparative results for different test generation approaches
for the LEON2 processor. The trend is similar in terms of number of operations
and fault coverage for both the MIPS and LEON2 architectures. The random
and constrained-random approaches obtained 100% functional coverage for the
first three fault models using an order of magnitude more test vectors than our
approach. We analyzed the cause for the low fault coverage in pipeline execution
for the random and constraint-driven test generation approaches. These two ap-
proaches covered all the stall scenarios and majority of the single exception faults.
However, they could not activate any multiple exception scenarios. Due to bigger
pipeline structure (larger set of pipeline interactions) in the VLIW MIPS, it has
lower fault coverage than the LEON2 architecture in pipeline execution. This func-
tional coverage problem will be even more important for today’s deeply pipelined
embedded processors.

Table II. Test Programs for Validation of LEON2 Processor

Fault Models Test Generation Techniques
Random Constrained Our Approach

Register Read/Write 1746 (100%) 654 (100%) 130 (100%)

Operation Execution 416 (100%) 467 (100%) 212 (100%)

Execution Path 1500 (100%) 475 (100%) 192 (100%)

Pipeline Execution 30000 (40%) 30000 (50%) 248 (100%)

In the remainder of this section we evaluate the quality of our fault model in two
ways. First, we compare our fault model and corresponding coverage with existing
code coverage metric. Next, we apply the tests generated using our fault model on
40 buggy implementations of DLX and Alpha processors. These buggy implemen-
tations were developed by Wagner et al. [2005] at the University of Michigan - Ann
Arbor.

Comparison with Code Coverage. We performed an initial study to evaluate the
quality of our functional fault model using existing coverage measures. Table III
compares our functional coverage against HDL code coverage (statement coverage).
The first column indicates the functional fault models. The second column presents
the minimum number of test programs generated by our test generation algorithms
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to cover all the functional faults in the corresponding fault model. The last column
presents the code coverage obtained for the MIPS implementation [SuperscalarDLX
] using the test programs mentioned in the second column. As expected, our fault
model performed well – a small number of test programs generated a high code cov-
erage. We have also measured the code coverage using the random and constrained
tests and observed that an order of magnitude more tests are required to obtain
100% code coverage.

Table III. Quality of the Proposed Functional Fault Model

Fault Models Test Programs HDL Code Coverage

Register Read/Write 130 85%

Operation Execution 182 91%

Execution Path 320 86%

Pipeline Execution 626 100%

Detection of Bugs in Faulty Implementations. To further evaluate the effective-
ness of our fault model, we have applied the tests generated using our fault model
on 40 buggy implementations [Wagner et al. 2005] of DLX and Alpha processors.
Section 11 describes all the bugs in the DLX and Alpha pipeline and how the tests
generated using our fault model detect these bugs. Figure 10 shows the result of
our analysis for DLX bugs. In the figure ‘v’ denotes that the bug (in X-axis) is ac-
tivated by the test generated using the corresponding fault model (in Y-axis). The
‘ex’ symbol indicates that this bug can be captured by extending the correspond-
ing fault model. For example, the bug 22 requires extension of current register
read/write fault model by considering a sequence of two writes followed by a read
(instead of one write and then read). The description of the required extensions
and other details are available in Section 11.

Exe Path

Oper Exe vvvvv

vvvvvvvvvv

Pipe Exe
ex: requires extensionv: activated 

v

ex

ex

v vvvvv vvvv vv

Reg R/W

4 302928272625242322212 20191817161514131211109876531

Fig. 10. Coverage of DLX Processor Bugs

Figure 11 shows the similar analysis results for Alpha bugs. Majority of these
bugs consist of value specific corner case scenarios. To activate these corner case
scenarios require appropriate extensions to our current fault model. For example,
the bug 7 requires extension of the current operation execution fault model with
specific value assignments. Section 11 describes the required extensions to activate
these faults.

We have applied the tests generated by random and constrained-random ap-
proaches to detect these bugs and obtained results similar to Wagner et al. [2005].
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vvv

ex ex

ex

ex ex

v: activated ex: requires extension

v

Register Read/Write

Execution Path

Operation Execution

Pipeline Execution v

421 3 5 6 7 8 9 10

Fig. 11. Coverage of Alpha Processor Bugs

The random and constrained-random approaches requires several thousands or mil-
lions of instructions to activate these tests. In other words, the directed test pro-
grams generated by our approach can cover majority of these faults by using several
orders of magnitude less number of test programs compared to the random and
constrained-random approaches.

10. CONCLUSIONS

Functional verification is widely acknowledged as a major bottleneck in micropro-
cessor design due to lack of a comprehensive functional coverage metric and the
attendant task of coverage-driven directed test generation technique. This article
presented a specification-driven directed test generation methodology based on a
functional fault model of pipelined processors. This methodology has three impor-
tant steps: architecture specification using an ADL, development of a graph model
and corresponding functional fault model, and coverage-driven test generation. We
have described two test generation approaches: test generation using model check-
ing, and test generation using template-based procedures. These two approaches
are complementary and have their own merits and demerits.

Model checking based approach assumes that the processor model and the negated
version of the properties are applied using a model checker to generate counterex-
amples. However, due to the state space explosion problem this technique cannot
be applied on large designs or in the presence of complex properties. In certain in-
stances when the test is trying to activate a fault within first few cycles, SAT-based
bounded model checking is useful [Koo and Mishra 2006b]. However, in general
it is very difficult to determine the bound upfront. Alternatively, various design
and property decomposition techniques can be applied to reduce the state space
during model checking. However, this may introduce additional challenges in terms
of merging the local counterexamples to obtain the global counterexample (final
test program) [Koo and Mishra 2006a].

The test generation procedures (without model checking) are very efficient since
it can handle large designs. Our experimental results demonstrated that the re-
quired number of test sequences generated by our algorithms to obtain a given fault
(functional) coverage is an order of magnitude less than the random or constrained-
random test programs. However, these procedures assume the availability of nec-
essary templates. In general, it is not possible to create template for one instance
and apply for other instances. For example, if we have a template to create an
exception in a Fetch unit, this template may not be helpful in creating an excep-
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tion in a Decode unit. In such circumstances, we can use model checker to create
the necessary template. However, use of a model checker will introduce all the
difficulties described above including state space explosion problem.

Based on our experience, test generation procedures are effective when the fault
model is simple (templates can be generated and reused easily) and design is large.
The model checking based test generation is efficient when the fault model is com-
plicated but the design is small. We plan to study various design and property
decomposition techniques for test generation in the context of complex fault model
(properties) as well as industry-strength pipelined processors.

11. APPENDIX

This appendix describes various buggy implementations of DLX and Alpha pipelines
developed by Wagner et al. [2005] at the University of Michigan - Ann Arbor. These
faulty implementations are used in Section 9 to demonstrate how our fault model
captured these bugs.

11.1 Buggy DLX Implementations

This section describes the 30 bugs in the DLX pipeline and how they are captured
by the tests generated using our fault model. The bugs are listed based on the
increasing complexity to detect them (determined by the developers [Wagner et
al. 2005]). The bugs 1, 2, 3, 9, 10 an 11 are captured by the tests generated
using operation execution fault model. The bugs 12 to 21 are detected by the tests
generated using register read/write fault model. The bugs 4, 5, 6, 7, 8, 24 to 30 are
detected by the tests generated using pipeline execution fault model. The remaining
bugs (bug 22 and 23) can be captured only by extending the current fault model.
For example, the bug 22 requires extension of current register read/write fault
model by considering a sequence of two writes followed by a read (instead of one
write and then read). Similarly. the bug 23 requires extension of execution path
fault model by considering specific values for source and destination operands.

(1) SLL shifts the wrong way.

(2) When instruction is ADD, ADDI, ADDU, ADDIU operation performed is logic
AND instead of addition.

(3) SLTIU selects the wrong ALU operation. (SLT is selected instead of SLTU).

(4) Whenever there is a JAL instruction, the stage 4 bypass is always activated for
the following instruction, because of wrong test in assigning rsr31.

(5) When bypassing from the MEM stage back to the ID stage with an ALU
immediate instruction, the data is grabbed from stage EX, instead of MEM.

(6) Missing pipeline stall for the case where Load instruction is followed by BNE/BEQ
and the loaded value is used for the comparison in the branch instruction.

(7) In classifying instruction at the MEM stage, the check for the instruction being
a JAL and then assigns link reg to the stage.

(8) When classifying the instruction at the ID stage, it checks for a specific group of
special instructions. The bug is that the test checks for the type of instruction
at the EX stage instead of the type of special instruction at the ID stage.
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(9) The PC value is selected wrong for some branch instructions: with BEQ, BNE,
BLEZ, BGTZ and BLTZ the PC is simply added to the relative destination
but not jumped.

(10) BGTZ jumps for any value less than 0, but not for values greater than 0.

(11) Missing code to write back instruction result from ALU.

(12) Does not write to register 31 instead of register 0.

(13) Reads to register 20 as RS (source read port) return old RS.

(14) Reads of RT (target read port) return old RT if (RT[0] == RS[4]).

(15) Forwarding through RS (source read port) will fail.

(16) For RTs (target read port) 0...31 reads from 0..15 and 0..15

(17) RT (target read port) reads lower 30 bits only.

(18) Reads to RS are correct only if write to register that is not r0 is in progress.

(19) Write to register 5 after read from r5 as RS does not go through.

(20) Mux always statement of RS (source read port)

(21) If RT was 7 then writes negative value to memory.

(22) If write to r7 is followed by instr with RT=r7 write to r14 occurs.

(23) Load result shifted 1 left if ID RS=SMDR 4==9.

(24) Load data is corrupted in case of load to the same address as last store.

(25) If LW and ADDI have same immediate, ADDI doesn’t sign extend the imme-
diate.

(26) BNE followed by BEQ to the same offset will fail.

(27) ADD to address followed by a store to the same address and any instruction
with source of the same address in source fails.

(28) Bypass from MEM stage instead of EX.

(29) addi.rs after a store.rt gets store address.

(30) ADD after a branch with the same RS is not squashed if branch is taken.

11.2 Buggy Alpha Implementations

This section describes the 10 bugs in the Alpha pipeline and how they are captured
by the tests generated using our fault model. The bugs are listed based on the
increasing complexity to detect them (determined by the developers [Wagner et al.
2005]). The bugs 2, 4 to 6, and 10 are detected by the tests generated using pipeline
execution. The remaining bugs are captured by extending the current fault model.
For example, the bug 1 and 3 requires extension of current register read/write fault
model by considering specific value assignments. The bug 7 requires extension of
the current operation execution fault model with specific value assignments. The
bugs 8 and 9 requires extension of the current pipeline execution fault model with
specific value assignments. Clearly, some of the bugs are value-specific corner cases
and requires value specific extensions. Any fault model that allow consideration
of specific values are not good fault models since it may lead to generation of
potentially infinite number of testcases.

(1) Write to zero-reg succeeds if rdb idx = 5.

(2) Load following store to the same address produces bad result.
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(3) Internal forwarding in rda.

(4) Forwarding through zero reg on rb.

(5) Forwarding from wb instead of mem when both match.

(6) Unconditional branch following conditional branch with the same immediate
will not be taken.

(7) When wb rd == rda and first 3 bits of them are 101, last bit of rda is flipped.

(8) If mem and ex is dependent on ra and ra=20, rb is forwarded from writeback.

(9) Conditional branch with negative immediate after a store to positive address
is not taken.

(10) Squash if mem wb ra == id ex rd and instruction in id ex is not any branch.
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