
Architecture Description Language
(ADL)-Driven Software Toolkit Generation
for Architectural Exploration of
Programmable SOCs

PRABHAT MISHRA

University of Florida

and

AVIRAL SHRIVASTAVA and NIKIL DUTT

University of California, Irvine

Advances in semiconductor technology permit increasingly complex applications to be realized
using programmable systems-on-chips (SOCs). Furthermore, shrinking time-to-market demands,
coupled with the need for product versioning through software modification of SOC platforms, have
led to a significant increase in the software content of these SOCs. However, designer productivity is
greatly hampered by the lack of automated software generation tools for the exploration and evalu-
ation of different architectural configurations. Traditional hardware-software codesign flows do not
support effective exploration and customization of the embedded processors used in programmable
SOCs. The inherently application-specific nature of embedded processors and the stringent area,
power, and performance constraints in embedded systems design critically require a fast and au-
tomated architecture exploration methodology. Architecture description language (ADL)-Driven
design space exploration and software toolkit generation strategies present a viable solution to
this problem, providing a systematic mechanism for a top-down design and validation of complex
systems. The heart of this approach lies in the ability to automatically generate a software toolkit
that includes an architecture-sensitive compiler, a cycle-accurate simulator, assembler, debugger,
and verification/validation tools. This article illustrates a software toolkit generation methodology
using the EXPRESSION ADL. Our exploration studies demonstrate the need for and usefulness of
this approach, using as an example the problem of compiler-in-the-loop design space exploration
of reduced instruction-set embedded processor architectures.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors; I.6.7 [Simu-

lation and Modeling]: Simulation Support Systems

General Terms: Design, Languages

This work was partially supported by NSF grants CCR-0203813 and CCR-0205712.
Authors’ addresses: P. Mishra, Department of Computer and Information Science and Engineer-
ing, University of Florida, Gainesville, FL 32611; email: prabhat@cise.ufl.edu; A. Shrivastava,
N. Dutt, Center for Embedded Computer Systems, Donald Bren School of Information and Com-
puter Sciences, University of California, Irvine, CA 92697; email: {aviral, dutt}@ics.uci.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1084-4309/06/0700-0626 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006, Pages 626–658.



ADL-Driven Software Toolkit Generation for Architectural Exploration • 627

Additional Key Words and Phrases: Architecture description language, design space exploration,
programmable architecture, retargetable compilation, embedded processor

1. INTRODUCTION

Increasing complex system functionality and advances in semiconductor tech-
nology are changing how electronic systems are designed and implemented
today. Escalating nonrecurring engineering (NRE) costs to design and manu-
facture chips have tilted the balance towards achieving greater design reuse.
As a result, hardwired application-specific integrated circuit (ASIC) solutions
are no longer attractive. Increasingly, we are seeing a shift toward systems
implemented using programmable platforms. Furthermore, the high degree of
integration provided by current semiconductor technology has enabled the re-
alization of the entire system functionality onto a single chip, which we call
a programmable system-on-chip (SOC). Programmable SOCs are an attractive
option not only because they provide a high degree of design reuse via software,
but because they also greatly reduce the time-to-market.

With both system complexity and time-to-market becoming the main hurdles
for design success, a key factor in programmable SOC design is the designer’s
productivity, that is, a designer’s ability to quickly and efficiently map applica-
tions to SOC implementations. Furthermore, the need for product differentia-
tion necessitates careful customization of the programmable SOC—a task that
customarily takes a long time. Traditionally, embedded systems developers per-
formed limited exploration of the design space using standard processor and
memory architectures. Furthermore, software development was usually done
using existing off-the-shelf processors (with supported integrated software de-
velopment environments) or done manually using processor-specific low-level
languages (e.g., assembly). This was feasible because the software content in
such systems was low and the embedded processor architectures were fairly
simple (e.g., no instruction-level parallelism) and well-defined (e.g., no param-
eterizable components). The emergence of complex, programmable SOCs poses
new challenges for design space exploration. To enable efficient and effective
design space exploration, the system designer critically needs methodologies
that permit: (i) rapid tuning of the embedded processors for target applications,
and (ii) automatic generation of customized software for the tuned embedded
processors.

Figure 1 describes a contemporary hardware-software codesign methodol-
ogy for the design of traditional embedded systems consisting of programmable
processors, application-specific integrated circuits (ASICs), memories, and I/O
interfaces [Mishra and Dutt 2004a]. This contemporary design flow starts by
specifying an application in a system design language. The application is then
partitioned into tasks that are either assigned to software (i.e., executed on
the processor) or hardware (ASIC) such that design constraints (e.g., perfor-
mance, power consumption, cost, etc.) are satisfied. After hardware-software
partitioning, tasks assigned to software are translated into programs (either
in high-level languages such as C/C++ or in assembly), and then compiled into

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



628 • P. Mishra et al.

Fig. 1. Hardware-Software codesign flow for SOC design.

object code (which resides in memory). Tasks assigned to hardware are trans-
lated into hardware description language (HDL) descriptions and then synthe-
sized into ASICs.

In traditional hardware-software codesign, the target architecture template
is predefined. Specifically, the processor is fixed or can be selected from a library
of predesigned processors, but customization of the processor architecture is not
allowed. Even in codesign frameworks allowing customization of the processor,
the fundamental architecture can rarely be changed. However, the inherently
application-specific nature of the embedded processor and strict multidimen-
sional design constraints (power, performance, cost, weight, etc.) critically re-
quire customization and optimization of the design, including processor design,
memory design, and processor-memory organizations. The contemporary code-
sign flow (which does not permit much customization) limits the ability of the
system designer to fully utilize emerging IP libraries, and furthermore, restricts
the exploration of alternative (often superior) SOC architectures. Consequently,
there is tremendous interest in a language-based design methodology for em-
bedded SOC optimization and exploration.

Architectural description languages (ADLs) are used to drive design space
exploration and automatic compiler/simulator toolkit generation. As with an
HDL-Based ASIC design flow, several benefits accrue from a language-based
design methodology for embedded SOC design, including the abilities to perform
(formal) top-down verification and consistency checking, to easily modify the
target architecture and memory organization for design space exploration, and
to automatically generate the software toolkit from a single specification.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



ADL-Driven Software Toolkit Generation for Architectural Exploration • 629

Figure 1 illustrates the ADL-Based SOC codesign flow, wherein the architec-
ture template of the SOC (possibly using IP blocks) is specified in an ADL. This
template is then validated to ensure that the specification is golden. The vali-
dated ADL specification is used to automatically generate a software toolkit
to enable software compilation and cosimulation of the hardware and soft-
ware. Another important and noticeable trend in the embedded SOC domain
is the increasing migration of system functionality from hardware to software,
resulting in a high degree of software content for newer SOC designs. This
trend, combined with shrinking time-to-market cycles, has resulted in an in-
tense pressure to migrate the software development to a high-level language
(such as C, C++, Java)-based environment in order to reduce the time spent
in system design. To effectively perform these tasks, the SOC designer re-
quires a high-quality software toolkit that allows exploration of a variety of
processor cores (including RISC, DSP, VLIW, Superscalar, and ASIP) along with
generation of optimized software, to meet stringent performance, power, code
density, and cost constraints. Manual development of the toolkit is too time-
consuming to be a viable option. An effective embedded SOC codesign flow
must therefore support automatic software toolkit generation, without loss of
optimizing efficiency. Such software toolkits typically include instruction-level
parallelizing (ILP) compilers, cycle-accurate and/or instruction-set simulators,
assemblers/dis-assemblers, profilers, debuggers, etc. In order to automatically
generate these tools, software toolkit generators accept as input a description
of the target processor-memory system specified in an ADL.

This article focuses on ADL-Driven software toolkit generation and de-
sign space exploration and uses the EXPRESSION project (http://www.ics.
uci.edu/˜express) [Halambi et al. 1999] as an example to illustrate this method-
ology. Figure 2 shows a simplified methodology for ADL-Driven exploration.
This methodology consists of four steps: design specification, validation of the
specification, retargetable software toolkit generation, and design space ex-
ploration. The first step is to capture the programmable architecture using
an ADL. The next step is to verify the specification to ensure the correctness
of the specified architecture. The validated specification is used to generate
a retargetable software toolkit that includes a compiler and a simulator. The
generated software toolkit enables design space exploration of programmable
architectures for given application programs under various design constraints
such as area, power, and performance. A key feature of this ADL-Driven explo-
ration framework is the use of a “compiler-in-the-loop” design space exploration
(DSE) framework that allows designers to meaningfully and rapidly explore the
design space by accurately tracking the impact of architectural modifications
by the designer. In particular, the compiler in Figure 2 is an “exploration com-
piler” that can be used by architects to perform quantitative tradeoffs between
various design metrics (e.g., power and performance) very early in the design
process.

The rest of the article is organized as follows. Section 2 briefly surveys cur-
rent ADLs and describes how to capture processor, coprocessor, and memory
architectures using the EXPRESSION ADL. Section 3 presents validation tech-
niques to verify the ADL specification. Section 4 presents the methodology for

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



630 • P. Mishra et al.

Fig. 2. ADL-Driven compiler-in-the-loop design space exploration.

retargetable compiler generation in the context of our compiler-in-the-loop ex-
ploration methodology. The retargetable simulator generation approach is de-
scribed in Section 5, followed by a case study in Section 6. Finally, Section 7
concludes the article.

2. ARCHITECTURE-SPECIFICATION USING ADL

2.1 Brief Survey of ADLs

The phrase “architecture description language” (ADL) has been used in the con-
text of designing both software and hardware architectures. Software ADLs are
used for representing and analyzing software architectures [Clements 1996].
These ADLs capture the behavioral specifications of components and their in-
teractions that comprise the software architecture. However, hardware ADLs
capture the structure (hardware components and their connectivity) and be-
havior (instruction-set) of programmable architectures consisting of the pro-
cessor, coprocessor, and the memory subsystem. Computer architects have long
used machine description languages for the specification of architectures. Early
ADLs such as ISPS [Barbacci 1981] were used for the simulation, evaluation,
and synthesis of computers and other digital systems. Contemporary ADLs
can be classified into three categories based on the nature of the information
an ADL can capture: structural, behavioral, and mixed. Structural ADLs (e.g.,
MIMOLA [Leupers and Marwedel 1998]) capture the structure in terms of
architectural components and their connectivity. Behavioral ADLs (e.g., nML
[Freericks 1993] and ISDL [Hadjiyiannis et al. 1997]) capture the instruction-
set behavior of the processor architecture. Mixed ADLs (e.g., LISA [Zivojnovic
et al. 1996] and EXPRESSION [Halambi et al. 1999]) capture both the struc-
ture and behavior of the architecture. There are many comprehensive ADL
surveys available in the literature, including ADLs for retargetable compilation
[Qin and Malik 2002], SOC design [Tomiyama et al. 1999], and programmable
embedded systems [Mishra and Dutt 2005]. Additionally, several commercial
offerings following this ADL approach are now available, for example, Tensilica
[Tensilica Inc. 2006] and LISATek (http://www.coware.com).

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



ADL-Driven Software Toolkit Generation for Architectural Exploration • 631

Fig. 3. An example architecture.

2.2 Specification Using EXPRESSION ADL

Our exploration framework uses the EXPRESSION ADL [Halambi et al. 1999]
to specify processor, coprocessor, and memory architectures. Figure 3 shows
an example of an architecture that can issue up to three operations (an ALU
operation, a memory access operation, and a coprocessor operation) per cycle.
The coprocessor supports vector arithmetic operations. In the figure, oval boxes
denote units, dotted ovals are storages, bold edges are pipeline edges, and dotted
edges are data-transfer edges. A data-transfer edge transfers data between
units and storages. A pipeline edge transfers instruction (operations) between
two units. A path from a root node (e.g., Fetch) to a leaf node (e.g, WriteBack)
consisting of units and pipeline edges is called a pipeline path. For example,
{Fetch, Decode, ALU, WriteBack} is a pipeline path. A path from a unit to the
main memory or register file consisting of storages and data-transfer edges is
called a data-transfer path. For example, {MemCntrl, L1, L2, MainMemory} is a
data-transfer path. This section describes how the EXPRESSION ADL captures
the structure and behavior of the architecture shown in Figure 3 [Mishra and
Dutt 2004a].

2.2.1 Structure. The structure of an architecture can be viewed as a
net-list with the components as nodes and the connectivity as edges. Similar to
the processor’s block diagram in its databook, Figure 4 shows a portion of the
EXPRESSION description of the processor structure [Mishra and Dutt 2005].
It describes all the components in the structure, such as PC, RegisterFile, Fetch,
Decode, ALU, and so on. Each component has a list of attributes. For example,
the ALU unit has information regarding the number of instructions executed
per cycle, the timing of each instruction, supported opcodes, input/output

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



632 • P. Mishra et al.

Fig. 4. Specification of structure using EXPRESSION ADL.

latches, and so on. Similarly, the memory subsystem structure is represented
as a net-list of memory components. The memory components are described
and attributed with their characteristics, such as cache line size, replacement
policy, write policy, and so on.

The connectivity is established using the description of pipeline and data-
transfer paths. For example, Figure 4 describes the four-stage pipeline as {Fetch,
Decode, Execute, WriteBack}. The Execute stage is further described as three
parallel execution paths: ALU, LoadStore, and Coprocessor. Furthermore, the
LoadStore path is described using the pipeline stages AddrCalc and MemCntrl.
Similarly, the coprocessor pipeline has three pipeline stages: EMIF 1, CoProc,
and EMIF 2. The architecture has fifteen data-transfer paths, seven of which
are unidirectional. For example, the path {WriteBack → RegisterFile} transfers
data in one direction, whereas the path {MemCntrl ↔ L1Data} transfers data
in both directions.

2.2.2 Behavior. EXPRESSION ADL captures the behavior of an architec-
ture as the description of the instruction set and provides a programmer’s view
of the architecture. The behavior is organized into operation groups, with each
group containing a set of operations1 having some common characteristics. For
example, Figure 5 [Mishra and Dutt 2005] shows three operation groups. The

1In this article we use the terms operation and instruction interchangeably.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



ADL-Driven Software Toolkit Generation for Architectural Exploration • 633

Fig. 5. Specification of behavior using EXPRESSION ADL.

aluOps group includes all the operations supported by the ALU unit. Similarly,
the memOps and cpOps groups contain all the operations supported by the
units MemCntrl and CoProc, respectively. Each instruction is then described in
terms of its opcode, operands, behavior, and instruction format. Each operand
is classified either as source or as destination. Furthermore, each operand is
associated with a type that describes the type and size of the data it contains.
The instruction format describes the fields of the instruction in both binary and
assembly. Figure 5 shows the description of add, store, and vectMul operations.
Unlike normal instructions whose source and destination operands are regis-
ter type (except load/store), the source and destination operands of vectMul are
memory type. The s1 and s2 fields refer to the starting addresses of two source
operands for the multiplication. Similarly, dst refers to the starting address
of the destination operand. The length field refers to the vector length of the
operation that has an immediate data type.

The ADL captures the mapping between the structure and the behavior (and
vice versa). For example, the add and sub instructions are mapped to the ALU
unit, the load and store instructions are mapped to the MemCntrl unit, and so
on. The ADL also captures other information, such as mapping between the
target and generic instruction set to enable retargetable compiler/simulator
generation. For example, the target instruction addsub in Figure 5 is com-
posed of the generic instructions add and sub. A detailed description of the
EXPRESSION ADL is available in Halambi et al. [1999].

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



634 • P. Mishra et al.

Fig. 6. Validation of ADL specification.

3. VALIDATION OF ADL SPECIFICATION

After specification of the entire programmable SOC architecture in an ADL,
the next step is to verify the specification to ensure the correctness of the spec-
ified architecture. Although many challenges exist in specification validation,
a particular challenge in pipelined architectures is to verify pipeline behavior
in the presence of hazards and multiple exceptions. There are many important
properties that need to be verified to validate pipeline behavior. For example,
it is necessary to verify that each operation in the instruction set can execute
correctly in the processor pipeline. It is also necessary to ensure that the ex-
ecution of each operation is completed in a finite amount of time. Similarly,
it is important to verify the execution style (e.g., in-order execution) of the
architecture.

We have developed validation techniques to ensure that the architectural
specification is well formed by analyzing both the static and dynamic behaviors
of the specified architecture. Figure 6 shows the flow for verifying the ADL
specification [Mishra and Dutt 2005]. The graph model as well as the FSM
model of the architecture is generated from the specification. We have developed
algorithms to verify several architectural properties, such as connectedness,
false pipeline and data-transfer paths, completeness, and finiteness [Mishra
and Dutt 2004a]. Dynamic behavior is verified by analyzing the instruction
flow in the pipeline using a finite-state machine (FSM)-based model to validate
several important architectural properties, such as determinism and in-order
execution in the presence of hazards and multiple exceptions [Mishra et al.
2002, 2003]. The property checking framework determines if all the necessary
properties are satisfied. In case of a failure, it generates traces so that a designer
can modify the architecture specification.

4. RETARGETABLE COMPILER GENERATION

We now describe our approach for the generation of an architecture-exploration
compiler from the EXPRESSION ADL. This approach is critical for the ex-
ploration of embedded systems that are characterized by stringent multidi-
mensional constraints. To meet all the design constraints together, embedded
systems very often have nonregular architectures. Traditional architectural
features employed in high-performance computer systems need to be cus-
tomized to meet the power, performance, cost, and weight needs of the embedded

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



ADL-Driven Software Toolkit Generation for Architectural Exploration • 635

system. For example, an embedded system may not be able to implement com-
plete register bypassing because of its impact on the area, power, and complexity
of the system. As a result, the embedded system designer may opt for partial
bypassing which can be customized to meet the system constraints. Further
customization is possible in embedded systems due to their application-specific
nature. Some architectural features which are not “very” useful for a given
application set may be absent in the embedded processor.

In this highly customized world of embedded architectures, the role of the
compiler is very crucial. The lack of regularity in the architecture poses signif-
icant challenges for compilers attempting to exploit these features. However, if
the compiler is able to exploit these architectural features, it can have a sig-
nificant impact on the power, performance, and other constraints of the whole
system. As a result, compiler development is a very important phase of em-
bedded processor design. A lot of time and effort on the part of experienced
compiler-writers is invested in developing an optimizing compiler for the em-
bedded processor. Given the significance the compiler has on processor power
and performance, it is only logical that the compiler must play an important
role in embedded processor design.

Although a compiler’s effects can be incorporated into the design of an em-
bedded processor, this process is often ad hoc in nature and may result in con-
servative, or worse yet, erroneous exploration results. For example, designers
often use the code generated by the “old compiler,” or “hand-generated” code
to test new processor designs. This code should faithfully represent the code
that the future compiler will generate. However, this approximation, or “hand-
tuning,” generates many inaccuracies in design exploration, and as a result
may lead to suboptimal design decisions. A systematic method of incorporat-
ing compiler hints while designing the embedded processor is needed. Such a
schema is called a compiler-assisted or compiler-in-the-loop design methodol-
ogy. The key enabler of the compiler-in-the-loop methodology is an ADL-Driven
retargetable compiler. While a conventional compiler takes only the application
as input and generates the executable, a retargetable compiler also takes the
processor architecture description as an input. The retargetable compiler can
therefore exploit architectural features present in the described system, and
generate code tuned to the specific architecture.

Whereas there has been a wealth of research on retargetable compil-
ers [Muchnick 1997; MDES User Manual 1997], contemporary research on
ADL-Driven retargetable compilers has focused on both design abstraction lev-
els: architecture (instruction-set) and microarchitecture (implementation such
as pipeline structure). Traditionally, there has been more extensive research on
architecture-level retargetability. Our EXPRESSION-Based compiler-in-the-
loop exploration framework employs and advances compiler retargetability at
both abstraction levels. At the processor pipeline (microarchitecture) level, de-
cisions on which bypasses should be present in the processor greatly impact
the power, performance, and complexity of the processor. Indeed, our recent
research results [Shrivastava et al. 2004, 2005; Park et al. 2006] show that
deciding the bypasses in a processor by a traditional “simulation-only” explo-
ration leads to incorrect design decisions and may lead to suboptimal designs. A

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



636 • P. Mishra et al.

Fig. 7. rISA and normal instructions coreside in memory.

compiler-in-the-loop exploration can be used to suggest pareto-optimal bypass
configurations.

In this section we will focus on the use of our compiler-in-the-loop explo-
ration methodology at the architectural level, and investigate instruction-set
architecture extensions for code size reduction.

4.1 Instruction-Set-Level Retargetability (rISA)

Many embedded systems are constrained by small memory footprints and thus
require minimization of the program code size. An architectural feature de-
signed to reduce code size is the reduced bit-width instruction set architecture
(rISA) which supports two instruction sets: the normal set, which contains the
original 32-bit instructions, and the reduced bit-width instruction-set, which
encodes the most commonly used instructions into 16-bit instructions. If an
application is fully expressed in terms of reduced bit-width instructions, then
a 50% code size reduction is achieved (as compared to when it is expressed in
terms of normal instructions).

Several embedded processors support this feature. For instance, the ARM
processor supports rISA with 32-bit normal instructions and narrow 16-bit in-
structions. While the normal 32-bit instructions comprise the ARM instruction-
set, the 16-bit instruction forms the Thumb instruction-set. Other processors
with a similar feature include the MIPS32/16 [Kissell 1997], TinyRISC [LSI
LOGIC 2006], STMicro’s ST100 (http://www.st.com), and the ARC Tangent
(http://www.arcores.com) processor.

The code for an rISA processor contains both normal and rISA instructions,
as shown in Figure 7, from Shrivastava et al. [2006]. The fetch mechanism
of the processor is oblivious to the processor’s mode of execution regardless of
the processor executing an rISA or normal instruction, the instruction fetch
of the processor remains unchanged. The processor dynamically converts the
rISA instructions to normal instructions before or during the instruction decode
stage. Figure 8 shows the dynamic translation of Thumb instructions to ARM
instructions, as described in [Advanced RISC Machines Ltd. 2006].

Typically, each rISA instruction has an equivalent instruction in the normal
instruction-set. This is done to ensure that the translation from an rISA in-
struction to a normal instruction (which has to be performed dynamically) is
simple, and can be done without performance penalty. After conversion, the in-
struction executes as a normal instruction, and thus no other hardware change

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



ADL-Driven Software Toolkit Generation for Architectural Exploration • 637

Fig. 8. Translation of Thumb instruction to ARM instruction.

is required. Therefore, the main advantage of rISA lies in achieving good code
size reduction with minimal hardware additions. However, some instructions
(e.g., an instruction with a long immediate operand) cannot be mapped into a
single rISA instruction. It takes more than one rISA instruction to encode the
normal instruction. In such cases, more rISA instructions are required to im-
plement the same task. As a result, rISA code has slightly lower performance
as compared to normal code.

The rISA instruction-set (IS), because of bit-width restrictions, can encode
only a subset of the normal instructions and allows access to only a small
subset of registers. Contemporary rISA processors (such as ARM/Thumb and
MIPS32/16) incorporate a very simple rISA model with rISA instructions that
can access 8 registers (out of 16 or 32 general-purpose registers). Owing to tight
bit-width constraints in rISA instructions, they can use only very small im-
mediate values. Furthermore, existing rISA compilers support the conversion
only at a routine-level (or function-level) of granularity. Such severe restric-
tions make code size reduction obtainable by using a rISA very sensitive to the
compiler quality and the application features. For example, if the application
has high register pressure, or if the compiler does not do a good job of register
allocation, it might be better to increase the number of accessible registers at
the cost of encoding only a few opcodes in rISA. Thus, it is very important to
perform a compiler-in-the-loop design space exploration (DSE) while designing
rISA architectures.

4.1.1 rISA Model. The rISA model defines the rISA IS and the mapping
of rISA instructions to normal instructions. Although typically each rISA in-
struction maps to only one normal instruction, there may be instances where
multiple rISA instructions map to a single normal instruction.

The rISA processors can operate in two modes: rISA mode and normal mode.
Most rISA processors ( e.g., ARM) have a mode bit in the CPSR (current process

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



638 • P. Mishra et al.

Fig. 9. Bit-width constraints on rISA instructions.

state register) which identifies whether the processor is in rISA mode or normal
mode. When the processor is in rISA mode, it breaks the instruction into two
halves and decodes them separately and sequentially. The processor needs to
find out whether the instructions it is receiving are normal or rISA instructions.
Many rISA processors accomplish this by using explicit instructions that change
the mode of execution. We label an instruction in the normal IS that changes
mode from normal to rISA the mx instruction, and an instruction in the rISA
instruction-set that changes mode from rISA to normal the rISA mx instruction.
Every sequence of rISA instructions starts with an mx instruction and ends
in a rISA mx instruction. Such a sequence of rISA instructions is termed an
rISABlock.

In order to avoid changing the instruction fetch mechanism of rISA proces-
sors, it is important to ensure that all normal instructions align to the word
boundary. However, an odd number of instructions in a rISABlock results in
the ensuing normal instruction being misaligned to the word boundary. There-
fore, a padding rISA nop instruction is required to force alignment to the word
boundary.

Due to bit-width constraints, a rISA instruction can access only a subset of
registers. The register accessibility of each register operand must be specified
in the rISA model. The width of immediate fields must also be specified. In
addition, there may be special instructions in the rISA model to help the com-
piler generate better code. For example, a very useful technique to increase the
number of registers accessible in rISA mode is to implement a rISA move in-
struction that can access all registers.2 Another technique to increase the size
of the immediate operand value is to implement a rISA extend instruction that
completes the immediate field of the succeeding instruction. Numerous such
techniques can be explored to increase the efficacy of rISA architectures. Next,
we describe some of the important rISA design parameters that can be explored
using our framework.

4.1.2 rISA Design Parameters. The most important consequence of using
rISA instructions is the limited number of bits available to encode the op-
code, register operands, and the immediate values—resulting in a large space
of alternative encodings that the rISA designer needs to explore and evalu-
ate. For instance, in most existing architectures the register operand field in
the rISA instructions is 3-bit wide, permitting access to only 8 registers. For
3-address instructions, (3 × 3) = 9 bits are used in specifying the operands.
Therefore, only (16–9) = 7 bits are left to specify the opcode. As a result, only
27 = 128 opcodes can be encoded in rISA. The primary advantage of this ap-
proach is the huge number of opcodes available. Using such a rISA, most normal

2This is possible because a move has only two operands and hence, has more bits to address each
operand.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



ADL-Driven Software Toolkit Generation for Architectural Exploration • 639

32-bit instructions can be specified as rISA instructions. However, this approach
suffers from the drawback of increased register pressure, possibly resulting in
poor code size.

One modification is to increase the number of registers accessible by rISA
instructions to 16. However, in this model only a limited number of opcodes are
available. Thus, depending on the application, large sections of program code
might not be implementable using rISA instructions. The design parameters
that can be explored include the number of bits used to specify operands (and
opcodes), and the type of opcodes that can be expressed in rISA.

Another important rISA feature that impacts the quality of the architecture
is the “implicit operand format”. In this feature, one (or more) of the operands in
the rISA instruction is hard-coded (i.e., implied). The implied operand could be
a register operand or a constant. When the frequently occurring case of a format
of add instruction is add Ri Ri R j (where the first two operands are the same),
an rISA instruction r I S A add1 Ri R j can be used. In the case of an application
that access arrays produces a lot of instructions like addr = addr + 4, then
an rISA instruction r I S A add4 addr, which has only one operand, might be
very useful. The translation unit, while expanding the instruction can also fill
in the missing operand fields. This is a very useful feature that can be used by
the compiler to generate high-quality code.

Another severe limitation of rISA instructions is their inability to incorporate
large immediate values. For example, with only 3 bits available for operands,
the maximum unsigned value that can be expressed is 7. Thus, it might be
useful to vary the size of the immediate field, depending on the application and
the values that are (commonly) generated by the compiler. However, increasing
the size of the immediate fields will reduce the number of bits available for
opcodes (and also the other operands). This tradeoff can be meaningfully made
only with a compiler-in-the-loop DSE framework.

Various other design parameters such as partitioned register files,
shifted/padded immediate fields, etc. should also be explored in order to gener-
ate an rISA architecture that is tuned to the needs of the application and to the
compiler quality. While some of these design parameters have been studied in a
limited context, there is a critical need for an ADL-Driven framework that uses
an architecture-aware compiler to exploit and combine all of these features. We
now describe our rISA compiler framework which enables a compiler-in-the-
loop exploration framework to quantify the impact of these features.

4.1.3 rISA Compiler. Figure 10 shows the phases of our EXPRESS com-
piler [Halambi et al. 2001] that are used to perform rISAization.3 We use the
GCC front end to output a sequence of generic 3-address MIPS instructions,
which in turn are used to generate the CFG, DFG, and other compiler data
structures comprising the internal representation of the application. We now
describe each ensuing step of Figure 10.

Mark rISA Blocks. Due to the restrictions discussed in the previous sub-
section, several types of instructions such as those with very many operands,

3rISAization is the process of converting normal instructions to rISA instructions.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



640 • P. Mishra et al.

Fig. 10. rISA compiler flow for DSE.

or those with long immediate values, etc., may not be convertible to rISA in-
structions. The first step in compilation for a rISA processor is to mark all
the instructions that can be converted into rISA instructions. A contiguous list
of marked instructions in a basic block is termed a rISABlock. Owing to the
overhead associated with rISAization, it may not be profitable to convert all
rISABlocks into rISA instructions.

Profitability Analysis. This step decides which rISABlocks to convert into
rISA instructions, and which ones to leave in terms of normal instructions. A
mode change instruction is needed at the beginning and end of each rISA Block.
Furthermore, in order to adhere to the word boundary, there should be an even
number of instructions in each rISABlock. Therefore, if a rISABlock is very
small, then the mode change instruction overhead could negate gains from
code compression achieved through rISAization. It should be noted here that
if all the predecessors of a basic block are also decided to be encoded in rISA
mode, then the mode change instructions may not be needed. We will perform
and discuss such optimizations at a later stage.

Similarly, if the rISABlock is very big, the increased register pressure (and
the resulting register spills) could render rISAization unprofitable. Thus, an
accurate estimation of code size and performance tradeoff is necessary before
rISAizing a rISABlock. In our technique, the impact of rISAization on code size
and performance is estimated using a profitability analysis function.

The profitability analysis function estimates the difference in code size and
performance if the block were to be implemented in rISA mode as compared to
normal mode. The compiler (or user) can then use these estimates to tradeoff

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



ADL-Driven Software Toolkit Generation for Architectural Exploration • 641

between performance and code size benefits for the program. The profitability
heuristic is described in greater detail in Halambi et al. [2002].

Instruction Selection. Our compiler uses a tree pattern matching-based algo-
rithm for instruction selection. A tree of generic instructions is converted into
a tree of target instructions. In case a tree of generic instructions is replaced by
more than one target instruction tree, the one with lower cost is selected. The
cost of a tree depends upon the user’s perception of the relative importance of
performance and code size.

Normally, during instruction selection a tree of generic instructions has trees
of target instructions as possible mappings. Our rISA framework provides trees
of rISA instructions also for possible mapping. As a result, the instruction se-
lection for rISA instructions becomes a natural part of the normal instruction
selection process. The instruction selection phase uses a profitability heuristic
to guide decisions on which sections of a routine to convert to rISA instructions,
and which to convert to normal target instructions. All generic instructions
within profitable rISABlocks are replaced with rISA instructions, and all other
instructions are replaced with normal target instructions.

Replacing a generic instruction with a rISA instruction involves two steps:
first converting the generic instruction to the appropriate rISA opcode, and
second, restricting the operand variables to the set of rISA registers. This is
done by adding a restriction on the variable, which implies that this variable
can be mapped to the set of rISA registers only.

Mode Change Instructions. After instruction selection, the program contains
sequences of normal and rISA instructions. A list of contiguous rISA instruc-
tions may span across basic block boundaries. To ensure correct execution, we
need to make sure that whenever there is a switch in the instructions from
normal to rISA or vice versa (for any possible execution path), there is also an
explicit and appropriate mode change instruction. There should be an mx in-
struction when the instructions change from normal to rISA instructions, and
an rISA mx instruction when the instructions change from rISA instructions
to normal instructions. If the mode of instructions changes inside a basic block,
then there is no choice but to add the appropriate mode change instruction
at the boundary. However, when the mode changes at the basic block boundary,
the mode change instruction can be added at the beginning of the successor
basic block or at the end of the predecessor basic block. The problem becomes
more complex if there is more than one successor and one predecessor at the
junction. In such a case, the mode change instructions should be inserted so as
to minimize performance degradation, that is, in the basic blocks which exe-
cute the least. We use a profile-based analysis to find where to insert the mode
change instructions [Shrivastava and Dutt 2004].

Register Allocation. Our EXPRESS compiler implements a modified version
of Chaitin’s solution [Briggs et al. 1994] to register allocation. Registers are
grouped into (possibly overlapping) register classes. Each program variable is
then mapped to the appropriate register class. For example, operands of an rISA
instruction belong to the rISA register class (which consists of only a subset
of the available registers). The register allocator then builds the interference
graph and colors it honoring the register class restrictions of the variables. Since

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



642 • P. Mishra et al.

code blocks that have been converted to rISA typically have a higher register
pressure (due to the limited availability of registers), higher priority is given to
rISA variables during register allocation.

Insert NOPs. The final step in code generation is to insert rISA nop instruc-
tion in rISABlocks that have an odd number of rISA instructions. The output of
the compiler flow in Figure 10 is the target assembly code exploiting the rISA
instructions.

We have briefly described how the EXPRESSION ADL-Driven EXPRESS
compiler can be used to generate architecture-sensitive code for rISA archi-
tectures. By considering the compiler effects during DSE, the designer is
able to accurately estimate the impact of various rISA features. Section 6
presents some results for rISA exploration using the MIPS 32/16-bit rISA
architecture.

5. RETARGETABLE SIMULATOR GENERATION

Simulators are indispensable tools in the development of new architectures.
They are used to validate an architecture design, a compiler design as well
as to evaluate architectural design decisions during design space exploration.
Running on a host machine, these tools mimic the behavior of an application
program on a target machine. These simulators should be fast to handle the in-
creasing complexity of processors, flexible to handle all features of applications
and processors, for example, runtime self-modifying codes, and retargetable to
support a wide spectrum of architectures.

The performance of simulators varies widely depending on the amount of
information they capture, as determined by their abstraction level. Functional
simulators only capture the instruction-set details. The cycle-accurate simu-
lators capture both instruction-set and microarchitecture details. As a result,
cycle-accurate simulators are slower than functional simulators but provide
timing details for the application program. Similarly, bit- and phase-accurate
simulators model the architecture more accurately at the cost of simulation
performance.

Simulators can be further classified based on their model of execution:
either interpretive or compiled. Interpretive simulation is flexible but slow. In
this technique an instruction is fetched, decoded, and executed at runtime.
Instruction decoding is a time-consuming process in a software simulation.
Compiled simulation performs compile time decoding of application program
to improve the simulation performance. The performance improvement is ob-
tained at the cost of flexibility. Compiled simulators rely on the assumption that
the complete program code is known before the simulation starts and is fur-
thermore runtime static. Compiled simulators are not applicable to embedded
systems that support runtime self-modifying codes or multimode processors.
There are various ADL-Driven simulator generation frameworks in the litera-
ture including GENSIM using ISDL [Hadjiyiannis et al. 1999], MSSB/MSSU
using MIMOLA [Leupers and Marwedel 1998], CHECKERS using nML
[Freericks 1993], SIMPRESS/RexSim using EXPRESSION [Reshadi et al.
2003], HPL-PD using MDES [MDES User Manual 1997], and fast simulators

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



ADL-Driven Software Toolkit Generation for Architectural Exploration • 643

Fig. 11. ADL-driven instruction-set simulator generation.

using LISA [Pees et al. 2000] and RADL [Siska 1998]. This section briefly
describes retargetable simulator generation using the EXPRESSION ADL
for instruction-set architecture (ISA) simulation as well as cycle-accurate
simulation.

5.1 Instruction-Set Simulation

In a retargetable ISA simulation framework, the range of architectures that
can be captured and the performance of the generated simulators depend on
three factors: first, the model, based on which the instructions are described;
second, the decoding algorithm that uses the instruction model to decode the
input binary program; and third, the execution method of decoded instructions.
These issues are equally important, and ignoring any of them results in a sim-
ulator that is either very general but slow or very fast but restricted to some
architecture domain. However, the instruction model significantly affects the
complexity of decode and the quality of execution. We have developed a generic
instruction model coupled with a simple decoding algorithm that leads to an
efficient and flexible execution of decoded instructions [Reshadi et al. 2003,
2006].

Figure 11 shows our retargetable simulation framework that uses the ADL
specification of the architecture and the application program binary (com-
piled by gcc) to generate the simulator [Reshadi et al. 2006]. Section 5.1.1
presents our generic instruction model used to describe the binary encod-
ing and behavior of instructions [Reshadi et al. 2006]. Section 5.1.2 describes
the instruction decoder that decodes the program binary using the descrip-
tion of instructions in the ADL. The decoder generates optimized source code
of the decoded instructions [Reshadi et al. 2003]. The structure generator
generates structural information to keep track of the state of the simulated
processor. The target-independent components are described in the library.
This library is finally combined with the structural information and the de-
coded instructions and is compiled on the host machine to get the final ISA
simulator.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



644 • P. Mishra et al.

5.1.1 Generic Instruction Model. The focus of this model is on the com-
plexities of different instruction binary formats in different architectures
[Reshadi et al. 2006]. As an illustrative example, we model the integer arith-
metic instructions of the Sparc V7 processor which is a single-issue processor
with 32-bit instruction (http://www.sparc.org). The integer arithmetic instruc-
tions, IntegerOps (as shown below), perform certain arithmetic operations on
two source operands and write the result to the destination operand. This
subset of instructions is distinguished from the others by the following bit
mask:

Bitmask: 10xxxxx0 xxxxxxxx xxxxxxxx xxxxxxxx
IntergerOps: < opcode dest src1 src2 >

A bit mask is a string of ‘1,’ ‘0,’ and ‘x’ symbols and it matches the bit pattern
of a binary instruction if and only if for each ‘1’ or ‘0’ in the mask, the binary
instruction has a 1 or a 0 value in the corresponding position, respectively.
The ‘x’ symbol matches both 1 and 0 values. In this model, an instruction of
a processor is composed of a series of slots, I =< sl0, sl1, . . . >, and each slot
contains only one operation from a subset of operations. All the operations in
an instruction execute in parallel. Each operation is distinguished by a mask
pattern. Therefore, each slot (sli) contains a set of operation-mask pairs (opi,
mi) and is defined by the format: sli =< (op0

i , mi0)|(op1
i , mi1)| . . . >.

An operation class refers to a set of similar operations in the instruction-
set that can appear in the same instruction slot and has a similar format.
The previous slot description can be rewritten using an operation class clOps:
sli =< (clOpsi, mi) >. For example, integer arithmetic instructions in Sparc
V7 can be grouped into a class (IntegerOps) as: ISPARC =< (IntegerOps, 10xx −
xxx0xxxx − xxxxxxxx − xxxxxxxx − xxxx)| . . . >. An operation class is com-
posed of a set of symbols and an expression that describes the behavior of
the operation class in terms of the values of its symbols. For example, the op-
eration class has four symbols: opcode, dest, src1, and src2. The expression
for this example would be: dest = fopcode(src1, src2). Each symbol may have
a different type depending on the bit pattern of the operation instance in the
program. For example, the possible types for the src2 symbol are register and
immediate integer. The value of a symbol depends on its type and can be static
or dynamic. For example, the value of a register symbol is dynamic and is
known only at runtime, whereas the value of an immediate integer symbol
is static and is known at compile time. Each symbol in an operation has a
possible set of types. A general operation class is then defined as: clOps =<

(s0, T0), (s1, T1), . . . |exp(s0, s1, . . .) >, where (si, Ti) are (symbol, type) pairs and
exp(s0, s1,. . . ) is the behavior of the operations based on the values of the
symbols.

The type of a symbol can be defined as a register (∈ Registers) or as an
immediate constant (∈ Constants), or can be based on certain microopera-
tions (∈ Operations). For example, a data processing instruction in ARM (e.g.,
add) uses shift (microoperation) to compute the second source operand, known
as ShifterOperand. Each possible type of a symbol is coupled with a mask

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



ADL-Driven Software Toolkit Generation for Architectural Exploration • 645

Fig. 12. Description of integer arithmetic instructions in SPARC processor.

pattern that determines what bits in that operation must be checked to find
out the actual type of the corresponding symbol. Possible types of a symbol are
defined as: T = {(t, m)|t ∈ Operations∪Registers∪Constants, m ∈ (1|0|x)∗}. For
example, the opcode symbol can be any of the valid integer arithmetic opera-
tions (OpTypes), as shown in Figure 12.

Note that this provides more freedom for describing the operations because
here the symbols are not directly mapped to some contiguous bits in the in-
struction, and a symbol can correspond to multiple bit positions in the in-
struction binary. The actual register in a processor is defined by its class
and index. The index of a register in an instruction is defined by extracting
a slice of the instruction bit pattern and interpreting it as an unsigned inte-
ger. An instruction can also use a specific register with a fixed index, as in
a branch instruction that updates the program counter. A register is defined
by: r = [regClass, i, j ]|[regClass, index], where i and j define the boundary of
the index bit slice in the instruction. For example, if the dest symbol is from
the 25th to 29th bits in the instruction and is an integer register, its type can
be described as: DestType = [IntegerRegClass, 29, 25]. Similarly, a portion of
an instruction may be considered as a constant. For example, one bit in an
instruction can be equivalent to a Boolean type, or a set of bits can make an
integer immediate. It is also possible to have constants with fixed values in
the instructions. A constant type is defined by c = # type, ij # | # type, value #
where i and j show the bit positions of the constant and the type is scalar, such
as integer, Boolean, float, etc. The complete description of integer arithmetic
instructions in the SPARC processor is shown in Figure 12.

5.1.2 Generic Instruction Decoder. A key requirement in a retargetable
simulation framework is the ability to automatically decode application bi-
naries of different processor architectures. This section describes the generic

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



646 • P. Mishra et al.

instruction decoding technique that is customizable depending on the instruc-
tion specifications captured through our generic instruction model.

Algorithm 1 describes how the instruction decoder works [Reshadi et al.
2006]. This algorithm accepts the target program binary and the instruction
specification as inputs and generates a source file containing decoded instruc-
tions as output. Iterating on the input binary stream, it finds an operation,
decodes it using Algorithm 2, and adds the decoded operation to the output
source file [Reshadi et al. 2006]. Algorithm 2 also returns the length of the
current operation used to determine the beginning of the next operation. Algo-
rithm 2 gets a binary stream and a set of specifications containing operation or
microoperation classes. The binary stream is compared to the elements of the
specification to find the specification-mask pair that matches the beginning of
the stream. The length of the matched mask defines the length of the operation
that must be decoded. The types of symbols are determined by comparing their
masks with the binary stream. Finally, using the symbol types, all symbols are
replaced with their values in the expression part of the corresponding specifi-
cation. The resulting expression is the behavior of the operation. This behavior
and the length of the decoded operation are produced as outputs.

Algorithm 1: StaticInstructionDecoder
Inputs: i) Target Program Binary (Application)

ii) Instruction Specifications (InstSpec)
Output: Decoded Program DecodedOperations
Begin

Addr = Address of first instruction in Application
DecodedOperations = {};
while (Application not processed completely)

BinStream = Binary stream in Application starting at Addr;
(Exp, AddrIncrement) = DecodeOperation (BinStream, InstSpec);
DecodedOperations = DecodedOperations U <Exp, Addr>;
Addr = Addr + AddrIncrement;

endwhile;
return DecodedOperations ;

End;

Consider the following SPARC Add operation example and its binary pattern:

Add g1, #10, g2 1000-0100 0000-0000 0110-0000 0000-1010

Using the specifications described in Section 5.1.1, in the first line of Al-
gorithm 2 the (InegerOps, 10xx-xxx0 xxxx-xxxx xxxx-xxxx xxxx-xxxx) pair
matches the instruction binary. This means that the IntegerOps operation
class matches this operation. Next, the values of the four symbols are deter-
mined: opcode, dest, src1, src2. Symbol opcode’s type is OpTypes, in which
the mask pattern of Add matches the operation pattern. So, the value of
opcode is Add function. Symbol dest’s type is DestType, which is a regis-
ter type. It is an integer register whose index is bits 25th to 29th (00010),
that is, 2. Similarly, the values for the symbols src1 and src2 can be com-
puted. By replacing these values in the expression part of the IntegerOps,

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



ADL-Driven Software Toolkit Generation for Architectural Exploration • 647

the final behavior of the operation would be: g2 = Add(g1, 10); which means
g2 = g1 + 10.

Algorithm 2: DecodeOperation
Input: Binary Stream (BinStream), Specifications (Spec)
Output: Decoded Expression (Exp), Length (DecodedStreamSize)
Begin

(OpDesc, OpMask) = findMatchingPair(Spec, BinStream)
OpBinary = initial part of BinStream whose length is equal to OpMask
Exp = the expression part of OpDesc;
foreach pair of (s, T) in the OpDesc

Find t in T whose mask matches the OpBinary;
v = ValueOf(t, OpBinary);
Replace s with v in Exp;

endfor
return (Exp , size(OpBinary));

End;

5.2 Cycle-Accurate Simulation

Automatic simulator generation for a class of architecture has been addressed
in the literature. However, it is difficult to generate simulators for a wide vari-
ety of processor and memory architectures including RISC, DSP, VLIW, super-
scalar, and hybrid. The main bottleneck is the lack of an abstraction (covering a
diverse set of architectural features) that permits reuse of the abstraction prim-
itives to compose heterogeneous architectures. In this section, we describe our
simulator generation approach based on functional abstraction. Section 5.2.1
presents the functional abstraction needed to capture a wide variety of architec-
tural features. Section 5.2.2 briefly describes ADL-Driven simulator generation
using the functional abstraction.

5.2.1 Functional Abstraction. In order to understand and characterize the
diversity of contemporary architectures, we have surveyed the similarities
and differences of each architectural feature in different architecture domains
[Mishra et al. 2001]. Broadly speaking, the structure of a processor consists
of functional units that are connected using ports, connections, and pipeline
latches. Similarly, the structure of a memory subsystem consists of SRAM,
DRAM, cache hierarchy, and so on. Although a broad classification makes the
architectures look similar, each architecture differs in terms of the algorithm
it employs in branch prediction, the way it detects hazards, the way it han-
dles exceptions, and so on. Moreover, each unit has different parameters for
different architectures (e.g., number of fetches per cycle, levels of cache, and
cache line size). Depending on the architecture, a functional unit may perform
the same operation at different stages in the pipeline. For example, read-after-
write(RAW) hazard detection followed by operand read happens in the decode
unit for some architectures (e.g., DLX [Hennessy and Patterson 2003]), whereas
in others these operations are performed in the issue unit (e.g., MIPS R10K).
Some architectures even allow operand read in the execution unit (e.g., ARM7).
We observed some fundamental differences from this study; the architecture

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



648 • P. Mishra et al.

Fig. 13. A fetch unit example.

may use:

—the same functional or memory unit with different parameters;
—the same functionality in different functional or memory units; or
—new architectural features.

The first difference can be eliminated by defining generic functions with
appropriate parameters. The second difference can be eliminated by defining
generic subfunctions which can be used by different architectures at different
stages in the pipeline. The last one is difficult to alleviate since it is new, unless
this new functionality can be composed of existing subfunctions. Based on our
observations we have defined the necessary generic functions, subfunctions,
and computational environments needed to capture a wide variety of processor
and memory features. In this section we present functional abstraction by way
of illustrative examples. We first explain the functional abstraction needed to
capture the structure and behavior of the processor and memory subsystem,
then we discuss the issues related to defining generic controller functionality,
and finally, we discuss the issues related to handling interrupts and exceptions.

We capture the structure of each functional unit using parameterized func-
tions. For example, a fetch unit functionality contains several parameters,
namely, number of operations read per cycle, number of operations written
per cycle, reservation station size, branch prediction scheme, number of read
ports, number of write ports, etc. These ports are used to connect different
units. Figure 13 shows a specific example of a fetch unit described using
subfunctions. Each subfunction is defined using appropriate parameters. For
example, ReadInstMemory reads n operations from an instruction cache using
the current PC address (returned by ReadPC) and writes them to the reserva-
tion station. The fetch unit reads m operations from the reservation station and
writes them to the output latch (fetch to decode latch) and uses a BTB-based
branch prediction mechanism. We have defined parameterized functions for all
functional units present in contemporary programmable architectures, namely,
fetch unit, branch prediction unit, decode unit, issue unit, execute unit, com-
pletion unit, interrupt handler unit, PC unit, latch, port, connection, and so on.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



ADL-Driven Software Toolkit Generation for Architectural Exploration • 649

Fig. 14. Modeling of MAC operation.

We have also defined subfunctions for all the common activities, for example,
ReadLatch, WriteLatch, ReadOperand, and so on.

The behavior of a generic processor is captured through the definition of op-
codes. Each opcode is defined as a function, with a generic set of parameters,
which performs the intended functionality. The parameter list includes source
and destination operands as well as necessary control and data type informa-
tion. We have defined common subfunctions, for example, ADD, SUB, SHIFT,
and so on. The opcode functions may use one or more subfunctions, for exam-
ple, the MAC (multiply and accumulate) uses the two subfunctions (ADD and
MUL), as shown in Figure 14.

Each type of memory module, such as SRAM, cache, DRAM, SDRAM, stream
buffer, and victim cache, is modeled using a function with appropriate param-
eters. For example, a typical cache function has many parameters, including
cache size, line size, associativity, word size, replacement policy, write policy,
and latency. The cache function performs four operations: read, write, replace,
and refill. These functions can have parameters for specifying pipelining, paral-
lelism, access modes (normal read, page mode read, and burst read), and so on.
Again, each function is composed of subfunctions. For example, an associative
cache function can be modeled using a cache function.

A major challenge for functional abstraction of programmable architectures
is the modeling of control for a wide range of architectural styles. We define
control in both a distributed and centralized manner. Distributed control is
transfered through pipeline latches. While an instruction gets decoded, the
control information needed to select the operation as well as the source and
destination operands are placed in the output latch. These decoded control sig-
nals pass through the latches between two pipeline stages unless they become
redundant. For example, when the value for src1 is read, that particular con-
trol is not needed any more, and instead the read value will be in the latch.
Centralized control is maintained using a generic control table. The number
of rows in the table is equal to the number of pipeline stages in the architec-
ture. The number of columns is equal to the maximum number of parallel units
present in any pipeline stage. Each entry in the control table corresponds to
one particular unit in the architecture. It contains information specific to that
unit, for example, busy bit (BB), stall bit (SB), list of children, list of parents,
opcodes supported, and so on.

Another major challenge for functional abstraction is the modeling of
interrupts and exceptions. We capture each exception using an appropriate

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



650 • P. Mishra et al.

subfunction. Opcode-related exceptions (e.g., divide by zero) are captured in
the opcode functionality. Functional unit-related exceptions (e.g., illegal slot
exception) are captured in functional units. External interrupts (e.g., reset,
debug exceptions) are captured in the control unit functionality. A detailed
description of functional abstraction for all microarchitectural components is
available in Mishra et al. [2001].

5.2.2 Simulator Generation. We have developed C++ models for the
generic functions and subfunctions described in Section 5.2.1. The development
of simulation models is a one-time activity and independent of the architecture.
The simulator is generated by composing the abstraction primitives based on
the information available in the ADL specification. The simulator generation
process consists of three steps. First, the ADL specification is read to gather all
the necessary details for the simulator generation. Second, the functionality of
each component is composed using generic functions and subfunctions. Finally,
the structure of the processor is composed using the structural details. In the
remainder of this section we briefly describe the last two steps.

To compose the functionality of each component, all necessary details (such
as parameters and functionality) are extracted from the ADL specification.
First, we describe how to generate three major components of the processor: in-
struction decoder, execution unit, and controller, using generic simulation mod-
els. Next, we describe how to compose the functionality. A generic instruction
decoder uses information regarding individual instruction format and opcode
mapping for each functional unit to decode a given instruction. The instruc-
tion format information is available in ADL specification. The decoder extracts
information regarding opcode and operands from input instruction using the
instruction format. The mapping section of the ADL captures the information
regarding the mapping of opcodes to functional units. The decoder uses this
information to perform/initiate necessary functions (e.g., operand read) and to
decide where to send the instruction.

To compose an execution unit it is necessary to instantiate all the opcode
functionalities (e.g., ADD, SUB, etc. for an ALU) supported by that execution
unit. The execution unit invokes the appropriate opcode functionality for an
incoming operation based on a simple table look-up technique, as shown in
Figure 15. Also, if the execution unit is supposed to read the operands, the
appropriate number of operand read functionalities needs to be instantiated
unless the same read functionality can be shared using multiplexers. Similarly,
if the execution unit is supposed to write the data back to the register file,
the functionality for writing the result needs to be instantiated. The actual
implementation of an execute unit might contain many more functionalities,
such as read latch, write latch, modify reservation station (if applicable), and
so on.

The controller is implemented in two parts. First, it generates a central-
ized controller (using a generic controller function with appropriate parame-
ters) that maintains the information regarding each functional unit, such as
busy, stalled, etc. It also computes hazard information based on the list of in-
structions currently in the pipeline. Based on these bits and the information

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



ADL-Driven Software Toolkit Generation for Architectural Exploration • 651

Fig. 15. An example simulation model for MIPS architecture.

available in the ADL, it stalls/flushes necessary units in the pipeline. Second, a
local controller is maintained at each functional unit in the pipeline. This local
controller generates certain control signals and sets necessary bits based on
the input instruction. For example, the local controller in an execute unit will
activate the add operation if the opcode is add, or it will set the busy bit in case
of a multicycle operation.

It is also necessary to compose the functionality of new instructions (behav-
ior) using the functionality of existing ones. The operation mapping (described
in Section 2) is used to generate the functionality for the target (new) instruc-
tions using the the functionality of the corresponding generic instructions.
The final implementation is generated by instantiating components (e.g.,
fetch, decode, register files, memories, etc.) with appropriate parameters and
connecting them using the information available in the ADL. For example,
Figure 15 shows a portion of the simulation model for the MIPS architecture.
The generated simulation models combined with the existing simulation
kernel create a cycle-accurate structural simulator.

6. DESIGN SPACE EXPLORATION

In this section, we present some sample results of design space exploration of
programmable SOCs. We have performed extensive architectural design space
exploration by varying different architectural features in the EXPRESSION
ADL. We have also performed microarchitectural exploration of the MIPS 4000
processor in three directions: pipeline exploration, instruction-set exploration,
and memory exploration [Pasricha et al. 2003]. Pipeline exploration allows
the addition (deletion) of new (existing) functional units or pipeline stages.
Instruction-Set exploration allows the addition of new instructions or the for-
mation of complex instructions by combining existing instructions. Similarly,

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



652 • P. Mishra et al.

memory exploration allows modification of memory hierarchies and cache pa-
rameters. The system architect only modifies the ADL description of the ar-
chitecture, and the software toolkit is automatically generated from the ADL
specification using the functional abstraction approach. The public release
of the retargetable simulation and exploration framework is available from
http://www.cecs.uci.edu/˜express. This release also supports a graphical user
interface (GUI). The architecture can be described (or modified) using the GUI.
The ADL specification and the software toolkit are automatically generated
from the graphical description. In the remainder of this section, we present
sample experimental results demonstrating the need for and usefulness of the
compiler-in-the-loop design space exploration of rISA designs which was dis-
cussed in Section 4.

6.1 Instruction-Set Exploration (rISA Design Space)

The experimental results of the compiler-in-the-loop design space exploration of
rISA designs is divided into two main parts. First, we demonstrate the goodness
of our rISA compiler. We show that, as compared to existing rISA compilers, our
instruction-level register pressure-sensitive compiler can consistently achieve
superior code compression over a set of benchmarks. In the second part, we
develop rISA designs and demonstrate that the code compression achieved by
using different rISA designs is very sensitive to the rISA design itself. Depend-
ing on the specific rISA design chosen, there can be a difference of up to 2X in the
code compression achievable. This clearly demonstrates the need to very care-
fully select the appropriate rISA design, and shows that a compiler-in-the-loop
exploration greatly helps the designer choose the best rISA configuration.

6.1.1 rISA Compiler Comparison. For the baseline experiments, we com-
piled the applications using GCC for MIPS32 ISA. Then we compiled the same
applications using GCC for MIPS32/16 ISA. We performed both compilations
using -Os flags with the GCC to enable all the code size optimizations. The
percentage code compression achieved by GCC for MIPS16 was computed and
is represented by the light bars in Figure 16 taken from Halambi et al. [2002].
The MIPS32 code generated by GCC was compiled again using the register
pressure-based heuristic in our EXPRESS compiler. The percentage code com-
pression achieved by EXPRESS was measured and is plotted as dark bars in
Figure 16.

Figure 16 shows that the register pressure-based heuristic performs con-
sistently better than GCC and successfully prevents code size inflation. GCC
achieves, on average, a 15% code size reduction, while EXPRESS achieved
an average of 22% code size reduction. We simulated the code generated by
EXPRESS on a variant of the MIPS R4000 processor that was augmented with
the rISA MIPS16 instruction set. The memory subsystem was modeled with no
caches and a single-cycle main memory. The performance of MIPS16 code is,
on average, 6% lower than that of MIPS32 code, with the worst case being 24%
lower. Thus, our technique was able to reduce the code size using rISA with a
minimal impact on performance.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



ADL-Driven Software Toolkit Generation for Architectural Exploration • 653

Fig. 16. Percentage code compressions achieved by GCC and EXPRESS for MIPS32/16.

Fig. 17. Code size reduction for various rISA architectures.

6.1.2 Sensitivity to rISA Designs. Owing to various design constraints on
rISA, the code compression achieved by using an rISA is very sensitive to the
rISA chosen. The rISA design space is huge and several instruction-set idiosyn-
crasies make it very difficult to characterize. To show the variation of code com-
pression achieved with rISA, we took a practical approach. We systematically
designed several rISAs, and studied the code compression achieved by them.
Figure 17 taken from Halambi et al. [2002] plots the code compression achieved
by each rISA design. We started with the extreme rISA designs, rISA 7333 and
rISA 4444, and gradually improved upon them.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



654 • P. Mishra et al.

rISA 7333. The first rISA design is (rISA 7333). In this rISA, the operand is
a 7-bit field, and each operand is encoded in 3-bits. Thus there can be 27 = 128
instructions in this rISA, but each instruction can access only 8 registers. Fur-
thermore, they can support unsigned immediate values from 0 to 7. However,
instructions that have 2 operands (like move) have 5-bit operands. Thus, they
can access all 32 registers. Owing to the uniformity in the instruction for-
mat, the translation unit is very simple for this rISA design. The leftmost bar
in Figure 17 plots the average code compression achieved when we used the
rISA 7333 design on all our benchmarks. On average, rISA 7333 achieved 12%
code compression. The rISA 7333 is unable to achieve good code compressions
for applications that have high register pressure, for example, adii, and those
with large immediate values. In such cases, the compiler heuristic decides not
to rISAize large portions of the application in order to avoid code size increase
due to extra spill/reload and immediate extend instructions.

rISA 4444. The rISA 4444 is the instruction set on the other end of the rISA
design spectrum. It provides only 4-bits to encode the opcode, but has 4-bits to
specify each operand as well. Thus, there are 24 = 16 instructions in rISA 4444,
but each instruction can access 24 = 16 registers. We profiled the applications
and incorporated the 16 most frequently occurring instructions in this rISA. The
second bar from the left in Figure 17 shows that the register pressure problem
is mitigated in the rISA 4444 design. It achieves better code size reduction for
benchmarks that have high register pressure, but performs badly on some of
the benchmarks because of its inability to convert all the normal instructions
into rISA instructions. An rISA 4444 achieves about 22% improvement on the
normal instruction set.

rISA 7333 imm. We now attack the second problem in rISA 7333—small im-
mediate values. For instructions that have immediate values, we decreased the
size of opcode, and used the bits to accommodate as large an immediate value as
possible. This design point is called rISA 7333 imm. Because of the nonunifor-
mity in the size of the opcode field, the translation logic is complex for such an
rISA design. The middle bar in Figure 17 shows that rISA 7333 imm achieves
slightly better code compressions as compared to the first design point, since it
has large immediate fields while having access to the same set of registers. An
rISA 7333 imm achieves about 14% improvement on the normal instruction
set.

rISA 7333 imp opnd. Another useful optimization that can be performed to
save precious bit space is to encode instructions with the same operands using
a different opcode. For example, suppose we have a normal instruction add
R1 R2 R2, and suppose we have an rISA instruction of the format rISA add1
R1 R2 R3. The normal instruction can be encoded into this rISA instruction
by setting the two source operands the same (equal to R2). However, having
a separate rISA instruction format of the form rISA add2 R1 R2 to encode
such instructions may be very useful. This new rISA instruction format has
fewer operands, and will therefore require fewer instruction bits. The extra
bits can be used in two ways: first, directly by providing increased register file
access to the remaining operands, and second, indirectly. Since this instruction
can afford a longer opcode, another instruction with tighter constraints on the

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



ADL-Driven Software Toolkit Generation for Architectural Exploration • 655

opcode field (e.g., an instruction with immediate operands) can switch opcode
with this instruction.

We employed the implied operands feature in rISA 7333 and generated
our fourth rISA design, rISA 7333 imp opnd. This rISA design matches the
MIPS16 rISA. The second bar from the right in Figure 17 represents the code
compression achieved by the rISA 7333 imp opnd. The rISA 7333 imp opnd
design achieves about the same code size improvement as the rISA 4444 de-
sign point; it achieves about 22% code compression over the normal instruction
set.

rISA hybrid. Our final rISA design point is rISA hybrid. This is a custom
ISA for each benchmark. All the previous techniques, that is, long immedi-
ate values, implied operands, etc., are employed to define the custom rISA for
each benchmark. In this rISA design instructions can have variable register ac-
cessibilities. Complex instructions with operands having different register set
accessibilities are also supported. The register set accessible by operands varies
from 4 to 32 registers. We profiled the applications and manually (heuristically)
determined the combinations of operand bit-width sizes that provided the best
code size reduction. The immediate field was also customized to gain best code
size reduction. The rISA hybrid achieves the best code size reduction since it is
customized for the application set. The rightmost bar in Figure 17 shows that
rISA Hybrid achieves about 26% overall improvement on the normal instruc-
tion set. The code compression is consistent across all benchmarks.

In summary, our experimental results for rISA-based code compression show
that the effects of different rISA formats are highly sensitive to the application
characteristics: the choice of a rISA format for different applications can result
in up to a 2X increase in code compression. However, the system designer crit-
ically needs a compiler-in-the-loop approach to evaluate, tune, and design the
rISA instruction set so as to achieve the desired system constraints of perfor-
mance, code size, and energy consumption.

7. CONCLUSIONS

The complexity of programmable architectures (consisting of processor cores,
coprocessors, and memories) is increasing at an exponential rate due to the
combined effects of advances in technology as well as demands from increas-
ingly complex application programs in embedded systems. The choice of pro-
grammable architectures plays an important role in SOC design due to its
impact on the overall cost, power, and performance. A major challenge for an
architect is to find the best possible programmable architecture for a given set
of application programs and various design constraints. Due to the increasing
complexity of programmable architectures, the number of design alternatives
is extremely large. Furthermore, shrinking time-to-market constraints make it
impractical to explore all the alternatives without using an automated explo-
ration framework. This article presented an architecture description language
(ADL)-Driven exploration methodology that is capable of accurately capturing
a wide variety of programmable architectures and generating efficient software
toolkits, including compilers and simulators.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



656 • P. Mishra et al.

ADLs have been successfully used in academic research as well as in industry
for embedded processor development. The early ADLs were either structure-
oriented (MIMOLA), or behavior-oriented (nML, ISDL). As a result, each class
of ADLs is suitable for specific tasks. For example, structure-oriented ADLs are
suitable for hardware synthesis, and unfit for compiler generation. Similarly,
behavior-oriented ADLs are appropriate for generating compilers and simula-
tors for instruction-set architectures, but unsuited for generating cycle-accurate
simulators or hardware implementations of the architecture. However, a behav-
ioral ADL can be modified to perform the task of a structural ADL (and vice
versa). For example, nML is extended by Target Compiler Technologies to per-
form hardware synthesis and test generation (http://www.retarget.com). The
recent ADLs (LISA, EXPRESSION) adopt the mixed approach where the lan-
guage captures both the structure and the behavior of the architecture. ADLs
designed for a specific domain (such as DSP or VLIW), or for a specific purpose
(such as simulation or compilation) can be compact and it is possible to auto-
matically generate efficient (in terms of area, power, and performance) tools and
hardware prototypes. However, it is difficult to design an ADL for a wide variety
of architectures to perform different tasks using the same specification. Generic
ADLs require the support of powerful methodologies to generate high-quality
tools/prototypes compared to domain-specific or task-specific ADLs.

This article presented the four important steps in an ADL-Driven explo-
ration methodology: architecture specification, validation of specification, re-
targetable software toolkit generation, and design space exploration. The first
step is to capture the programmable architecture using an ADL. The next step
is to verify the specification to ensure the correctness of the specified archi-
tecture. The validated specification is used to generate a retargetable software
toolkit, including a compiler and a simulator. This article presented sample
experiments to illustrate the use of an ADL-Driven architectural exploration
methodology for the exploration of reduced bit-width instruction-set architec-
tures (rISA) on the MIPS platform. Our experimental results demonstrated the
need for and utility of the compiler-in-the-loop exploration methodology driven
by an ADL specification. The ADL specification can also be used for rapid pro-
totyping [Schliebusch et al. 2002; Mishra et al. 2003a; Leupers and Marwedel
1998], test generation (http://www.retarget.com), [Leupers and Marwedel 1998;
Mishra and Dutt 2004b] and functional verification of programmable architec-
tures [Mishra and Dutt 2005].

As SOCs evolve in complexity to encompass high degrees of multiprocess-
ing coupled with heterogeneous functionality (e.g., MEMS and mixed signal
devices) and new on-chip interconnection paradigms (e.g., networks-on-chip),
the next generation of multiprocessor SOCs (MPSOCs) will similarly require a
language-driven methodology for the evaluation, validation, exploration, and
codesign of such platforms.

ACKNOWLEDGMENTS

We would like to acknowledge the contributions of Professors Alex Nicolau,
Mehrdad Reshadi, Ashok Halambi, Dr. Peter Grun, Dr. Partha Biswas,
Dr. Mahesh Mamidipaka, and Sudeep Pasricha.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



ADL-Driven Software Toolkit Generation for Architectural Exploration • 657

REFERENCES

Advanced RISC Machines Ltd. An Introduction to Thumb. Advanced RISC Machines Ltd.
http://www.arccores.com. ARCtangent-A5 microprocessor Technical Manual.
BARBACCI, M. R. 1981. Instruction set processor specifications (ISPS): The notation and its appli-

cations. IEEE Trans. Comput. 30, 1, 24–40.
BRIGGS, P., COOPER, K., AND TORCZON, L. 1994. Improvements to graph coloring register allo-

cation. In Proceedings of the SIGPLAN Conference on Programming Language Design and
Implementation.

CLEMENTS, P. C. 1996. A survey of architecture description languages. In Proceedings of the In-
ternational Workshop on Software Specification and Design (IWSSD), 16–25.

http://www.coware.com. COWare LISATek.
FREERICKS, M. 1993. The nML machine description formalism. Tech. Rep. TR SM-IMP/DIST/08,

TU Berlin, Computer Science Department.
HADJIYIANNIS, G., RUSSO, P., AND DEVADAS, S. 1999. A methodology for accurate performance eval-

uation in architecture exploration. In Proceedings of the Design Automation Conference (DAC),
927–932.

HADJIYIANNIS, G., HANONO, S., AND DEVADAS, S. 1997. ISDL: An instruction set description language
for retargetability. In Proceedings of the Design Automation Conference (DAC), 299–302.

HALAMBI, A., SHRIVASTAVA, A. DUTT, N., AND NICOLAU, A. 2001. A customizable compiler framework
for embedded systems. In Proceedings of the Software and Compilers for Embedded Systems
(SCOPES) Conference.

HALAMBI, A., SHRIVASTAVA, A., BISWAS, P., DUTT, N., AND NICOLAU, A. 2002. An efficient compiler
technique for code size reduction using reduced bit-width isas. In Proceedings of the Design
Automation and Test in Europe (DATE) Conference.

HALAMBI, A., GRUN, P., GANESH, V., KHARE, A., DUTT, N., AND NICOLAU A. 1999. EXPRESSION: A
language for architecture exploration through compiler/simulator retargetability. In Proceedings
of the Design Automation and Test in Europe (DATE) Conference. 485–490.

HENNESSY, J. AND PATTERSON, D. 2003. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann, San Fransisco, Calif.

KISSELL, K. 1997. MIPS16: High-density MIPS for the Embedded Market. Silicon Graphics MIPS
Group.

LEUPERS, R. AND MARWEDEL, P. 1998. Retargetable code generation based on structural processor
descriptions. Des. Autom. Embedded Syst. 3, 1, 75–108.

LSI LOGIC. TinyRISC LR4102 Microprocessor Technical Manual. LSI LOGIC.
MDES User Manual. 1997. http://www.trimaran.org. The MDES User Manual.
MISHRA, P., ASTROM, J., DUTT, N., AND NICOLAU, A. 2001. Functional abstraction of programmable

embedded systems. Tech. Rep. UCI-ICS 01-04, University of California, Irvine, Jan.
MISHRA, P., TOMIYAMA, H., DUTT, N., AND NICOLAU, A. 2002. Automatic verification of in-order execu-

tion in microprocessors with fragmented pipelines and multicycle functional units. In Proceedings
of the Design Automation and Test in Europe (DATE) Conference, 36–43.

MISHRA, P., KEJARIWAL, A., AND DUTT, N. 2003a. Rapid exploration of pipelined processors through
automatic generation of synthesizable RTL models. In Proceedings of the Rapid System Proto-
typing (RSP) Conference, 226–232.

MISHRA, P., DUTT, N., AND TOMIYAMA, H. 2003b. Towards automatic validation of dynamic behavior
in pipelined processor specifications. Des. Autom. Embedded Syst. 8, 2–3 (June-Sept.), 249–265.

MISHRA, P. AND DUTT, N. 2004a. Automatic modeling and validation of pipeline specifications.
ACM Trans. Embedded Comput. Syst. 3, 1, 114–139.

MISHRA, P. AND DUTT, N. 2004b. Graph-Based functional test program generation for pipelined
processors. In Proceedings of the Design Automation and Test in Europe (DATE) Conference,
182–187.

MISHRA, P. AND DUTT, N. 2005a. Architecture description languages for programmable embedded
systems. IEE Proceedings Comput. Digital Techniques 152, 3 (May), 285–297.

MISHRA, P. AND DUTT, N. 2005. Functional Verification of Programmable Embedded Architectures:
A Top-Down Approach. Springer Verlag, New York.

MUCHNICK, S. S. 1997. Advanced Compiler Design and Implementation. Morgan Kaufmann, San
Francisco, Calif.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



658 • P. Mishra et al.

PARK, S., SHRIVASTAVA, A., EARLIE, E., DUTT, N., NICOLAU, A., AND PAEK, Y. 2006. Automatic generation
of operation tables for fast exploration of bypasses in embedded processors. In Proceedings of the
Design Automation and Test in Europe (DATE) Conference.

PASRICHA, S., BISWAS, P., MISHRA, P., SHRIVASTAVA, A., MANDAL, A., DUTT, N., AND NICOLAU, A. 2003.
A framework for GUI-Driven design space exploration of a MIPS4K-like processor. Tech. Rep.
CECS 03-17, University of California, Irvine.

PEES, S., HOFFMANN, A., AND MEYR, H. 2000. Retargetable compiled simulation of embedded pro-
cessors using a machine description language. ACM Trans. Des. Autom. Electronic Syst. 5, 4,
815–834.

QIN, W. AND MALIK, S. 2002. Architecture description languages for retargetable compilation. In
the Compiler Design Handbook: Optimizations & Machine Code Generation. CRC Press, Boca
Raton, Fla.

RESHADI, M., BANSAL, N., MISHRA, P., AND DUTT, N. 2003a. An efficient retargetable framework
for instruction-set simulation. In Proceedings of the International Symposium on Hardware/
Software Codesign and System Synthesis (CODES+ISSS), 13–18.

RESHADI, M., MISHRA, P., AND DUTT, N. 2003b. Instruction set compiled simulation: A technique for
fast and flexible instruction set simulation. In Proceedings of the Design Automation Conference
(DAC), 758–763.

RESHADI, M., MISHRA, P., AND DUTT, N. 2006. A retargetable framework for instruction-set archi-
tecture simulation. To appear in ACM Trans. Embedded Comput. Syst.

SCHLIEBUSCH, O., HOFFMANN, A., NOHL, A., BRAUN, G., AND MEYR, H. 2002. Architecture implemen-
tation using the machine description language LISA. In Proceedings of the Asia South Pacific
Design Automation Conference (ASPDAC)/International Conference on VLSI Design, 239–244.

SHRIVASTAVA, A. AND DUTT, N. 2004. Energy efficient code generation exploiting reduced bit-width
instruction set architectures (risa). In Proceedings of the Conference on Asia South Pacific Design
Automation. IEEE Press, Piscataway, N.J. 475–477.

SHRIVASTAVA, A., EARLIE, E., DUTT, N., AND NICOLAU, A. 2004. Operation tables for scheduling in
the presence of incomplete bypassing. In Proceedings of the 2nd IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis. ACM Press, New York, 194–
199.

SHRIVASTAVA, A., DUTT, N., NICOLAU, A., AND EARLIE, E. 2005. Pbexplore: A framework for compiler-
in-the-loop exploration of partial bypassing in embedded processors. In Proceedings of the Design,
Automation and Test in Europe (DATE) Conference. IEEE Computer Society, Washington, D.C.
1264–1269.

SHRIVASTAVA, A., BISWAS, P., HALAMBI, A., DUTT, N., AND NICOLAU, A. 2006. Compilation framework
for code size reduction using reduced bit-width isas. ACM Trans. Des. Autom. Electronic Syst.

SISKA, C. 1998. A processor description language supporting retargetable multi-pipeline DSP
program development tools. In Proceedings of the International Symposium on System Synthesis
(ISSS), 31–36.

http://www.sparc.org. The SPARC Architecture Manual.
ST100 DSP-MCU Architecture. http://www.st.com. The ST100 DSP-MCU Architecture.
http://www.retarget.com. Target Compiler Technologies.
Tensilica Inc. http://www.tensilica.com. Tensilica Inc.
TOMIYAMA, H., HALAMBI, A., GRUN, P., DUTT, N., AND NICOLAU, A. 1999. Architecture description

languages for systems-on-chip design. In Proceedings of the Asia Pacific Conference on Chip
Design Language, 109–116.

http://www.ics.uci.edu/ ˜express. Exploration framework using EXPRESSION ADL.
ZIVOJNOVIC, V., PEES, S., AND MEYR, H. 1996. LISA—Machine description language and generic

machine model for HW/SW co-design. In Proceedings of the IEEE Workshop on VLSI Signal
Processing, 127–136.

Received February 2006; accepted May 2006

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.


