
LAYOUT-AWARE SIGNAL SELECTION FOR POST-SILICON DEBUG

By

PRATEEK THAKYAL

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2014

c© 2014 Prateek Thakyal

2

To His Divine Grace A. C. Bhaktivedanta Swami Prabhupada

3

ACKNOWLEDGMENTS

I would like to sincerely thank my research advisor, Dr. Prabhat Mishra, without

his guidance this thesis would not have been possile. I would also like to thank my

commitee members, Dr. Ann Gordon-Ross and Dr. Scott Thompson, for their valuable

suggestions.

I convey my deep gratitude to my Krishna House family (H. G. Kalakantha Prabhu

and all the wonderful devotees) for all the love, encouragement, enthusiasm, and

association with which I could complete my Master’s with singing, dancing and feasting

literally every single day of my two year stay. I thank my family for being supportive, and

my wife for all her encouragements.

This work was partially supported by National Science Foundation (NSF) grants

CNS-0746261 and CCF-1218629.

4

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS . 4

LIST OF TABLES . 6

LIST OF FIGURES . 7

ABSTRACT . 8

CHAPTER

1 INTRODUCTION . 9

1.1 Observability - Bottleneck in SoC Post-Silicon Validation 9
1.2 Design Constraints - A Concern for the Signal Selection 10
1.3 Debug at Different Abstraction Levels . 11
1.4 Thesis Contributions and Organization . 12

2 RELATED WORK . 14

2.1 Signal Selection for Post-silicon Debug . 14
2.2 Layout-aware Approaches . 14
2.3 Signal Selection for FPGAs . 15

3 LAYOUT-AWARE SIGNAL SELECTION . 16

3.1 Manhattan Distance Calculation . 16
3.2 Layout-aware Signal Selection . 17

3.2.1 Simulation-based Approach . 18
3.2.2 Metric-based Approach . 22

3.3 Experiments . 24
3.3.1 Experimental Setup . 24
3.3.2 Comparison with Metric-based Signal Selection 24
3.3.3 Comparison with Simulation-based Signal Selection 26

4 SIGNAL SELECTION IN FPGA . 28

4.1 Introduction . 28
4.2 Experiments . 29

4.2.1 Experimental Setup . 29
4.2.2 Results . 29

5 CONCLUSION . 31

REFERENCES . 32

BIOGRAPHICAL SKETCH . 33

5

LIST OF TABLES

Table page

1-1 Advantages and disadvantages of validation at different abstraction levels . . . 13

3-1 Comparison with metric-based restoration ratio 25

3-2 Comparison with simulation-based restoration ratio 26

4-1 Comparison with metric-based signal selection for FPGAs 29

4-2 Comparison with simulation-based signal selection for FPGAs 30

6

LIST OF FIGURES

Figure page

1-1 Illustration of importance of congestion . 11

3-1 Layout-aware signal selection flow . 16

3-2 Restoration ratio for s9234 . 27

7

Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the

Requirements for the Degree of Master of Science

LAYOUT-AWARE SIGNAL SELECTION FOR POST-SILICON DEBUG

By

Prateek Thakyal

May 2014

Chair: Dr. Prabhat Mishra
Major: Electrical and Computer Engineering

Post-silicon debug is widely acknowledged as a bottleneck in System-on-Chip (SoC)

design methodology. A major challenge during post-silicon debug is limited observability

of internal signals. Existing approaches try to select a small set of beneficial trace

signals that can maximize observability. Unfortunately, these techniques do not consider

design constraints such as routability of the selected signals or routing congestion.

Therefore, in reality, it may not be possible to route the selected signals. In this

thesis, I propose a layout-aware signal selection algorithm that takes into account

both observability and routing congestion. Experimental results demonstrate that the

proposed approach can select routing friendly trace signals with negligible impact on

observability. My studies also reveal that the proposed approach is beneficial for both

post-silicon debug (in case of SoCs) and pre-silicon prototyping in FPGA.

8

CHAPTER 1
INTRODUCTION

Validation and debug are significant contributors in terms of cost (time) in the

development cycle of System-on-Chip (SoC) designs. With the rapid increase in

complexity, the percentage time spent on validation is growing with each new generation

of products. With issues like variability – both local and global – in device characteristics,

metal interconnects etc. becoming severe in every new technology node, it is no

longer possible to sign-off the SoC designs based on just the RTL simulations. Thus,

post-silicon debug has become extremely critical and indispensable part of the design

cycle.

1.1 Observability - Bottleneck in SoC Post-Silicon Validation

System-on-Chip (SoC) designs are validated widely through netlist simulations at

the pre-silicon stage. Although, debug at the simulation stage is difficult due to millions

of internal signals, the validation engineers may iteratively choose any set of internal

signals besides the inputs and the outputs. In other words, simulation provides complete

observability of internal signals for debug. Despite rigorous validation at the pre-silicon

stage, some bugs slip into silicon. Post-silicon debug techniques are used to pin point

and root cause such bugs.

Post-silicon-debug has a major constraint in terms of number of signals which may

be observed. Unlike netlist simulation based debug at pre-silicon stage, in post-silicon

debug only the signals either connected to the I/O pins or debug devices can be

observed. To improve observability of internal signals, trace buffers are widely used

in integrated circuits. The trace buffers store the values of selected signals for a number

of cycles at runtime, and the values may be read during debug. The area constraint

in trace buffers limits the number of signals which may be observed. Thus, limited

observability is a major challenge in the post-silicon debug.

9

1.2 Design Constraints - A Concern for the Signal Selection

As the number of signals which may be observed in post-silicon debug is limited, it

is imperative to choose the signals which maximize restorability. Restorability of a signal

is representative of the number of unobserved signals that may be reconstructed, if the

given signal is observed.

A wide variety of contemporary solutions exist ranging from extremely fast metric

based restorability evaluation [7] [1] [11] [12], to simulation based highly accurate

approach [3] and even a hybrid approach [10]. However, all the current approaches

overlook the design constraints such as routing congestion. Signal selection for the

debug is typically done in the final stages of the design cycle when most of the routing

is frozen. Hence, although a designer may get the best possible set of signals from

restorability perspective, it may not be possible to route them. One may argue that

selection of the signals at an earlier stage may resolve the routability issue, but due to

the dynamics in netlist changes over the design cycle it may not be possible to select the

signals at an earlier stage.

Striking a right balance between the restorability and routability is a major

challenge. I propose prioritizing the signals which are near the trace buffer in an effort to

reduce the Manhattan distance (wire-length). Our algorithm can be used in tandem with

the previously proposed algorithms for layout-aware signal selection towards post-silicon

debug. For example, two different signals S1 and S2 may provide same restorability.

However, it may be easier to connect to the signal which is near the trace buffer.

Consider an illustrative example in Figure 1-1. Assume that a designer may trace at

most 2 signals. For simplicity, assume that only one level of metal is allowed and each

white space block may accommodate a maximum of 2 vertical routes due to routing

constraints. Assume that signals X and Y are pre-routed and signal selection is to be

done at this stage among signals R, S and T. The trigger block triggers the trace buffer

to start tracing the signals. In the figure, gray represents an area which is blocked for

10

any further routing. In this case, the existing signal selection algorithm may select R

and S, if they provide higher restorability compared to (R,T) and (S,T). However, it is

not possible to route both the signals due to the congestion constraint. Thus the signal

T, which is not as good as R or S in terms of the restorability needs to be chosen. It

may be noted that as the distance between two connected cells (signals) increases, the

probability of hitting a blockage gets higher and higher. Hence, it is better to give priority

to the signals which are near the trace buffer.

A specific scenario would be to choose between two signals with equal restorability.

Existing signal selection algorithms randomly select one of them. However, it is better to

choose the signal closer to the trace buffer in such a scenario.

Figure 1-1. Illustration of importance of congestion

1.3 Debug at Different Abstraction Levels

Validation and debug is done at multiple levels. System validation entails that the

system be subjected to all possible states. It may seem like that, a relatively small

design netlist with just 10 inputs may be validated with about 210 (1024) test vectors.

11

However, this may not necessarily be true. If the given circuit is with only combinational

logic, certainly 1024 test vectors should suffice. But, in case of sequential logic to do an

exhaustive analysis just for a sequence of two states would take 1024C2 (half a million)

test vectors. Scaling it up to more number of inputs and states would lead to state space

explosion.

Netlist simulation based debug is widely used during the RTL development stage.

Designers write testbenches to catch any bugs. The process of updating the netlist

and reruning the simulation helps weed out a lot of first level errors. Debugging at

this stage is relatively easy. The designers can trace a large number of signals for a

large simulation time window. However, simulation at this level has a problem - it runs

extremely slow compared to actual hardware. Thus, the validation in simulation is limited

by the simulation duration. A lot of bugs may not occur in the intial stages of execution

but may get triggerd later.

The run-time bottlneck in simulation based debug is a motivation for FPGA based

validation. FPGAs, though slower than actual hardware (SoC), run at a much higher

speed than the software simulations and hence, can potentially help in hunting down

some intermittent bugs which are missed during the software simulation stage. Though,

FPGAs have a lower visibility into internal signals compared to simulations, the designer

can reconfigure the FPGAs to select a different set of signals for tracing. The cost of

validation and debug at this stage is still relatively low and only overhead is the synthesis

time. Table 1-1 highlights the pros and cons of debugging at each level.

1.4 Thesis Contributions and Organization

The thesis has made two major contributions : i) layout-aware signal selection, and

ii) exploration of layout-aware signal selection for FPGAs. Layout-aware signal selection

strives for layout congestion reduction while selecting the most benefitial signals, by

giving precedence to the signals near the trace buffer. The framework is implemented

using Cadence Encounter Design Integration (EDI) and Xilinx ISE.

12

Table 1-1. Advantages and disadvantages of validation at different abstraction levels

Stage Visibility Window size Window size Costtestable traceable

RTL
Complete Very small Large Minimalvisibility of
internal signals

FPGA
Partial Very long Medium Low
visibility of
internal signals

SoC
Limited Very long Small Extremely
to signals high
selected
at design

The rest of the thesis is organized as follows. Chapter 2 surveys existing works

related to signal selection for SoCs and FPGAs. Chapter 3 describes our layout-aware

signal selection algorithms in two scenarios, and presents the experimental results.

Chapter 4 investigates the application of layout-aware signal selection in FPGA. Finally,

Chapter 5 concludes the thesis.

13

CHAPTER 2
RELATED WORK

Signal selection algorithms can be classified into three categories: (i) metric based,

(ii) simulation based and (iii) hybrid of metric- and simulation-based techniques. The

metric based algorithms compute restorability of untraced signals for a given signal and

try to maximize the restorability by adding signals to the trace selection. Restorability or

restoration ratio (RR) is defined as the ratio of the total number of signal states that can

be restored over the total number of selected signal states. Following equation defines

restoration ratio:

RR = No. of Restored Signal States + No. of Selected Signal States
No. of Selected Signal States

2.1 Signal Selection for Post-silicon Debug

Ko and Nicolici [7] defined “forward” and “backward” restorability for signal selection.

Basu and Mishra [1] improved signal selection by providing emphasis on selecting

beneficial neighbors. Metric-based methods select signals by iterative additions of

beneficial signals till the trace buffer is full. Although metic-based algorithms have an

advantage of being extremely fast compared to the simulation-based approach, their

restoration performance is not good. Simulation-based trace signal selection starts

with all the signals as observable, and then iteratively eliminates signals which have

minimum impact on the restoration ratio on removal [3]. Simulation based methods

provide higher state restoration ratio, but have a longer runtime. Li and Davoodi [10]

developed a hybrid of the metric and simulation-based signal selection to select trace

signals. Hybrid approach first identifies top candidates using metric evaluation and then

uses simulation to accurately evaluate the state restoration ratio for each candidate.

2.2 Layout-aware Approaches

Due to ever-increasing complexity of SoC designs, layout friendliness has been

investigated by various researchers. Layout-awareness has been used as a key criteria

in scan-chain reordering [4], fault pattern generation [9] and memory BIST synthesis [8].

14

However, layout has not been considered in the context of signal selection in integrated

circuits.

2.3 Signal Selection for FPGAs

Hung and Wilton [5] suggested a new metric, “post-silicon debug difficulty” for signal

selection in FPGA. For a set of selected signals, the metric indicates the number of

circuit states that can be activated. The reasoning used here is that the designers do

not go bit-by-bit to hunt down a bug. Rather, if the designer knows the state closely,

then he may be able to brainstorm on the possible reasons of the bug. Hung and

Wilton[6] also presented graph centrality as one of the metrics for faster selection of

the signals. However, quantitative comparison between “post-silicon debug difficulty”

and restorability based algorithms has not been studied. The restorability based

algorithms have not been applied to the FPGA. My work is a first attempt on applying

the restorability based algorithms on the FPGAs.

15

CHAPTER 3
LAYOUT-AWARE SIGNAL SELECTION

Figure 3-1 provides an overview of our proposed layout-aware signal selection.

Layout of design is first evaluated to get distances of signals from the trace buffer.

Signal selection module takes two inputs – the design (netlist), and signal distance

values – and produces the selected signals. The following sections describe these two

important steps: Manhattan distance calculation using the layout, and layout-aware

signal selection.

Figure 3-1. Layout-aware signal selection flow

3.1 Manhattan Distance Calculation

One of the major challenges in placing and routing a design is the routing

congestion. Routing congestion is defined as the percentage of tracks blocked of

the total tracks available for routing. Many metrics provide an evaluation criteria for

layout congestion. Elucidian distance, Manhattan distance, and total wire-length may be

used as a representative of the congestion in the design. Collection and interpretation of

congestion information is non-trivial with the present tools. Using exact wire-length may

be compute intensive.

Thus wire-length estimation techniques such as half-perimeter wire-length,

squared-Elucidian distance, minimum Steiner-tree wire-length, minimum spanning tree

16

wire-length or complete-graph wire-length may be used [2]. I use wire-length estimate

as the congestion criteria. All prospective selected flip-flops need to connect to the

trace buffer in a star fashion, with the trace buffer at the center. Hence, half-perimeter

wire-length is best suited for this purpose. Half-perimeter wire-length of any two

connected nodes is equal to the Manhattan distance between them.

Manhattan distance is defined as the sum of the absolute values of differences in

the X and Y coordinate values of any two points.

ManhattanDistance = (|xtb − xi |+ |ytb − yi |).

For layout-awareness, the total Manhattan distances of all the selected flip-flops

to the trace buffer needs to be minimized. Total Manhattan Distance(TMD) is given by

following equation:

TMD =
∑TraceBufferSize
i=1 (|xtb − xi |+ |ytb − yi |)

I use normalized-Manhattan distance as a layout-awareness metric for different

signals. Manhattan-distance (from the trace buffer) to all the prospective signals is

calculated and normalized with respect to the farthest prospective signal.

Maximum Manhattan distance, among all prospective flip-flops from the trace buffer

can be computed as:

MDmax = max(MDi)

Similarly, normalized Manhattan distance is computed as:

MDI = MDi/MDmax

Normalized Manhattan distance is used in signal selection algorithms to prioritize

signals based on the proximity to the the trace buffer.

3.2 Layout-aware Signal Selection

The basic idea of our algorithm is that the normalized Manhattan distance values

(computed in the previous section) are used with signal selection parameters like

restorability and visibility to either eliminate or add a flip-flop into the set of flip-flops

selected for the trace buffer. Algorithm 1 shows the major steps during layout-aware

17

signal selection. It is important to note that our algorithm can be used on top of any

existing signal selection procedure by invoking the specific procedure in step 6. In other

words, the signalSelection() subroutine in the algorithm can be replaced by any of the

existing signal selection algorithms.

In the algorithm, the first step is to identify the trace buffer in the layout and get its

coordinates. In step 2, coordinates of all the flip-flops are queried and their Manhattan

distance from the trace buffer is calculated. Step 3 computes the maximum value

among the Manhattan distances. In step 4, the Manhattan distance of all the signals is

normalized with respect to the maximum Manhattan distance calculated in step 3. Step

5 identifies the restoration ratio offered by all the signals. Restoration and Manhattan

distance values of all the signals are used to select the signals in step 6. Finally, the

algorithm returns the selected signals.

In the remainder of this section, I describe how step 6 can invoke two specific signal

selection algorithms - simulation-based and metric-based signal selection.

3.2.1 Simulation-based Approach

Simulation-based signal selection uses iterative elimination of less beneficial

signals. In every iteration, simulations are used to determine the impact of eliminating

a signal among the remaining signals. Signal with minimal impact on the restoration

ratio is eliminated every cycle. Elimination continues till the number of elements in the

observable set is equal to the trace buffer capacity. Layout awareness is added by

scaling the visibility of the flip-flop, based on the normalized-Manhattan-distance. Signal

with the minimum impact on visibility, and minimum reduction in Manhattan distance is

eliminated.

Steps 1, 2, and 3 in Algorithm 2 are initialization steps. Step 2 marks all the

flip-flops as selected and puts them in set {T}. The while loop in step 4 eliminates

the elements in {T} till the number of elements remaining are equal to the width

of the trace buffer. Step 7 calculates the visibility which the set {T} has into the

18

design. Step 9 iterates over the whole set {T}, and creates a new set {V} with just

one element removed from {T}. The visibility is calculated for each set {V}. The

signal to be eliminated is the one for which set {T} - “element” has minimal impact

on the visibility compared to set {T} alone. The algorithm returns selected signals. In

addition to the default elimination, two other approaches may be used for layout-aware

signal elimination. One approach is based on a user-specified maximum Manhattan

distance threshold, in which the signals beyond the threshold are eliminated without

visibility evaluation. In the second approach, the visbility itself is scaled by the

normalized Manhattan distance of the signal. The approaches are captured in the

siganlToBeEliminated function. This ensures, that the signals which do not have much

impact on visibility, and are far from the trace buffer are eliminated first.

19

Algorithm 1: Layout-aware Signal Selection
Inputs : Design(netlist), layout

Output: Selected Signals

/* Find (x,y) coordinates of the trace buffer. */

(xtb, ytb) = getLocation(traceBuffer ,Layout);1

/* Calculate Manhattan distance of all the signals. */∨Signals
i=1 disti = |xtb − xi |+ |ytb − yi | ;2

/* Get the maximum Manhattan Distance. */

maxdis = max(
∨
disti) ;3

/* Compute normalized-Manhattan distance for all the signals. */∨Signals
i=1 ndisti = disti/maxdist ;4

/* Get Restoration Ratio for all the signals. */∨Signals
i=1 restorabilityi = getRestorability(signal , netlist);5

/* Invoke signal selection with normalized-Manhattan distance and

restorability. */

SelectedSignals = signalSelection(ndist, restorability) ;6

Return: Selected Signals

20

Algorithm 2: Layout-aware Simulation-based Signal Selection
Inputs : trace buffer width w , simulation function to get restoration ratio SRR

fsrr (), layout priority offset constant: α, maximum Manhattan distance

threshold: β

Output: Selected Signals

Load the Circuit ;1

Let {T} : Set of all flip-flops in the design;2

Associate values with element in {T} ;3

while w< Number of Elements in {T} do4

Set Minimum Restoration Ratio: minRR = 1000000;5

Let j : Index to the Element to be Eliminated in this iteration = 0;6

/* Calculate visibility of the signals in set {T} */

Let ϑ = Visibility(T);7

Let ν be the change in visibility = 1000000;8

for i ← 1 to Number of Elements in T do9

Let {V } ← {T} − {ith FF} ;10

/* Evaluate δvisibility & scale with routing weight */

bool = signalToBeEliminated(ϑ,Visibility(V), β, ndisti);11

if bool then12

j = i13

end14

end15

/* Remove element based on signalToBeEliminated function */

{T} = {T} - jth element;16

end17

Return: {T}

21

3.2.2 Metric-based Approach

The algorithm in this approach tries to maximize restoration ratio, while adding

new signals to trace buffer, until the trace buffer gets full. The algorithm is modified to

evaluate the combined impact of restoration ratio and normalized Manhattan distance.

Separate weight is used for the restoration ratio and normalized Manhattan distance

(ndist). The weight is then varied from 0 to 1 at a step size of 0.1. Algorithm 3 provides

the details of the approach. The algorithm uses selectBestSignal function which may

be implemented in two different ways. One way may be to skip all the signals which

are not within certain Manhattan distance β. Other way is to use the following equation

for evaluation of goodness of a signal from both restorability and Manhattan distance

perspective.

SelectionCriteria = r ∗ (α− ndisti) + (1− r) ∗ Restorabilityi (3–1)

The algorithm has two nested loops. Within the while loop in step 6, a temporary

set of signals (V) is created by adding ith element of set {T} to set of selected signals.

This set is created to evaluate the effectiveness of the ith signal. Each time while loop in

step 6 is invoked it generates a set of selected signals for the given routing weight (rw).

The for loop in step 4 evaluates the sets of selected signals, for different values of rw ,

generated by the internal while loop. Steps 12 and 13 decide if a signal is to be added

to a set of selected signals or not. Finally, the algorithm returns the set of signals which

would be best from the restoration ratio and Manhattan distance perspective.

22

Algorithm 3: Layout-aware Metric-based Signal Selection
Inputs : netlist, trace buffer width w , maximum Manhattan distance threshold: β

Output: Selected Signals

Load the Circuit; Let finalRR be 0;1

Let {T} : Set of all signals in the design; Let {SS} : Set of Selected Signals = φ;2

Let rw be the routing weight of the signal under consideration;3

for rw → 0 to 1; rw+ = 0.1 do4

Let {S} : Set of all selected signal Flip-Flops = φ;5

while w>Number of elements in {S} do6

Max Restoration Ratio: maxRR = 0;7

Let j : Index to the element to be added in the current iteration = 0;8

for i ← 1 to Number of Elements in {T} do9

Let {V } ← {S}
⋃
ith FF in {T} ;10

Let rrv = stateRestorationRatio(V);11

bool = selectBestSignal(i , ndisti , rrv ,maxRR);12

if bool then13

j = i ;maxRR = rrv ;14

end15

end16

{T} = {T} - jth element;17

{S} = {S}
⋃

jth element;/* Add signal as selected */18

end19

if finalRR < stateRestorationRatio(S) then20

SS ← S ; finalRR ← stateRestorationRatio(S);21

end22

end23

Return: {SS} is the set of selected signals

23

3.3 Experiments

The section describes the experimental setup and presents the results.

3.3.1 Experimental Setup

ISCAS’89 benchmarks were used for the evaluation. To emulate the layout

availability, the layout was first generated by modifying the Verilog description. I added

a trace buffer of a given width and connected to random internal nets of the design.

Random internal nets were chosen to avoid biasing the layout for any signals. I used

Cadence Encounter Digital Implementation tool (EDI) to synthesize the modified Verilog

design. A design exchange format (DEF) file was dumped from the design synthesis

tool. Manhattan distance of each of the flip-flops to the trace buffer was tabulated using

the coordinates in the DEF. Signals were selected giving more weight to the flip-flops

near to the trace buffer. Final restoration ratio was then computed for the selected

signals.

I compared the total Manhattan distance of all the selected signals from the trace

buffer between existing algorithms and our proposed layout-aware signal selection.

3.3.2 Comparison with Metric-based Signal Selection

Table 3-1 compares our approach with existing metric-based signal selection [1].

The first column in the table specifies the benchmark used for evaluation. I selected

32 trace signals. Restoration ratio from the existing approach and our layout-aware

approach are specified in second and third columns, respectively. Degradation in the

restoration ratio is provided in fourth column. The fifth and sixth columns give the

total Manhattan distance of all the selected signals with the existing approach and

our approach, respectively. It is important to note that the existing approaches did not

consider layout and therefore I computed the Manhattan distance numbers for the

signals selected by existing approaches.

The results show that the Manhattan distance can be significantly reduced with

minor impact on restoration ratio. For a trace buffer width of 32, Table 3-1 shows an

24

Table 3-1. Comparison with metric-based restoration ratio

Benchmark
Restoration Ratio Manhattan Distance

Basu & Layout- % Basu & Layout- %
Mishra [1] aware change Mishra [1] aware change

s9234* 2.66 1.63 -38.72 12324.6 8346.6 -32.28
s13207* 8.30 6.18 -25.54 18366.6 8347.8 -54.55
s35932 35.00 24.92 -28.80 27594.0 19600.8 -28.97
s38584 20.00 23.81 +19.05 21869.4 13146.6 -39.89
Average 16.49 14.14 -14.28 20038.7 13629.0 -31.99

*Restoration ratio not provided in [1] and had to be generated

average 32% (peak 55%) improvement in the Manhattan distance across different

benchmarks, with an average 14% penalty on the restoration ratio.

Two important scenarios can be observed in the results: i) Manhattan distance

improves at the cost of restoration ratio, and ii) both Manhattan distance and restoration

ratio improve. The first scenario is expected as the algorithm deliberately chooses

signals near the trace buffer, although they may not provide the best restorability.

The second case is counter-intuitive and is seen for s38584. Our analysis revealed

that in the existing approach, while selecting signals, forward and backward restoration

is done just once. However, for calculating the final restoration ratio, forward and

backward restoration is done multiple times till all the values saturate. During iterative

addition of signals to the trace buffer, a signal may indicate higher restoration ratio.

However, with multiple forward and backward restoration cycles in the final restoration

ratio calculation, a signal which was not so good during the selection may show a

higher restoration ratio value. In other words, the probability calculation during signal

selection is not identical to the restoration calculation. Therefore, the existing approach

does not select the best possible signals in each iteration. For these benchmarks, the

perturbation caused by layout awareness, in fact, enabled the selection of better signals.

Another case was observed for trace buffer width 8 (not shown in the table) where

Manhattan distance improves, but the restoration ratio remains constant. Although,

by choosing a different set of signals the restoration ratio does not change, but the

25

Manhattan distance significantly comes down. This is due to the fact that two signals

can be equally beneficial from restoration perspective but one has less Manhattan

distance from the trace buffer compared to the other. Our approach has chosen the one

with least distance whereas the existing approach has randomly chosen one of them,

which happens to have higher Manhattan distance.

It may not be desirable to have a good Manhattan distance at the cost of a very

high degradation in the restoration ratio. Designers may choose a value better suited for

the restoration ratio in such a case. The priority for Manhattan distance can be reduced

in such a case, by choosing low values of routing weight. For example, Figure 3-2

provides detailed data points for s9234 benchmark. Figure 3-2 presents restoration ratio

values corresponding to the routing weights. It shows that the restoration ratio comes

down while the Manhattan distance is reduced through signal selection. In this case, for

buffer width of 32, designers may choose a lower routing weight (0.1) to get a minimal

impact on the restoration ratio.

3.3.3 Comparison with Simulation-based Signal Selection

Table 3-2 provides data for the analysis of benchmarks using simulation based

signal selection [3]. The columns used in Table 3-2 are same as that used in Table 3-1.

For a trace buffer width of 32, the algorithm shows an average 31.9% improvement in

the Manhattan distance, with an average 18.95% penalty on the restoration ratio.

Table 3-2. Comparison with simulation-based restoration ratio

Benchmark Restoration Ratio Manhattan Distance
Chatterjee Layout- % change Chatterjee Layout- % change

et al. [3] aware et al. [3] aware
s9234 4.18 2.56 -38.76 13860.6 13449.6 -2.97

s13207* 9.47 8.56 -9.61 22164.6 13764.0 -37.90
s35932 43.13 34.39 -20.26 14109.0 12153.6 -13.86
s38584 27.00 22.39 -17.07 38292.0 20853.0 -45.54
Average 20.95 16.98 -18.95 22106.6 15055.1 -31.90

*Restoration ratio not provided in [3] and had to be generated

26

Figure 3-2. Restoration ratio for s9234

27

CHAPTER 4
SIGNAL SELECTION IN FPGA

4.1 Introduction

Signal selection differs in the FPGA domain compared to the SoC domain in

terms of usage. While for SoCs the selected signals cannot be altered once fabricated

(unless a larger set is used with dynamic selection), in FPGAs the validation engineer

may change the signals for observation through reconfiguration based on debug

requirements.

Software based netlist debug and SoC post-silicon debug are different in terms

of the ability to observe internal signals. While software-based debug provides ability

to observe all the internal variables or signals, the post-silicon debug offers very little

visibility of the internal signals and that too with constraints in terms of time snapshot

duration and the number of signals to be observed. FPGAs bridge this gap.

Although the FPGAs may not supply the freedom to choose any number of

variables of IDE (integrated development environments), the power to alter the trace

signals through reconfiguration, without any area or delay penalty, is a huge advantage.

One can argue that since FPGAs can be reconfigured, there is little room for signal

selection algorithms. However, it is not the case. Manual signal selection is based on

trial-and-error and hence can result in large number of iterations. Moreover, in the

manual selection it is difficult to prevent closely co-related signals. Thus, signal selection

algorithms can play a significant role in efficient debug and reduction in iterations. The

initial runs may be able to partition the susceptible regions. Signal selection may then be

further applied on the susceptible region, thereby narrowing down the hunt.

Routing congestion challenge is also important in case of FPGAs . Hence, it is

imperative to select signals considering layout constraints. I use Manhattan distance

as input to select the signals. The signal selection criteria and algorithms used for the

FPGA are exactly same as described in the previous chapter.

28

4.2 Experiments

4.2.1 Experimental Setup

ISCAS’89 benchmarks were used for the evaluation. I generated a BRAM using

the coregen application of ISE and used it as the trace buffer. The design was then

synthesized in the Xilinx framework and user constraints file (.ucf) was dumped from

the floorplan editor. The constraints file has the locations of all the flip-flops and the

BRAM cells used in the design. Using the coordinates in the constraints file, Manhattan

distances of each and every flip-flop to the trace buffer was calculated and normalized.

The signal selection was then run giving more precedence to the signals near the trace

buffer.

I compared the total Manhattan distance of all the selected signals from the trace

buffer using existing algorithms and our proposed layout-aware signal selection.

4.2.2 Results

Signal selection evaluation was done using both, metric-based and simulation-based

approaches. Table 4-1 compares with metric-based approach. Results show on an

average 49% reduction in the Manhattan distance with a restoration ratio penalty of

18.89%. Added routing-constraints caused perturbations in the evaluation resulting in a

higher restoration ratios.

Table 4-1. Comparison with metric-based signal selection for FPGAs

Benchmark
Restoration Ratio Manhattan Distance

Basu & Layout- % Basu & Layout- %
Mishra [1] aware change Mishra [1] aware change

s9234* 2.66 2.97 11.65 6062 2063 -65.97
s13207* 8.30 9.58 15.42 6528 3133 -52.01
s35932 35.00 24.73 -29.34 8980 5778 -35.66
Average 15.32 12.43 -18.89 7190 3658 -49.12

*Restoration ratio not provided in [1] and had to be generated

Table 4-2 presents data for simulation-based approach. The results show on an

average 23% improvement in the Manhattan distance and a 17.6% degradation in

restoration ratio.

29

Table 4-2. Comparison with simulation-based signal selection for FPGAs

Benchmark Restoration Ratio Manhattan Distance
Chatterjee Layout- % change Chatterjee Layout- % change

et al. [3] aware et al. [3] aware
s13207* 9.47 8.54 -9.82 5217 2320 -55.53
s35932 43.13 34.39 -20.26 7327 6261 -14.55
s9234 4.18 3.87 -7.42 6080 5744 -5.53

Average 18.93 15.60 -17.58 6208 4775 -23.08
*Restoration ratio not provided in [3] and had to be generated

30

CHAPTER 5
CONCLUSION

Post-silicon validation and debug are critical components of the SoC design

methodology. The challenge is to select beneficial signals for debug while considering

the design constraints like routability. Existing approaches, though efficient at identifying

good signals, overlook the design constraints, thereby selecting some signals which may

not be routable. I developed techniques to incorporate layout-awareness in the existing

set of algorithms towards identification of signals which are not only beneficial from

the debug perspective but also from a routing perspective. My technique further gives

designer freedom to customize the weight for layout-awareness to suit the design needs.

My approach can be applied on top of the existing signal selection techniques such as

metric based [1] and simulation based approach [3]. Experimental results demonstrated

that my approach can select layout-friendly signals with negligible impact on restorability.

31

REFERENCES

[1] K. Basu and P. Mishra “RATS: Restoration-Aware Trace Signal Selection for
Post-Silicon Validation.” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 21(4),2013, pp. 605–613.

[2] Yao-Wen Chang “Placement.” 2013.

URL http://cc.ee.ntu.edu.tw/ywchang/Courses/PD/unit5.pdf

[3] D. Chatterjee, C. McCarter and V. Bertacco “Simulation-based signal selection
for state restoration in silicon debug.” IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2011, pp. 595–601.

[4] P. Gupta, A.B. Kahng, I.I.Mandoiut and P. Sharma “Layout-aware scan chain
synthesis for improved path delay fault coverage.” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol 24(7), 2005, pp. 1104–1114.

[5] E. Hung and S.J.E. Wilton “On evaluating signal selection algorithms for
post-silicon debug.” International Symposium on Quality Electronic Design
(ISQED), 2011, pp. 1–7.

[6] E. Hung and S.J.E. Wilton “Scalable Signal Selection for Post-Silicon Debug.” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21(6), 2013, pp.
1103–1115.

[7] H.F. Ko and N. Nicolici “Automated Trace Signals Identification and State
Restoration for Improving Observability in Post-Silicon Validation.” Design, Au-
tomation and Test in Europe (DATE),2008, pp. 1298–1303.

[8] A. Kokrady, C. P. Ravikumar and N. Chandrachoodan “Layout-Aware and
Programmable Memory BIST Synthesis for Nanoscale System-on-Chip Designs.”
Asian Test Symposium (ATS), 2008, pp. 351–356.

[9] J. Lee and S. Narayan and M. Kapralos and M. Tehranipoor “Layout-Aware,
IR-Drop Tolerant Transition Fault Pattern Generation.” Design, Automation and Test
in Europe (DATE), 2008, pp. 1172–1177.

[10] Min Li and Azadeh Davoodi “A hybrid approach for fast and accurate trace signal
selection for post-silicon debug.” Design, Automation Test in Europe Conference
Exhibition (DATE), 2013, pp. 485–490.

[11] Xiao Liu and Qiang Xu “Trace signal selection for visibility enhancement in
post-silicon validation.” Design, Automation Test in Europe Conference Exhibition
(DATE), 2009, pp. 1338–1343.

[12] S. Prabhakar and M. Hsiao “Using Non-trivial Logic Implications for Trace
Buffer-Based Silicon Debug.” Asian Test Symposium (ATS), 2009, pp. 131–136.

32

http://cc.ee.ntu.edu.tw/ ywchang/Courses/PD/unit5.pdf

BIOGRAPHICAL SKETCH

Prateek Thakyal received his Bachelor of Technology in Electronics and Instrumentation

Engineering from National Institute of Technology, Rourkela, India in 2006. He worked

in Texas Instruments on reliability, and power integrity from 2006 to 2012. He completed

his Master of Science in Department of Electrical and Computer Engineering from

University of Florida in 2014.

33

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1 INTRODUCTION
	1.1 Observability - Bottleneck in SoC Post-Silicon Validation
	1.2 Design Constraints - A Concern for the Signal Selection
	1.3 Debug at Different Abstraction Levels
	1.4 Thesis Contributions and Organization

	2 RELATED WORK
	2.1 Signal Selection for Post-silicon Debug
	2.2 Layout-aware Approaches
	2.3 Signal Selection for FPGAs

	3 LAYOUT-AWARE SIGNAL SELECTION
	3.1 Manhattan Distance Calculation
	3.2 Layout-aware Signal Selection
	3.2.1 Simulation-based Approach
	3.2.2 Metric-based Approach

	3.3 Experiments
	3.3.1 Experimental Setup
	3.3.2 Comparison with Metric-based Signal Selection
	3.3.3 Comparison with Simulation-based Signal Selection

	4 SIGNAL SELECTION IN FPGA
	4.1 Introduction
	4.2 Experiments
	4.2.1 Experimental Setup
	4.2.2 Results

	5 CONCLUSION
	REFERENCES
	BIOGRAPHICAL SKETCH

