
32

Functional Test Generation Using Design
and Property Decomposition Techniques

HEON-MO KOO and PRABHAT MISHRA

Department of Computer and Information Science and Engineering,
University of Florida

Functional verification of microprocessors is one of the most complex and expensive tasks in the

current system-on-chip design methodology. Simulation using functional test vectors is the most

widely used form of processor validation. A significant bottleneck in the validation of such systems is

the lack of automated techniques for directed test generation. While existing model checking–based

approaches have proposed several promising ideas for automated test generation, many challenges

remain in applying them to industrial microprocessors. The time and resources required for test

generation using existing model checking–based techniques can be prohibitively large. This article

presents an efficient test-generation technique using decompositional model checking. The contri-

bution of the article is the development of both property and design decomposition procedures for

efficient test generation of pipelined processors. Our experimental results using a multi-issue MIPS

processor and an industrial processor based on Power ArchitectureTM Technology demonstrate sev-

eral orders-of-magnitude reduction in validation effort by drastically reducing both test-generation

time and test-program length.

Categories and Subject Descriptors: B.7.2 [Hardware]: Integrated Circuits—Design Aids; I.6.7

[Computing Methodologies]: Simulation and Modeling—Simulation Support Systems

General Terms: Verification, Algorithms

Additional Key Words and Phrases: Model checking, test generation, pipelined processor, design

decomposition, property decomposition, functional validation

ACM Reference Format:
Koo, H-M. and Mishra, P. 2009. Functional test generation using design and property decom-

position techniques. ACM Trans. Embedd. Comput. Syst. 8, 4, Article 32 (July 2009), 33 pages.

DOI = 10.1145/1550987.1550995 http://doi.acm.org/10.1145/1550987.1550995

1. INTRODUCTION

Functional verification is widely acknowledged as a major bottleneck in mi-
croprocessor design methodology: up to 70% of the design development time

This work was partially supported by grants from Intel Corporation and NSF CAREER award

0746261. We would like to acknowledge the contributions of Dr. Jayanta Bhadra and Dr. Magdy

Abadir for giving us the opportunity to apply our technique on e500 processor architecture.

Author’s address: H.-M. Koo and P. Mishra, Department of Computer and Information Science and

Engineering, University of Florida, Gainesville FL 32611, email: {hkoo, prabhat}@cise.ufl.edu

Permission to make digital or hard copies of part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1539-9087/2009/07-ART32 $10.00

DOI 10.1145/1550987.1550995 http://doi.acm.org/10.1145/1550987.1550995

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

32:2 • H.-M. Koo and P. Mishra

and resources are spent on functional verification [Fine and Ziv 2003]. Existing
processor validation techniques employ a combination of simulation-based tech-
niques and formal methods. Simulation-based validation is the most widely
used form of processor verification using test programs. There are three types
of test-generation techniques: random, directed, and constrained-random. The
directed tests can reduce overall validation effort, since shorter tests can obtain
the same coverage goal compared to the random tests. A significant bottleneck
in processor validation is the lack of automated tools and techniques for directed
test generation.

Model checking–based test generation has been introduced as a promising
approach for pipelined processor validation [Mishra and Dutt 2004; 2005] due to
its capability of automatic test generation. In this approach, a set of properties
are generated from the specification based on functional coverage. Then, the
design and a property (negated version) are applied to the model checker to
produce a counterexample (test). However, this approach is unsuitable for large
designs due to state explosion problem in unbounded model checking (UMC).
Therefore, it is necessary to reduce the counterexample search space in terms
of the model of design as well as the applied properties.

As a complementary technique for test generation, the bounded model check-
ing (BMC) is also promising by restricting the search space within a fixed num-
ber (k) of transitions, called bound. The basic idea is to unroll the model of design
k times, and then to convert the BMC problem into a propositional satisfiabil-
ity problem. A satisfiability (SAT) solver is used to find a satisfiable assign-
ment of variables that is converted into a counterexample. However, finding
exact bound is a challenging problem, since the depth of counterexamples is
unknown in general before applying the property. Choosing an incorrect bound
increases test-generation time and memory requirement. In the worst case,
test-generation may not be possible.

This article presents an efficient test-generation technique that addresses
both challenges mentioned earlier: (i) state explosion problem in UMC and (ii)
bound determination in BMC. To address the first challenge, it is necessary to
reduce the counterexample search space in terms of the model of the design as
well as the applied properties. We propose an efficient test-generation technique
using both design and property decompositions to tackle the state explosion
for complex designs. To address the second challenge, we have developed a
method for determining the bound for each property based on the graph model
of pipelined processors. We also present a novel algorithm for merging local
(partial) counterexamples (generated due to decomposed design and properties)
to generate the global counterexample (test).

The rest of the article is organized as follows. Section 2 briefly describes the
existing model checking-based test-generation approaches. Section 3 presents
related work addressing test generation in the context of functional validation of
pipelined processors. Section 4 describes our test-generation methodology using
decompositional model checking as well as SAT-based BMC. Section 5 presents
case studies using two processors: test generation for a multi-issue MIPS pro-
cessor and microarchitectural test generation for an industrial processor based
on Power ArchitectureTM Technology. Finally, Section 6 concludes the article.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

Test Generation Using Design and Property Decompositions Techniques • 32:3

2. BACKGROUND AND PRELIMINARIES

Model checking is a formal method that can verify whether a temporal property
is satisfied for a finite state concurrent system. Given a finite state system M
and a temporal property p, the model checking algorithm will check whether M
satisfies p, that is, M |= p. If the property holds, the algorithm will return true,
otherwise a counterexample will be reported. Symbolic Model Verifier [SMV] is
a popular model checking software that accepts SMV model of the design and
a temporal logic property as inputs and verifies whether the design satisfies
the property. To enable model checking, the design specification is abstracted
to a transition graph model (Kripke structure [Clarke et al. 1999]). A Kripke
structure M is a quadruple M = (S, I, T, L), where S is the set of states, I is
the set of initial states, T ⊆ S × S is the transition relation, and L : S → P (A)
is the labeling function, where A is the set of atomic propositions, and P(A)
denotes the powerset over A. Labeling is a way to attach observations to the
system: For a state s ∈ S, the set L(s) is made of the atomic propositions that
hold in s.

The model checking problem can be considered as a reachability problem.
The forward reachability algorithm starts at the initial state and calculates
the next image, which is a set of states reachable in one step, based on the
current image. The algorithm will stop in one of the following two cases: (i) the
property is falsified for some states, so the counterexample will be generated, or
(ii) all the state space is explored and no state violates the property. Generally,
binary decision diagrams (BDDs) [Bryant 1986] are efficient data structures
to represent and manipulate the transition relation of the finite-state model.
However, they are not scalable to handle the large practical systems. As a com-
plementary framework of BDDs, model checking algorithms based on Boolean
SAT procedures [Prasad et al. 2005] have emerged as a promising approach,
especially for the BMC.

The Boolean SAT problem is to figure out if the given Boolean formula has
a satisfiable assignment. Usually this formula will be transformed into con-
junctive normal form (CNF) and is checked by the SAT solver to determine
the result. Several SAT solvers such as GRASP [Marques-Silva and Sakallah
1999] and Chaff [Moskewicz et al. 2001] adopt the popular DPLL algorithm.
The DPLL algorithm can be improved by using the conflict clause forwarding
and heuristic ordering of the variable assignment. BMC [Biere et al. 1999] is a
technique that can prove if there is a counterexample for the property within a
given bound. Given a model M , a safety property p, and a bound k, BMC will
unfold the model k times and encode it as the following logic formula:

BMC(M , p, k) = I (s0) ∧
k−1∧

i=0

T (si, si+1) ∧
k∨

i=0

¬p(si) (1)

This formula can be transformed to the CNF and checked by a SAT solver. If
there is a satisfiable assignment, then the property is false and the assignment
(counterexample) will be reported, which means M |=/k p. Otherwise, it means
that in this model there is no counterexample with length k for this property,
written as M |=k p.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

32:4 • H.-M. Koo and P. Mishra

Fig. 1. Test generation using model checking.

2.1 Test Generation Using Model Checking

Figure 1 shows specification-driven test-generation methodology using model
checking [Mishra and Dutt 2004]. The design specification is translated to a
formal model (e.g., SMV description [Clarke et al. 1999]). Next, the properties
in the form of computation tree logic or linear temporal logic formulas can be
generated based on the fault models [Mishra and Dutt 2005]. For example, in
a pipelined processor, if the fault model is related to “pipeline interactions,”
one property will be generated for activating each pipeline interaction. Finally,
the properties (negated version) are applied on the formal model using model
checker to generate required test cases (counterexamples). Since we assume
that both design and properties are correct and we use negated version of the
properties, model checker will always generate a valid counterexample unless
it faces state space explosion problem due to design/property complexity. The
generated test cases can be used for validation of both specification and imple-
mentation.

Algorithm 1 outlines the three important steps in model checking-based test
generation (shown in Figure 1): (i) formal model generation, (ii) property gener-
ation and negation, and (iii) test generation. As indicated earlier, one property
is generated for activating each fault in the given fault model. This algorithm
takes the model M generated from design specification and properties derived
form the faults F as inputs and generates test suite extracted from the coun-
terexamples. For each fault Fi, one test case is generated. The algorithm iterates

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

Test Generation Using Design and Property Decompositions Techniques • 32:5

Algorithm 1: Test Generation using Model Checking
Inputs: i) Design Specification, S

ii) Set of faults/interactions, F (based on
the coverage criterion)

Outputs: Test suite
Begin

TestSuite = φ;
M = CreateDesignModel (S);
for each fault Fi in the set F

Pi = CreateProperty(Fi) ;

Pi = Negate(Pi) ;

testi = ModelChecking(Pi, M) ;
TestSuite = TestSuite ∪ testi ;

endfor
return TestSuite ;

End

until all the faults in the fault model are covered. In each iteration, each fault
Fi is transformed to a temporal logic property Pi. The generated property is
referred as original property that is supposed to verify the absence of that fault
in the design. Next, each property is negated. The negated version of the prop-
erty is referred as negated property. Finally, model checking is applied using
the model M and negated property Pi to produce the required counterexample.
The generated test is supposed to activate the fault.

For example, to activate a fault in the stall functionality of a decode (ID)
unit in a pipelined processor, the system will generate the property “assert
G(ID. stall = 1). The negation of the property will be assert G(ID. stall = 0). Once
model checker receives the negated property and the processor model as inputs,
it will generate a counterexample to stall the decode unit which can be used as
a test case for the original property assert G(ID. stall = 1). The counterexample
contains a sequence of instructions (test program) from an initial state to a
state where the negated version of the property fails. As mentioned earlier, this
approach is unsuitable for large designs due to the state explosion problem in
model checking. We propose an efficient test-generation technique using both
design and property decompositions to tackle the state explosion problem for
complex designs.

2.2 Test Generation Using SAT-based BMC

BMC is a promising approach for test generation, since it restricts the search
space that is reachable from initial states within a fixed number of transitions,
called bound. Algorithm 2 describes the test-generation procedure using BMC.
This algorithm is similar to Algorithm 1 except that it has an additional step
for determining exact bound for each property. Algorithm 2 iterates until all the
faults in the fault model are covered. In each iteration, each fault Fi is trans-
formed to a temporal logic property Pi. Next, bound ki for each property is de-
cided. The bound for each property is the minimum depth (from the initial state)

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

32:6 • H.-M. Koo and P. Mishra

Algorithm 2: Test Generation using BMC
Inputs: i) Design Specification, S

ii) Set of faults/interactions, F (based on
the coverage criterion)

Outputs: Test suite
Begin

TestSuite = φ;
M = CreateDesignModel (S);
for each fault Fi in the set F

Pi = CreateProperty(Fi) ;

boundi = DetermineBound(M , Pi) ;

testi = BounedModelChecking(Pi, M , boundi) ;
TestSuite = TestSuite ∪ testi ;

endfor
return TestSuite ;

End

to find the required counterexample. Finally, SAT-based BMC takes model M ,
negated property Pi, and bound ki as inputs and generates a counterexample.

As mentioned earlier, it is a major challenge to determine the exact bound
for BMC. If the bound is known in advance, SAT-based BMC is typically more
effective for falsification than model checking because search for counterex-
ample is faster and SAT capacity reaches beyond BDD capacity [Biere et al.
1999]. Choosing an incorrect bound increases test-generation time and mem-
ory requirement. In the worst-case, test-generation may not be feasible. For
example, we can increase the bound iteratively starting from a small bound
until a counterexample is found. This approach is advantageous for shallow
counterexamples, but disadvantageous for deep counterexamples due to accu-
mulation of iterative running time. Alternatively, a large bound can be used
such that all counterexamples are found. This approach loses the benefits of
BMC due to search in a large number of irrelevant states. Therefore, the ef-
ficiency of test generation closely depends on the techniques of deciding the
bound. We propose a method for determining the exact bound for each property
based on the graph model of pipelined processors.

3. RELATED WORK

Traditionally, validation of microprocessors has been performed by applying
a combination of random and directed test programs using simulation tech-
niques. There are many successful test-generation frameworks in industry
today. Genesys-Pro [Adir et al. 2004], used for functional verification of IBM
processors, combines architecture and testing knowledge for efficient test-
generation. In Piparazzi [Adir et al. 2003], a model of microarchitectural proces-
sor and the user’s specification are converted into a constraint satisfaction prob-
lem and the dedicated constraint satisfaction problem solver is used to construct
an actual test program. Many techniques have been proposed for directed test

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

Test Generation Using Design and Property Decompositions Techniques • 32:7

program generation based on an instruction tree traversal [Aharon et al. 1995],
microarchitectural coverage [Koo et al. 2006; Ur and Yadin 1999], and func-
tional coverage using Bayesian networks [Fine and Ziv 2003]. Recently, Gluska
[2006] described the need for coverage-directed test-generation in coverage-
oriented verification of the Intel Merom microprocessor. None of these tech-
niques can automatically generate directed tests based on a comprehensive
functional coverage metric. In other words, these techniques either generate
constrained random testcases automatically, or they generate directed tests for
specific scenarios in semiautomated fashion. Our approach can automatically
generate the required directed tests to achieve a given functional coverage goal.

Several formal model-based test-generation techniques have been developed
for validation of pipelined processors. In FSM-based test-generation, FSM cov-
erage is used to generate test programs based on reachable states and state
transitions [Campenhout et al. 1999; Iwashita et al. 1994; Kohno and Mat-
sumoto 2001; Ho et al. 1995]. Since complicated microarchitectural mecha-
nisms in modern processor designs include interactions among many pipeline
stages and buffers, the FSM-based approaches suffer from the state space explo-
sion problem. To alleviate the state explosion, Utamaphethai et al. [2000] have
presented an FSM model partitioning technique based on microarchitectural
pipeline storage buffers. Shen and Abraham [2000] have proposed an RTL ab-
straction technique that creates an abstract FSM model while preserving clock
accurate behaviors. Wagner et al. [2005] have presented a Markov model-driven
random test generator with activity monitors that provides assistance in locat-
ing hard-to-find corner case design bugs and performance problems. Due to the
state space explosion problem, these techniques are not applicable for directed
test-generation in pipelined processors. Our approach addresses the state space
explosion problem by using design an property decompositions during model
checking-based test-generation.

Functional validation can be performed by using two approaches: model-
driven approach or model checking–based approach. Model-driven methods
[Mathaikutty et al. 2007b; Mathaikutty et al. 2007a; Patel et al. 2007] cap-
ture the essence of the design as a functional (specification) model and tests
generated from this model are employed in the validation of the system imple-
mentation. Model checking [Clarke et al. 1999] has been successfully used in
verification of proving processor properties. Ho et al. [1998] extract controlled
token nets from a logic design to perform efficient model checking. Jacobi [2002]
used a methodology to verify out-of-order pipelines by combining model check-
ing for the verification of the pipeline control, and theorem proving for the
verification of the pipeline functionality. Compositional model checking is used
to verify a processor microarchitecture containing most of the features of a mod-
ern microprocessor [Jhala and McMillan 2001]. Parthasarathy et al. [2004] have
presented a safety property verification framework using sequential SAT and
BMC. Model checking-based techniques are also used in the context of falsifi-
cation by generating counterexamples. Clarke et al. [1995] have presented an
efficient algorithm for generation of counterexamples and witnesses in symbolic
model checking. Bjesse et al. [2004] have used counterexample guided abstrac-
tion refinement to find complex bugs. Automatic test-generation techniques

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

32:8 • H.-M. Koo and P. Mishra

using model checking have been proposed in software [Gargantini and Heit-
meyer 1999] as well as in hardware validation [Mishra and Dutt 2002]. How-
ever, traditional model checking-based techniques do not scale well due to the
state space explosion problem. To reduce the test-generation time and memory
requirement, Mishra and Dutt [2004; 2005] have proposed a design decomposi-
tion technique at the module level when the original property contains variables
for only a single module. However, their technique does not handle properties
that have variables from multiple modules. Such properties are common in
test-generation. Our framework allows such input properties by decomposing
the properties as well as the model of the pipelined processor.

As a complementary technique of model checking, Biere et al. [1999] intro-
duced BMC combined with SAT solving. The recent developments in SAT-based
BMC techniques have been presented in Prasad et al. [2005]. BMC is an in-
complete method that cannot guarantee a true or false determination when a
counterexample does not exist within a given bound. However, once the exact
bound of a counterexample is known, large designs can be falsified very fast,
since SAT solvers [Goldberg and Novikov 2002; Moskewicz et al. 2001] do not
require exponential space, and searching counterexample, in an arbitrary order
consumes much less memory than breadth first search in model checking. Amla
et al. [2005] have analyzed the performance of bounded and unbounded algo-
rithms using a set of industrial benchmarks. The capacity increase of the BMC
technique has become attractive for industrial use. An Intel study [Copty et al.
2001] showed that BMC has better capacity and productivity over UMC for real
designs taken from the Pentium-4 processor. SAT-based BMC can be used as a
test-generation engine due to its capacity and performance if the bound is se-
lected appropriately. A major challenge in these approaches is how to determine
the exact bound. Incremental SAT solvers [Jin and Somenzi 2005; Whittemore
et al. 2001; Strichman 2001] try to mitigate the impact of choosing an incor-
rect initial bound by exploiting similarity and forwarding conflict clauses, but
they are disadvantageous for deep counterexamples due to the accumulation of
iterative running time. We propose a method to determine the bound for each
test-generation scenario, thereby making SAT-based BMC useful for directed
test-generation in pipelined processors.

4. TEST GENERATION USING DESIGN AND PROPERTY DECOMPOSITIONS

This section presents our proposed approach that uses both design and property
level decompositions. Figure 2 shows our functional test-generation methodol-
ogy. The design model can be generated from the architecture specification or
can be developed by the designers. Similarly, the properties can be generated
from the specification based on a functional coverage metric such as graph cov-
erage or pipeline interaction coverage. Additional properties can be added based
on interesting scenarios and corner cases. For efficient test-generation, we de-
compose the properties as well as the design model. Our framework uses both
UMC and BMC to generate partial counterexamples for the partitioned designs
and decomposed properties. These partial counterexamples are integrated to
construct the final test program.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

Test Generation Using Design and Property Decompositions Techniques • 32:9

Fig. 2. Proposed test-generation methodology using design and property decompositions.

This methodology has seven important steps: (i) design model generation, (ii)
generation and negation of properties, (iii) design decomposition, (iv) property
decomposition, (v) determination of bound for each property, (vi) test generation
using model checking as well as SAT-based BMC, and (vii) merging partial
(local) counterexamples to generate the global counterexample (test). The last
two steps work in an integrated fashion (discussed in Section 4.6) to ensure that
the generated testcases can activate the intended faults (errors). The remainder
of this section describes each of these seven steps in detail.

Algorithm 3 outlines the major steps in our test program-generation method-
ology shown in Figure 2. This algorithm takes the processor model M and a
set of desired faults (e.g., pipeline interaction faults) F as inputs and gener-
ates a set of test programs. Each interaction is converted and negated into
a temporal logic property. The exact bound for BMC is determined for each
property. The design model, the negated version of the property and the re-
quired bound are applied to our decompositional model checking framework to
generate the test program for the property. The algorithm iterates over all the
faults based on the functional coverage and corner cases. Section 4.1 describes a
graph-based modeling of pipelined processors. The property generation based
on pipeline interaction coverage is described in Section 4.2. The design and

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

32:10 • H.-M. Koo and P. Mishra

Table I. Design and Property Decomposition Scenarios

Design Property Comments

Original Original Traditional model checking

Original Partitioned Merging of counterexamples is not always possible

Partitioned Original Similar to traditional model checking

Partitioned Partitioned Our approach, both property and design decompositions

property decomposition techniques are described in Sections 4.3 and 4.4, re-
spectively. Section 4.5 presents a technique to determine the exact bound for
finding counterexamples for a given property. Model checking as well as SAT-
based BMC are used to generate partial counterexamples for the partitioned
modules and properties.

Algorithm 3: Test Generation using Design and Property Decompositions
Inputs: i) Design Specification, S

ii) Set of faults/interactions F based on functional
coverage and corner cases

Outputs: Test programs
Begin

TestPrograms = φ

M = CreateDesignModel (S);
for each fault Fi in the set F

Pi = CreateProperty(Fi)
boundi = DecideBound(Pi)

Pi = Negate(Pi)

testi = DecompositonalModelChecking(Pi, M , boundi)
TestPrograms = TestPrograms ∪ testi

endfor
return TestPrograms

End

Integration of these partial counterexamples is a major challenge due to
the fact that the relationships among decomposed modules and subproperties
may not be preserved at the top level. We propose a time step-based integra-
tion of partial counterexamples to construct the final test program. Section 4.6
presents our test-generation technique based on decompositional model check-
ing. Section 4.7 presents a conflict resolution technique during merging of par-
tial counterexamples.

It is important to note that the property and design decompositions are not
independent. Table I shows four possible scenarios of design and property de-
compositions. The first scenario indicates the traditional model checking where
original property is applied to the whole design. The second scenario implies
that the decomposed properties are applied to the whole design. In certain ap-
plications, this may improve overall model checking efficiency. However, in gen-
eral this procedure is not applicable, since merging counterexamples may not
generate the expected result. Consider an example property that can be used

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

Test Generation Using Design and Property Decompositions Techniques • 32:11

for generating a test to activate two simultaneous unit stalls. The property can
be decomposed to generate two subproperties. These subproperties may gen-
erate counterexamples to stall the respective units in a pipelined processor,
but the combined test program may not simultaneously stall both the units.
Furthermore, we cannot avoid the state explosion problem without design de-
composition. The third scenario is meaningless, since design decomposition is
not useful if the original property is not applicable to the partitioned design
components. The last scenario depicts our approach where both design and
properties are partitioned.

4.1 Generation of Design Model from the Specification

The first step in our test-generation methodology is to generate formal model
of the design from the architecture specification. Modeling plays a central role
in the generation of efficient test programs. Ideally, the design should be de-
composed into components such that there is very little interaction among the
partitioned components. For a pipelined processor the natural partition is along
the pipeline boundaries. In other words, the partitioned pipelined processor can
be viewed as a graph where nodes consist of units (e.g., fetch, decode) or stor-
ages (e.g., memory or register file) and edges consist of connectivity among
them. Typically, instruction is transferred between units, and data is trans-
ferred between units and storages. This graph model is similar to the pipeline
level block diagram available in a typical architecture manual. The graph model
can be extracted from the architecture description language [Mishra and Dutt
2008] specification of pipelined processors. This section presents graph models
for MIPS and e500 processors.

Example 1: Modeling of MIPS Processor

For illustration, we use a simplified version of the multi-issue MIPS proces-
sor [Hennessy and Patterson 2003]. Figure 3 shows the graph model of the
processor that can issue up to four operations (an integer ALU operation, a
floating-point addition operation, a multiply operation, and a divide operation).
In the figure, rectangular boxes denote units, dashed rectangles are storages,
bold edges are instruction-transfer (pipeline) edges, and dashed edges are data-
transfer edges. A path from a root node (e.g., Fetch) to a leaf node (e.g., Write-
Back) consisting of units and pipeline edges is called a pipeline path. For ex-
ample, one of the pipeline path is {Fetch, Decode, IALU, MEM, WriteBack}. A
path from a unit to main memory or register file consisting of storages and data-
transfer edges is called a data-transfer path. For example, {MEM, DataMemory,
MainMemory} is a data-transfer path.

Example 2: Modeling of e500 Processor

Figure 4 shows a functional graph model of the four-wide superscalar com-
mercial e500 processor-based on the Power ArchitectureTM Technology1 [e500

1The Power Architecture and Power.org wordmarks and the Power and Power.org logos and related

marks are trademarks and service marks licensed by Power.org

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

32:12 • H.-M. Koo and P. Mishra

Fig. 3. Graph model of the MIPS processor.

Manual 2005] with seven pipeline stages. We have developed a processor model
based on the microarchitectural structure, the instruction behavior, and the
rules in each pipeline stage that determine when instructions can move to the
next stage and when they cannot. The microarchitectural features in the pro-
cessor model include pipelined and clock-accurate behaviors such as multiple
issue for instruction parallelism, out-of-order execution and in-order completion
for dynamic scheduling, register renaming for removing false data dependency,
reservation stations for avoiding stalls at Fetch and Decode pipeline stages, and
data forwarding for early resolution of read-after-write (RAW) data dependency.

4.2 Generation and Negation of Properties

Today’s test-generation techniques and formal methods are very efficient to find
logical bugs in a single module. Hard-to-find bugs arise often from the intermod-
ule interactions among many pipeline stages and buffers of modern processor
designs. In this article, we primarily focus on such hard-to-verify interactions
among modules in a pipelined processor. If we consider the graph model of the
pipelined processor, the pipeline interactions imply the interactions between
the nodes in the graph model. In this article all the properties are specified
using temporal logic, since the functional coverage model (“pipeline interac-
tion”) that we have adopted in this article does not require complex property

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

Test Generation Using Design and Property Decompositions Techniques • 32:13

Fig. 4. Instruction pipeline of e500 processor.

specifications supported in Property Specification Language (PSL). When a dif-
ferent or complex coverage model is employed PSL-based specification may
be required. However, the overall flow presented in this article will remain the
same in the presence of properties specified using PSL, since the existing model
checkers support PSL property specifications [Tuerk et al. 2007].

We first define the possible pipeline interactions based on the number of
nodes in the graph model and the average number of activities in each node.
For example, an IALU node can have four activities: operation execution, stall,
exception, and no operation (NOP). In general, the number of activities for a
node will be different based on what activity we would like to test. For exam-
ple, execution of ADD and SUB operations can be treated as the same activity
because they go through the same pipeline path. Separation of them into dif-
ferent activities will refine the functional tests but increase the test-generation
complexity. Furthermore, the number of activities may vary for different nodes.

CLAIM 1. In a graph model with n nodes where each node can have on av-
erage r activities, a total of ((1 + r)n − 1) properties are required to verify all
interactions.

PROOF. Since we generate one property for each interaction, the total num-
ber of properties is the same as the total of interactions. To compute the total
number of interactions, we can compute the summation of all the scenarios.
We also include the scenario for no interaction in this computation. If we con-
sider no interactions, there are (n × r) test programs necessary. In the pres-
ence of one interaction, we need (nC2 × r2) test programs for possible combi-
nation of two nodes. Here, nCi denotes the ways of choosing i nodes from n

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

32:14 • H.-M. Koo and P. Mishra

nodes. Based on this model, the total number of interactions will be as shown
in Eq. (2). Therefore, the total number of interactions (properties) is equal to
(n × r +n C2 × r2 + . . . +n Cn × rn), which is equal to ((1 + r)n − 1).

n∑

i=1

nCi × ri (2)

Although the total number of interactions can be extremely large, in re-
ality, the number of simultaneous interactions can be small and many other
realistic assumptions can reduce the number of properties to a manageable
one. The generated properties are expressed in linear temporal logic (LTL)
[Clarke et al. 1999], where each property consists of temporal operators
(G, F, X , U) and Boolean connectives (∧, ∨, ¬, and →). We generate a property
for each pipeline interaction from the specification. Since pipeline interactions
at a given cycle are semantically explicit and our processor model is organized
as structure-oriented modules, pipeline interactions can be converted in the
form of a property such as F(p1 ∧ p2 ∧ . . . ∧ pn) that combines activities pi over
n modules using logical AND operator. The atomic proposition pi is a functional
activity at a node i such as operation execution, stall, exception or NOP. The
property is true when all the pi ’s (i = 1 to n) hold at some time step. Since we
are interested in counterexample generation, we need to generate the negation
of the property first. The negation of the properties can be expressed as:

¬X (p) = X (¬p)

¬G(p) = F (¬p)

¬F (p) = G(¬p) (3)

¬pUq = pR¬q

For example, the negation of F(p1 ∧ p2 ∧ . . . ∧ pn), interaction fault, can be
described as G(¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pn) whose counterexamples will satisfy the
original property.

4.3 Design Decomposition

It is important to note that the design decomposition is dependent on the prop-
erty decomposition. As discussed in Section 4.1, the pipelined processor can
be partitioned into modules. However, we need to change the partitioning pol-
icy based on the properties. It is hard to decompose the properties when they
are spread across multiple modules or in the complicated forms such as pUq,
F (p → G(q)), G(p → F (q)), and so on. For example, a property related to check-
ing data-forwarding path is not decomposable based on a module-level parti-
tioning, but it may be decomposable based on a pipeline path-level partitioning.

We consider three partitioning techniques: module-level, path-level, and
stage-level partitioning. Module (or node) level partitioning gives the lowest
level of granularity in the graph model. For example, in Figure 3, the integer-
ALU pipeline path {Fetch, Decode, IALU, Mem, WriteBack} is treated as one of
the path level partitions. Similarly, the multiplier path, the floating-point adder
path, and the divider path are other examples of path-level partitioning for the

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

Test Generation Using Design and Property Decompositions Techniques • 32:15

MIPS processor in Figure 3. Stage-level partitioning is determined by the dis-
tance from the root node (e.g., Fetch). In general, various forms of design and
property partitioning are possible and different graph clustering algorithms
can be used to find different design partitions for a given property decomposi-
tion. Section 4.6 describes two design partitioning techniques using illustrative
examples (Eqs. 3 and 4).

4.4 Property Decomposition

Various combinations of temporal operators and Boolean connectives are pos-
sible to express desired properties in temporal logic. If the properties are de-
composable, the partial counterexamples generated from the decomposed prop-
erties can be used for generating a counterexample of the original property.
However, not all properties are decomposable, and in certain situations, de-
compositions are not beneficial compared to traditional model checking-based
test-generation. In this section, we describe how to decompose these proper-
ties (already negated) with respect to generation of a counterexample. We as-
sume that a set of counterexamples always exist for the property, since it is
the negated version of the original property and the design is assumed to be
correct.

4.4.1 Decomposable Properties. The following types of properties allow
simple decompositions. Lemmas 4.1 through 4.4 prove that the decomposed
properties can be used for test-generation.

G(p ∧ q) = G(p) ∧ G(q)

F (p ∨ q) = F (p) ∨ F (q)

X (p ∨ q) = X (p) ∨ X (q) (4)

X (p ∧ q) = X (p) ∧ X (q)

LEMMA 4.1. Counterexamples of the decomposed properties G(p) and G(q)
can be used to generate a counterexample of G(p ∧ q).

PROOF. Let CG(p) denote the set of counterexamples for G(p) that satisfies
F (¬p), CG(q) denote the set of counterexamples for G(q) that satisfies F (¬q),
and CG(p∧q) denote the set of counterexamples for G(p∧q) that satisfies F (¬p∨
¬q). Since F (¬p∨¬q) = F (¬p)∨ F (¬q), so the sets CG(p) and CG(q) are subsets
of CG(p∧q), that is, CG(p) ∪ CG(q) ≡ CG(p∧q). Therefore, any counterexample of
the decomposed properties G(p) or G(q) can be used as a counterexample of
G(p ∧ q).

LEMMA 4.2. Counterexamples of the decomposed properties F (p) and F (q)
can be used to generate a counterexample of F (p ∨ q).

PROOF. Since G(¬p∧¬q) = G(¬p)∧G(¬q), the set CF (p∨q) is equal to the in-
tersection set between CF (p) and CF (q), that is, CF (p)∩CF (q) ≡ CF (p∨q). Therefore,
a common counterexample between F (p) and F (q) can be used as a counterex-
ample of F (p ∨ q).

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

32:16 • H.-M. Koo and P. Mishra

LEMMA 4.3. Counterexamples of the decomposed properties X (p) and X (q)
can be used to generate a counterexample of X (p ∧ q).

PROOF. Since X (¬p ∨ ¬q) = X (¬p) ∨ X (¬q), the sets CX (p) and CX (q) are
subsets of CX (p∧q), that is, CX (p) ∪CX (q) ≡ CX (p∧q). Therefore, any counterexam-
ple of the decomposed properties X (p) or X (q) can be used as a counterexample
of X (p ∧ q).

LEMMA 4.4. Counterexamples of the decomposed properties X (p) and X (q)
can be used to generate a counterexample of X (p ∨ q).

PROOF. Since X (¬p ∧ ¬q) = X (¬p) ∧ X (¬q), the set CX (p∨q) is equal to the
intersection set between CX (p) and CX (q), CX (p) ∩ CX (q) ≡ CX (p∨q). Therefore, a
common counterexample between X (p) and X (q) can be used as a counterex-
ample of X (p ∨ q).

4.4.2 Nondecomposable Properties. It is important to note that the prop-
erty decomposition is not possible in various scenarios when the combination of
decomposed properties is not logically equivalent to the original property. For
example, F (p ∧ q) �= F (p) ∧ F (q), and G(p ∨ q) �= G(p) ∨ G(q). However, with
respect to test-generation, the counterexamples of the decomposed properties
can be used to generate a counterexample of the original property as described
below.

The property F (p ∧ q) is true when both p and q hold at the same time step.
But F (p)∧F (q) is true even when p and q hold at different time steps. Therefore,
F (p ∧ q) �= F (p) ∧ F (q). However, we can use F (p) or F (q) for test-generation
to activate the property F (p ∧ q) based on the following Lemma 4.5.

LEMMA 4.5. Counterexamples of the decomposed properties F (p) and F (q)
can be used to generate the counterexample of F (p ∧ q).

PROOF. Since the relation between F (p ∧ q) and F (p) ∧ F (q) is F (p ∧ q) →
F (p) ∧ F (q), CF (p∧q) ⊃ (CF (p) ∪ CF (q)). Therefore, any counterexample of the
decomposed properties F (p) or F (q) is a counterexample of F (p ∧ q).

The property G(p ∨ q) is true when either p or q holds at every time step.
But G(p) ∨ G(q) is true either when p holds at every time step or when q
holds at every time step. Therefore, G(p ∨ q) �= G(p) ∨ G(q). In this case, the
counterexamples of the decomposed properties G(p) and G(q) cannot directly
be used to generate a counterexample of G(p) ∨ G(q), since G(p) ∨ G(q) →
G(p ∨ q), that is, (CG(p) ∩ CG(q)) ⊃ CG(p∨q). In other words, not all common
counterexamples of G(p) and G(q) can be used as a counterexample of G(p∨q).
Furthermore, it is hard to know whether the common counterexamples of G(p)
and G(q) belong to CG(p∨q). However, introducing the notion of clock allows the
decomposed properties to produce a counterexample of G(p∨q) as described in
Lemma 4.6.

LEMMA 4.6. Counterexamples of G(p) and G(q) can be used to generate a
counterexample of G(p ∨ q) by introducing a specific time step.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

Test Generation Using Design and Property Decompositions Techniques • 32:17

Fig. 5. An example of Kripke structure model.

PROOF. The relation between G(p ∨ q) and G(p) ∨ G(q) with time step is
G((clk �= ts) ∨ (p ∨ q)) = G((clk �= ts) ∨ p) ∨ G((clk �= ts) ∨ q) because both sides
are evaluated to be true when (clk �= ts), or when (clk = ts) and p = true or
q = true. Therefore, CG((clk �=ts)∨(p∨q))

≡ (CG((clk �=ts)∨p)
∩ CG((clk �=ts)∨q)

).

For example, Figure 5 describes a Kripke structure [Clarke et al. 1999] with
four states s0, s1, s2, and s3, where s0 is the only initial state. The structure has
three transitions: (s0, s1), (s0, s2), (s0, s3), and self-loop in each state. There are
two local variables p for module1 and q for module2 : p holds on states {s0, s1}
and q holds on states {s0, s2}. Assuming the original property F (p = 0∧q = 0),
we add a specific time step as F (clk = ts ∧ p = 0 ∧ q = 0)2 and its negation will
be G(clk �= ts ∨ p = 1 ∨ q = 1). Let us assume that ts = 2. The following shows
a set of counterexamples of G(clk �= 2 ∨ p = 1 ∨ q = 1) for the entire model:

CM = {(s0, s0, s3), (s0, s3, s3)}
The following shows a set of counterexamples of G(clk �= 2∨ p = 1) for module1:

Cm1 = {(s0, s0, s2), (s0, s0, s3), (s0, s2, s2), (s0, s3, s3)}
The following shows a set of counterexamples of G(clk �= 2∨q = 1) for module2:

Cm2 = {(s0, s0, s1), (s0, s0, s3), (s0, s1, s1), (s0, s3, s3)}
We can see that Cm1 ∩ Cm2 = {(s0, s0, s3), (s0, s3, s3)} is the same as CM . There-
fore, the decomposed properties can be used by introducing the specific time
step.

Based on Lemma 4.6, the interaction fault G(¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pn) is con-
verted into G((clk �= ts) ∨ ¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pn)). The decomposed properties
G((clk �= ts) ∨ ¬p1), G((clk �= ts) ∨ ¬p2), . . . , G((clk �= ts) ∨ ¬pn) are repeatedly
applied to model checker until a common counterexample is found as described
in Section 4.6. The counterexample is one of the interactions that satisfies the
property F ((clk = ts) ∧ p1 ∧ p2 ∧ . . . ∧ pn)). In this decomposition scenario,
the time step (ts) should be decided to guarantee that a counterexample exist
within the given bound (ts). As described in the analysis of BMC techniques
[Amla et al. 2003], deciding the bound is a challenging problem because the
depth of counterexamples is unknown in most cases. Section 4.5 describes a

2The clk variable is used to count time steps, and ts is a specific time step during model checking.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

32:18 • H.-M. Koo and P. Mishra

mechanism for deciding the bound (ts) that enables test-generation using SAT-
based BMC.

For certain properties such as pUq, F (p → F (q)), F (p → G(q)), G(p →
G(q)), or G(p → F (q)), decompositions are not beneficial compared to tradi-
tional model checking because it is very difficult to decide a specific time step
between their decomposed properties. Although many property decompositions
are not possible, it is important to note that the scenarios described in this
section are sufficient to generate the test programs in the context of pipeline
interactions.

An important consideration during property decomposition is how to spec-
ify and handle the different types of variables in the property. In general, the
properties are described as pairs of module name and variable name. An in-
teraction fault property pi can be either a local variable in a single module
or a global variable over multiple modules. If pi is a local variable, it is con-
verted into (mi.pi) where mi is the corresponding module. If pi is a global
variable, pi is decomposed into subproperties of corresponding modules. For
example, for the property G(¬p1 ∨ ¬p2), if p1 is an interface variable between
m1 and m2, and p2 is a local variable of m2, then the property is converted as
G(¬m1.p1 ∨ (¬m2.p1 ∨ ¬m2.p2)). Decomposition of global variables is based on
the decomposed modules of a processor model and their interfaces.

4.5 Determination of Bound for BMC

Determination of exact bound is a challenging problem, since the depth of
counterexamples is unknown in general before applying the property. Choos-
ing an incorrect bound increases test-generation time and memory require-
ment. Use of a large bound loses the benefits of BMC due to search in a
large number of irrelevant states. Therefore, the efficiency of test-generation
closely depends on the techniques of deciding the bound. We propose a method
for determining the bound for each property based on the graph model of
pipelined processors. The longest computation path in the pipeline corresponds
to the counterexample bound to generate tests for all interaction scenarios.
For example, in the graph model of the MIPS processor in Figure 3, the max-
imum bound is determined by the length of {FE→ DE→ IALU→ MEM→
DataMemory→ MainMemory → DataMemory→ MEM→ WB} if cache miss
takes more time than any other pipeline paths. However, this bound is overcon-
servative in most test scenarios because many interactions do not include this
longest path. Therefore, using bound for each interaction is more efficient for
test-generation.

In the context of BMC, it is important to note that the relationship between
diameter [Biere et al. 1999] and the exact bound for counterexample generation
in our approach. The diameter [Biere et al. 1999] of a design is typically defined
as the maximum distance between any two of its states si and sj , such that
sj is reachable from si. The distance from si to sj is the minimum number of
time-steps to transition the design from si to sj . However, in our approach, we
are only interested in finding a counterexample. Therefore, we are interested
in the maximum distance between the initial state and the other reachable

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

Test Generation Using Design and Property Decompositions Techniques • 32:19

states. Let us define this maximum distance as init2anyDiameter. Clearly, a
bounded check of depth greater or equal to the init2anyDiameter of the design
is guaranteed to generate a counterexample. Therefore, the exact bound boundi

for each property pi should be smaller or equal to init2anyDiameter. In other
words, the following relationship holds:

boundi ≤ init2anyDiameter ≤ diameter. (5)

Bound for each interaction is determined by the longest temporal distance
from the root node to the nodes under consideration. For example, bound for the
property IALU, FADD2, and FADD3 in normal execution at the same time will
be 5 because FADD3 has the longest temporal distance from Fetch stage. If a
property includes stall or exception activity, the temporal distance between the
root node and leaf node (WB) is added to consider the causal node of the stall
or exception. After deciding counterexample bound, either traditional model
checking or SAT-based BMC can be used for generating counterexamples by
taking design model, negated properties, and bound as inputs. It is important
to note that the determination of bound is dependent on the initial state. A
reset sequence is typically required to bring the design to the initial state. In
the absence of such a reset sequence, it may not be possible to determine the
bound for each property.

4.6 Test Generation Using Design and Property Decompositions

Algorithm 4 presents our decompositional model checking procedure (invoked
from Algorithm 3) for design and property decompositions. The basic idea is to
apply the decomposed properties (subproperties) to the corresponding design
partition using model checking, and compose the generated partial counterex-
amples to construct the final test program. This algorithm accepts a property
Pi (already negated in Algorithm 3), a design D, and search bound boundi as in-
puts and produces the required test program. The design is decomposed based
on the property decomposition and the techniques described in Section 4.3. Sim-
ilarly, the property is decomposed based on the design decomposition and the
techniques described in Section 4.4. The algorithm uses three lists to maintain
the decomposed properties: TaskList for the present clock cycle clk, NextList
for the next cycle, that is, clk − 1, and AllList for all properties. Each entry
in the TaskList and the NextList contain a collection of subproperties that are
applicable to corresponding design partitions. Therefore, each list can have up
to n entries where n is the number of design partitions in the processor model.
The tasks in the TaskList need to be performed in the current time step (clk).
The tasks in the NextList will be performed in the next time step (clk − 1).
AllList contains all the entries of TaskList for each time step. This information
is used to resolve the conflict among subproperties, as described in Section 4.7.
Initially these lists are empty.

The algorithm generates one test program for each property set DPi that
consists of one or more subproperties based on their applicability to different
modules or partitions in the design, as discussed in Section 4.2. The algorithm
adds the subproperties to the TaskList and AllList based on the partitions

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

32:20 • H.-M. Koo and P. Mishra

to which these properties are applicable. The algorithm iterates over all the
subproperties in the TaskList. It removes an entry (say k-th location) from the
TaskList which is the output requirement outRk of k-th partition. In general,
this entry can be a list of subproperties (due to simultaneous output require-
ments from multiple children nodes) that need to be applied to partition Mk .
These subproperties are composed to create the intermediate property Pk

i using
MergeRequirements described in Section 4.7. After negation of Pk

i , the property

Pk
i is applied to the corresponding partition Mk using the model checker to gen-

erate a counterexample.
The generated counterexample is analyzed to find the input requirements

inpk for the partition Mk . If these are primary inputs (inputs of the root node
in the graph model), then they are stored in PrimaryInputs list. Otherwise,
for each parent node Mr to which inpk is applicable, we extract the output
requirements for Mr . This output requirement is added to the r-th entry of
the NextList as well as the AllList. Finally, if the tasks for the current time
step is completed (TaskList empty), NextList is copied to the TaskList and the
time step clk is reduced by one. This process continues until both the lists are
empty. Using a precise upper bound for the original property, Pi enables the
clk to be zero and two lists empty at the same time. However, if one chooses
the diameter [Biere et al. 1999] as the upper bound, two lists will be empty
before the clk becomes zero. In both of these cases, it will ensure that we
have obtained the primary input assignments for all the subproperties. These
assignments are converted into a test program consisting of an instruction
sequence.

For illustration, consider a simple property P1 to verify a multiple stall sce-
nario consisting of IALU (3rd module) and DIV (15th module) nodes in Figure 3
at clock cycle 5. We assume the module level partitioning of the design for this
example. The property can be decomposed into two subproperties P3

1 (IALU

not stalled in cycle 5) and P15
1 (DIV not stalled in cycle 5). This implies that

TaskList will have two entries before entering the while loop: TaskList[3] =
P3

1 and TaskList[15] = P15
1 . At the first iteration of the while loop, P3

1 will be
applied to M3 (IALU) using model checker; the generated counter example will
be analyzed to find the output requirement for the Decode unit (2nd module in
Figure 3) in clock cycle 4; and the requirement will be added to NextList[2].
During second iteration of the while loop, P15

1 (TaskList[15]) will be applied to
M15 (DIV), the generated counter example will be analyzed to find the output
requirement for the Decode unit in clock cycle 4, and the requirement, will be
added to NextList[2]. At this point, the TaskList is empty and the NextList has
only one entry with two requirements which is copied to the TaskList. At the
third iteration of the while loop, these two requirements are composed into an
intermediate property and applied to M2 (Decode) that generates requirements
for Fetch node. Finally, the fourth iteration applies the corresponding property
to the Fetch unit that generates the primary input assignments. These as-
signments are converted to a test program. The following two examples show
test-generation using module level as well as pipeline path-level partitioning
of the processor model.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

Test Generation Using Design and Property Decompositions Techniques • 32:21

Algorithm 4: DecompositionalModelChecking
Inputs: i) Property Pi, ii) Design D, and iii) boundi

Outputs: Test program
Begin

TaskList = φ; NextList = φ; AllList = φ;
PrimaryInputs = φ; clk = boundi

{P1
i , P2

i , ..., Pm
i } = DecomposeProperty(Pi)

{M1, M2, ..., Mn} = DecomposeDesign(D)

for each design partition M j /* P j
i is applicable to M j */

TaskList[j] = AllList[clk][j] = P j
i

endfor
while TaskList is not empty and clk > 0

out Rk = RemoveEntry(TaskList[k])

Pk
i = MergeRequirements(out Rk , AllList, clk)

Pk
i = Negate(Pk

i)

Counterexample = ModelChecking(Pk
i , Mk , clk)

inpRk = input requirements for Mk from Counterexample
if inpRk are not primary inputs

for each applicable parent node Mr of Mk

out Rr = Extract output requirements for Mr from inpRk

NextList[r] = NextList[r] ∪ out Rr

AllList[clk][r] = AllList[clk][r] ∪ out Rr

endfor
else PrimaryInputs = PrimaryInputs ∪ inpRk

endif
if TaskList is empty

clk=clk − 1;
TaskList = NextList;
NextList = φ

endif
endwhile
testi = ExtractInstructions(PrimaryInputs)
return testi

End

Example 3: Test Generation Using Module-Level Partitioning

Consider a multiple exception scenario at clock cycle 7 consisting of an overflow
exception in IALU, divide by zero exception in DIV unit, and a memory exception
in the MEM unit. The desired property P is shown as:

P: F((clk=7) & (MEM.exception = 1) & (IALU.exception = 1)
& (DIV.exception = 1))

The negated property, P ′ is:

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

32:22 • H.-M. Koo and P. Mishra

P’: G((clk~=7) | (MEM.exception ~= 1) | (IALU.exception ~= 1)
| (DIV.exception ~= 1))

P ′ is decomposed into three subproperties:

P1: G((clk~=7) | (MEM.exception ~= 1))
P2: G((clk~=7) | (IALU.exception ~= 1))
P3: G((clk~=7) | (DIV.exception ~= 1))

The subproperties P1, P2, and P3 will be applied to MEM, IALU, and DIV
modules using SMV model checker. The model checker will come up with a
counterexample in each case as input requirements for the respective modules.
For example, the counterexamples for P1, P2, and P3, respectively, are: (CP1)
load operation with memory address zero, (CP2) add operation with the max-
imum value for both source operands, and (CP3) divide operation with second
source operand value zero. These requirements are converted into properties
and applied to the respective parent modules. In this case, P1′ (from CP1) is
applied to IALU, and P23′ (combine CP2 and CP3)3 is applied to the Decode unit
in the next step. In each case, clock cycle value is reduced by one:

P1’: G((clk~=6) | (aluOp.opcode ~= LD) | (aluOp.src1Val ~= 0))

P23’: G((clk~=6) | (decOp[0].opcode ~= ADD) | (decOp[0].src1Val ~= 2)

| (decOp[0].src2Val ~= 2) | (decOp[3].opcode =~ DIV)

| (decOp[3].src2Val ~= 0))

The outcome of the property P1′ will be applied to Decode unit (generates P1′′

say) whereas the outcome of the P23′ will be applied to Fetch unit (generates
primary inputs P Ii) in time step 5. In time step 4, P1′′ will be applied to Fetch
unit that generates the primary inputs P I j . The primary inputs P Ii and P I j

are combined based on their time step (clock cycle) to generate the final test
program:

Fetch Instructions ([0] for ALU... [3] for DIV)
Cycle [0] [1] [2] [3] //R0 is 0
1 ADDI R2 R0 #2 NOP NOP NOP //R2 = 2
2 NOP NOP NOP NOP
3 NOP NOP NOP NOP
4 LD R1 0(R0) NOP NOP NOP
5 ADD R3 R2 R2 NOP NOP DIV R3 R0 R0

3Note that when multiple children create requirements for the parent (e.g., P23′), conflicts can

occur. In such cases, alternative assignments need to be evaluated for the conflicting variable, as

described in Section 4.7.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

Test Generation Using Design and Property Decompositions Techniques • 32:23

Example 4: Test Generation Using Path-Level Partitioning

The example shown above assumes a module-level partitioning of the processor
model. However, it is not always possible to decompose a property based on
module-level partitioning. For example, if we are trying to determine whether
two feedback (data-forwarding) paths shown in Figure 3 are activated at the
same time, it is not possible to decompose this property at module level because
the implication relation between feedOut and feedIn (in the following property)
will be lost.

/* Original Property */
P: F((clk=9) & (FADD4.feedOut -> X(FADD1.feedIn))

& (MUL7.feedOut -> X(MUL1.feedIn)))

/* Property after Negation*/
P’: G(((clk~=9 | ~FADD4.feedOut) | (clk~=10 | ~FADD1.feedIn)) |

((clk~=9 | ~MUL7.feedOut) | (clk~=10 | ~MUL1.feedIn)))

/* Properties after Decomposition*/
P1: G((clk~=9 | ~FADD4.feedOut) | (clk~=10 | ~FADD1.feedIn))
P2: G((clk~=9 | ~MUL7.feedOut) | (clk~=10 | ~MUL1.feedIn))

To enable property decomposition in this example, we need to partition the
design differently. The floating-point adder path (FADD1 to FADD4) should
be treated as a design partition Fpath. Similarly, the multiplier path (MUL1
to MUL7) should be treated as another partition Mpath. This new partitioning
is applied for test-generation. First, P1 and P2 can be applied on Fpath and
Mpath, respectively, that generates counterexamples C1 and C2. Next, C1 and
C2 are combined and the corresponding property is applied to the Decode unit
to generate the counterexample C3. Next, the property corresponding to C3
is applied to the Fetch unit that generates the primary input requirements.
Finally, these primary input requirements are converted into the required test
program.

4.7 Merging Partial Counterexamples

The output requirement (out Rr in Algorithm 4) generated from a single child
node can be directly used for the corresponding module (Mr) simply by negating
the output requirement. In case of multiple children, the input requirements
generated from children nodes need to be merged appropriately into the re-
quired property for the parent node. However, this is nontrivial since the input
requirements can be conflicting due to the fact that the model checker assigns
arbitrary values to the variables that do not have influence on falsification of the
children nodes. For example, in Figure 4, four reservation station (RS) modules
share the parent module Issue. Counterexamples (input requirements of each
RS) generated from four RSs at the time step clk = ts + 1 should be combined
for creating the required property of Issue module at clk = ts. However, they
may require different output values for the same variable of the module Issue.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

32:24 • H.-M. Koo and P. Mishra

Fig. 6. An example structure with two children nodes.

In case of output requirement conflict, we adjust input requirements of the
children nodes by excluding the current input requirement, called false require-
ment. For example, consider the scenario shown in Figure 6. Assume that the
output variables of the parent node are p and q, the input requirement of one
child is (p = 1 ∧ q = 0) that is generated by G((clk �= (ts + 1)) ∨ ¬(M1.p = 1)) at
child node M1, and the input requirement of the other child is (p = 0 ∧ q = 1)
that is generated by G((clk �= (ts + 1)) ∨ ¬(M2.q = 1)) at child node M2. Obvi-
ously, there is no way to assign output p and q to satisfy these two conflicting
inputs. We refine the subproperties of children nodes to resolve the conflict
requirements by excluding the false requirement. The desired subproperties
stored in AllList[ts + 1] for children nodes, and they are modified by adding the
negated version of the conflict requirement:

F ((clk = (ts + 1)) ∧ (M1.p = 1) ∧ ¬(M1.p = 1 ∧ M1.q = 0))

F ((clk = (ts + 1)) ∧ (M2.q = 1) ∧ ¬(M2.p = 0 ∧ M2.q = 1)).

To generate the input requirements of the module1, the above properties are
negated:

G((clk �= (ts + 1)) ∨ ¬(M1.p = 1) ∨ (M1.p = 1 ∧ M1.q = 0))

G((clk �= (ts + 1)) ∨ ¬(M2.q = 1) ∨ (M2.p = 0 ∧ M2.q = 1)).

These subproperties do not allow the counterexample (p = 1 ∧ q = 0) any
more. The generated counterexample will be (p = 1 ∧ q = 1) as the input
requirements of module1 and module2. As a result, we can merge them into the
output requirement of the parent node as (p = 1∧q = 1) at clk = ts. If there is an
interface variable r between the parent and its child module2, it does not cause
the output requirement conflict of the parent node, since the input requirement
of module1 does not influence the variable r. If there is another child node
module3 that has the interface variables p and r, we need to adjust three
input requirements of module1, module2, and module3 to resolve any conflict
among them. It is possible that there is no common variable assignments for
shared input variables among children nodes, since their output requirements
may be generated from false input requirements from the subsequent stages
(child nodes of M1 and M2). In this case, we need to refine the subproperties
of grandchildren nodes stored in AllList[ts + 2]. The procedure of subproperty
refinement continues until the conflict is resolved or clk is equal to boundi, that
is, upper bound to search for a test program.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

Test Generation Using Design and Property Decompositions Techniques • 32:25

Although, this procedure of iterative conflict resolution may continue for-
ever in the worst case, our experimental studies show that number of such
iterations is small: 10 to 15, on average. Our observation is that in the majority
of these cases the conflict happened in the fork node (e.g., Issue unit in e500 or
Decode unit in MIPS) and it could be avoided if we maintain “don’t cares”. In
other words, when we compose the partial counterexamples in each stage, we
can carry forward “don’t care” values to the parent stages. To enable this, we
need to enable/modify the existing model-checking techniques to produce don’t
care values for the variables where exact assignment is not required to pro-
duce the counterexample. We have also implemented techniques for learning
from previous mistakes, for example, conflict in the previous stage for the same
property or from a similar property. For example, the test 9 of e500 processor
(in Table IV) uses the knowledge of test 8. In other words, for test 9 instead of
searching for a counterexample from the initial state, it started from the fail-
ure state of test 8. To safeguard against the scenarios where the iteration may
continue indefinitely (the worst-case scenario), we use a threshold to terminate
the repeated conflict generation for the same scenario.

5. EXPERIMENTS

We applied our test-generation methodology on a multi-issue MIPS architecture
[Hennessy and Patterson 2003] and a superscalar commercial e500 processor
[e500 Manual 2005]. We performed various test-generation experiments for
validating the pipeline interactions by varying different design partitions and
property decompositions. In this section, we present experimental results in
terms of time and memory requirement in test-generation.

5.1 Test Generation Using Model Checking and Module-Level Decomposition

Our test-generation technique using UMC and module-level decomposition is
applied on a multi-issue MIPS architecture, as shown in Figure 3. We have
used NuSMV [NuSMV] for running incremental BMC experiments. We have
used Cadence SMV [SMV] model checker to perform all other experiments. We
made few simplifications in the MIPS processor model to compare with existing
approaches. For example, if thirty-two 32-bit registers are used in the register
file, the UMC approach can not produce any counterexample even for a simple
property with no pipeline interaction due to the memory depletion during model
checking. For comparison, we used eight 2-bit registers for the following exper-
iments to ensure that the existing approaches can generate counterexamples.
All the experiments were run on a 1GHz Sun UltraSparc with 8G RAM.

Table II presents the results of the comparison of test-generation techniques
for MIPS processor. The first column defines the type of properties used for
test-generation based on number of module interactions. For example, “None”
implies properties applicable to only one module; “Two Modules” implies proper-
ties that include two module interactions, and so on. Each row presents the av-
erage memory requirement (M: MB, K:KB) for the BDD nodes (or CNF clauses)
used as well as test-generation time (in seconds). For example, the first row
presents the average time and memory requirement for 68 (n = 17, r = 4,

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

32:26 • H.-M. Koo and P. Mishra

Table II. Comparison of Test-Generation Techniques for MIPS Processor

Cadence SMV Cadence SMV NuSMV Our Approach

Module (UMC) (Cex-based Abstraction) (Incr. BMC) (UMC+Dec.)

Interactions BDD Time BDD Clauses Time Clauses Time BDD Time

None 6 M 165 23K 33K 0.37 135K 8.47 3K 0.06

2 Modules 11M 215 54K 138K 5.89 201K 9.99 6K 0.12

3 Modules 21M 240 76K 139K 7.67 268K 11.57 9K 0.19

4 Modules >1hr >1hr 334K 14.08 11K 0.28

5 Modules >1hr >1hr 401K 16.65 15K 0.35

6 Modules >1hr >1hr 467K 18.76 21K 0.51

“Time” is in seconds, and memory requirement is in BDD nodes (UMC) or CNF clauses (BMC).

and i = 1 in Equation (2)) single module properties. Similarly, the second row
shows the average values for test-generation of 2,186 two module interactions,
and so on. The second and third columns present the average memory (num-
ber of BDD nodes) and time (in seconds) requirement for doing UMC using
Cadence SMV. The next three columns present the average memory (num-
ber of BDD nodes as well as number of CNF clauses) and time requirement
for doing counterexample-based abstraction [Amla and McMillan 2004] using
Cadence SMV. The seventh and eighth columns present the average memory
and time requirement for doing incremental BMC using NuSMV. The next
two columns presents the results using our approach—UMC with design and
property decompositions. Clearly, our approach requires several orders of mag-
nitude less memory and test-generation-time compared to existing UMC-based
approaches. Our approach is also beneficial compared to existing BMC-based
approaches by providing at least an order-of-magnitude reduction in both test-
generation time and memory requirement.

5.2 Test Generation Using SAT-based BMC and Cluster-Level Decomposition

We applied our test-generation technique using SAT-based BMC and cluster-
level decomposition on a MIPS architecture. We used Cadence SMV as model
checker and zChaff [Moskewicz et al. 2001] as SAT solver. Section 5.1 (Table II)
presented results of our approach using design and property decompositions in
the context of UMC. This section presents results of our approach using design
and property decompositions in the context of both UMC and BMC. All the
experimental setup and properties remain the same, as in Section 5.1.

Table III compares our approach with the existing UMC and BMC-based
approaches. The first and second columns in Table III are identical to the first
and third columns in Table II. The third column presents the test-generation
time using BMC of Cadence SMV. In this case we used the maximum bound of
45 to ensure we get all the counterexamples. The next three columns present
the test-generation times using our approach with module-level decomposition
in three ways: UMC, BMC with maximum bound, and BMC using bound for
each property. The next three columns are similar to these three columns ex-
cept that the final three columns consider cluster-level decompositions. The
maximum bound of 45 was used assuming that the longest length is taken by
memory operations, that is, the summation of the IALU pipeline path length (5)

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

Test Generation Using Design and Property Decompositions Techniques • 32:27

Table III. Comparison of Test-Generation Techniques for MIPS Processor

Our Approach using Decompositions

Module-level Decomp. Cluster-level Decomp.

Module SMV SMV BMC BMC

Interactions (UMC) (BMC) UMC Max. k Each k UMC Max. k Each k

None 165 5.63 0.06 2.24 0.42 0.21 3.87 0.22

2 Modules 215 7.42 0.12 6.41 1.38 1.81 4.31 0.43

3 Modules 240 7.74 0.19 6.75 1.45 8.06 5.72 0.52

4 Modules >1hr 8.79 0.28 7.63 1.97 37.13 6.98 0.64

5 Modules >1hr 9.29 0.35 9.03 2.18 83.25 8.31 0.62

6 Modules >1hr 9.58 0.51 10.70 2.50 126.01 9.04 0.68

and data-transfer path length (40). As expected, Table III shows that the test-
generation time grows with the increase of the number of module interactions.
Bound for each property reduces approximately 90% of the test-generation time
compared to using BMC with maximum bound. An interesting observation is
that UMC with module-level decomposition provides better performance than
SAT-based BMC. This is because unfolding the processor model and converting
it to the SAT problem takes some time. In other words, UMC might be bet-
ter when properties are simple and can be decomposed at the module level.
As expected, if the bound is small, BMC without decomposition (existing ap-
proach) is feasible but will take an order-of-magnitude more test-generation
time compared to our approach with individual bound for each property (BMC
with decompositions).

5.3 Test Generation for e500 Processor

We also applied our decompositional model-checking technique on a superscalar
e500 processor. We described the processor using SMV language. Our processor
model includes microarchitectural structure and clock-accurate behaviors of the
processor. We represented one clock cycle as two time steps (low and high at
each cycle) so that the processor model accommodates the behaviors of read and
write at the same cycle in the first-in-first-out queues and reservation stations.
We performed various test-generation experiments for validating the pipeline
interactions and corner cases. In this section, we present a subset of the test
sequences generated by our test-generation framework. Next, we describe how
the generated test programs are used in processor-validation framework.

5.3.1 Results. Table IV shows a subset of the directed test cases that we
have generated for e500 processor using our approach. The first column indi-
cates the testcase ID. The second column briefly describes the testcase. The
third column indicates the number of iterations (UMC/BMC runs) required
to produce the final counterexample. The fourth column indicates the number
of instructions in the final test program. The next column presents the test-
generation time (in seconds) and indicates the total time required to obtain
the counterexample. The total time includes the time for performing all the
UMC/BMC runs for obtaining and merging partial counterexamples. In major-
ity of the test-generation scenarios, the number of UMC/BMC runs (iterations)
due to conflicting assignments is small (10 to 15). The worst-case scenario was

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

32:28 • H.-M. Koo and P. Mishra

Table IV. Various Test Cases Generated by Our Framework for e500 Processor

Iterations Length Time

ID Test Cases (# runs) (#inst.) (sec)

1 Instruction dual issue 52 15 30

2 Renaming src1 operand 42 12 25

3 Read operand from forwarding path (RAW) 35 9 20

4 Reservation station reads operand from forwarding path 28 7 15

5 Read operand from renaming reg. (RAW) 37 10 20

6 Read operand from GPR (RAW) 40 11 25

7 Renaming for WAW (no stall) 34 8 20

8 Stall at Decode stage due to IQ full 59 14 35

9 Stall at Decode stage due to CQ full, then released queue 112 34 61

full at the next clock cycle

10 CQ full, then full again 130 35 70

11 CQ full, then empty, and then full again 527 95 290

12 Retire only one instruction in Completion 48 12 28

13 “lwz” instruction at LSU stage3 25 7 15

14 “add” at Fetch2 & “mulhw” at MU stage2 simultaneously 30 6 18

15 “addi” at Completion, “mulhw” at MU stage1, & “lwz” 44 12 25

at LSU stage1 at the same clock

16 “mulhw” at Completion, “add” & “addi” waits in 72 12 40

completion queue, & “lzw” at LSU stage3

17 “lwz” and “add” at Completion, “mulhw” at MU stage3, 61 14 35

“addi” at CQ, “lwz” at LSU stage1

18 “mulhw” & “add” retire, “mulhw” at MU stage4, 80 15 45

“addi” at CQ, & “lwz” at LSU-stage2

for test 11 where a total of 527 UMC runs were required and most of the runs
(351 runs, 67%) were in the iterations between Issue and RS modules. As dis-
cussed in Section 4.7, we have employed several techniques to reduce these
iterations including reuse of the knowledge of a previously generated test. For
example, when generating the counterexample for test 9, we use the knowl-
edge of test 8. In other words, test 9 would have taken 98 seconds (instead of
61 seconds) if the test 8 knowledge was not used.

The test program for Case 11 validates the feature of completion queue (CQ)
by piling data up and down in the first-in-first-out queue. Test programs for
Case 3 through 6 exercise operand read from four different resources, as shown
in Figure 7, which can be generated at microarchitecture level but very difficult
at ISA level. In terms of efficiency, only several seconds were spent on test-
generation except for Case 11 where test-generation took a few minutes. The
test Cases 13 through 18 show various interaction scenarios. For example, test
Case 13 only activates one node whereas test Case 15 considers three node
interactions at the same clock cycle.

5.3.2 Microarchitectural Validation using Test Programs. Micro-
architectural design errors, such as performance bugs, are hard to be
exposed by architectural test-generation. Furthermore, they may not be
detected by ISA functional simulation. For example, test-generation for
uncovering incorrect stalls in pipeline stages require timing information of
instruction flow and those bugs are only visible during the clock-accurate

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

Test Generation Using Design and Property Decompositions Techniques • 32:29

Fig. 7. Four different data-forwarding mechanisms.

Fig. 8. Microarchitectural validation flow.

simulation. Therefore, microarchitectural validation plays an important role
in ensuring the correctness of performance as well as functionality of the
processor designs.

We have performed microarchitectural validation by using the existing
methodology in an industrial settings that includes an internal random test
pattern generator (RTPG) tool. Figure 8 shows the validation flow. We converted
the assembly test sequences generated by our method into the input format of
the RTPG tool that produces testbenches for RTL simulation. The simulator
shows how instructions go through the pipeline stages on a cycle-by-cycle basis
as well as whether the stored results in register files and memory are correct.
Capturing when and which instructions move from one stage to the next en-
sures that the generated tests exercise the target microarchitectural artifacts.
We compared the validation effort for activating these microarchitectural fea-
tures using the existing validation methodology in an industrial setting and our
approach. On an average, each of our test case took less than 100 clock cycles
whereas the existing random/pseudo-random tests took approximately 100,000
clock cycles to activate the target fault. As a result, our approach reduced the
overall validation effort by several orders of magnitude.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

32:30 • H.-M. Koo and P. Mishra

5.4 Discussion: Applicability and Limitations

This article studied the design and property decompositions in the context of di-
rected test-generation for pipelined processors. As a result, it presented various
domain-specific (directed test-generation) and application-specific (pipelined
processors) heuristics and optimizations. Clearly, our approach is applicable
only for test (counterexample) generation purposes. In other words, its domain
is limited to automated generation of directed tests. However, the application is
not limited to only pipelined processors. The approaches presented in this arti-
cle can be used for directed test-generation for any software/hardware designs
where the interaction between the components are limited. In other words, the
modeling, decomposition and test-generation techniques are applicable to any
design that is decomposition friendly in the context of counterexample (test)
generation. For example, in a SoC design if each component interacts heavily
with all the other components in the design, the design and property decom-
position may not be feasible. Similarly, in software-based systems if too many
global variables are used for interaction between modules and/or there is strong
coupling between components, decomposition will not be feasible. In practice,
the interaction between components (modules) are well defined and limited in
nature due to design-for-verification and other requirements. As a result, a vast
majority of designs (hardware, software, or hardware+software) are decompo-
sition friendly and our approach is applicable for directed test-generation for
those designs.

6. CONCLUSIONS

Functional verification is widely acknowledged as a major bottleneck in micro-
processor design methodology. Compared to the random or constrained-random
tests, the directed tests can reduce overall validation effort, since shorter tests
can obtain the same coverage goal. However, there is a lack of automated
techniques for directed test-generation. This article presented a directed test-
generation technique for validation of performance as well as functionality of
the modern microprocessors. Our methodology is based on decompositional
model checking where the processor model as well as the properties are de-
composed and the model checking is applied on smaller partitions of the design
using decomposed properties. We introduced the notion of time steps to enable
decomposition of the properties into smaller ones based on their clock cycles.
We have developed an efficient algorithm to merge the partial counterexam-
ples generated by the decomposed properties to create the final test program
corresponding to the original property. Our experimental results using MIPS
and e500 processor architectures demonstrate the efficiency of our method by
generating complicated microarchitectural tests. Since the proposed technique
is generic, its framework can be used for validation of other industrial-strength
processors. Furthermore, this work can be an excellent complement to the cur-
rent RTPG validation methodology without modification of the existing valida-
tion flow.

Our future work includes test-generation for safety as well as liveness prop-
erties for multiprocessor SoC designs. We also plan to develop efficient test

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

Test Generation Using Design and Property Decompositions Techniques • 32:31

compaction techniques to reduce the number of functional test programs for
validation of multiprocessor SoC architectures.

REFERENCES

ADIR, A., ALMOG, E., FOURNIER, L., MARCUS, E., RIMON, M., VINOV, M., AND ZIV, A. 2004. Genesyspro:

Innovations in test program generation for functional processor verification. IEEE Des. Test
Comput. 21, 2, 84–93.

ADIR, A., BIN, E., PELED, O., AND ZIV, A. 2003. Piparazzi: A test program generator for micro-

architecture flow verification. In Proceedings of High-Level Design Validation and Test Workshop
(HLDVT). IEEE, Los Alamitos, 23–28.

AHARON, A., GOODMAN, D., LEVINGER, M., LICHTENSTEIN, Y., MALKA, Y., METZGER, C., MOLCHO, M.,

AND SHUREK, G. 1995. Test program generation for functional verification of PowerPC pro-

cessors in IBM. In Proceedings of Design Automation Conference (DAC). ACM, New York, 279–

285.

AMLA, N., KURSHAN, R., MCMILLAN, K., AND MEDEL, R. 2003. Experimental analysis of different

techniques for bounded model checking. In Proceedings of Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS). Springer, Berlin, 34–48.

AMLA, N. AND MCMILLAN, K. 2004. A hybrid of counterexample-based and proof-based abstraction.

In Proceedings of the 5th International Formal Methods in Computer-Aided Design (FMCAD).
Springer, Berlin, 260–274.

AMLA, N., DU, X., KUEHLMANN, A., KURSHAN, R., AND MCMILLAN, K. 2005. An analysis of SAT-based

model checking techniques in an industrial environment. In Proceedings of Correct Hardware
Design and Verification Methods (CHARME). Springer, Berlin, 254–268.

BIERE, A., CIMATTI, A., AND CLARKE, E. M. 2003. Bounded model checking. Adv. Comput. 58.

BIERE, A., CIMATTI, A., CLARKE, E., AND ZHU, Y. 1999. Symbolic model checking without BDDs.

In Proceedings of Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Springer, Berlin, 193–207.

BJESSE, P. AND KUKULA, J. 2004. Using counter example guided abstraction refinement to

find complex bugs. In Proceedings of Design Automation and Test in Europe (DATE). IEEE,

Los Alamitos, 156–161.

BRYANT, R. 1986. Graph-based algorithms for Boolean function manipulation. IEEE Trans. Com-
put. C-35, 8, 677–691.

CAMPENHOUT, D., MUDGE, T., AND HAYES, J. 1999. High-level test generation for design verification

of pipelined micro-processors. In Proceedings of the Design Automation Conference (DAC). ACM,

New York, 185–188.

CADENCE SMV. http://www-cad.eecs.berkeley.edu/˜kenmcmil/smv.

CLARKE, E., GRUMBERG, O., AND PELED, D. 1999. Model Checking. MIT Press, Cambridge.

CLARKE, E., GRUMBERG, O., MCMILLAN, K., AND ZHAO, X. 1995. Efficient generation of counterex-

amples and witnesses in symbolic model checking. In Proceedings of the Design Automation
Conference (DAC). ACM, New York, 427–432.

COPTY, F., FIX, L., FRAER, R., GIUNCHIGLIA, G., KAMHI, G., TACCHELLA, A., AND VARDI, M. 2001. Benefits

of bounded model checking at an industrial setting. In Proceedings of Computer-Aided Verification
(CAV). Springer, Berlin, 436–453.

FINE, S. AND ZIV, A. 2003. Coverage directed test generation for functional verification using

Bayesian networks. In Proceedings of the Design Automation Conference (DAC). ACM, New York,

286–291.

FREESCALE. PowerPCTM e500 Core Family Reference Manual.

http://www.freescale.com/files/32bit/doc/ref manual/e500CORERM.pdf 2005.

GARGANTINI, A. AND HEITMEYER, C. 1999. Using model checking to generate tests from require-

ments specifications. ACM SIGSOFT Software Engin. Notes. 24, 146–162.

GOLDBERG, E. AND NOVIKOV, Y. 2002. BerkMin: A fast and robust SAT-solver. In Proceedings of
Design Automation and Test in Europe (DATE). IEEE, Los Alamitos, 142–149.

GLUSKA, A. 2006. Practical methods in coverage-oriented verification of the Merom micro-

processor. In Proceedings of the Design Automation Conference (DAC). ACM, New York, 332–

337.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

32:32 • H.-M. Koo and P. Mishra

HALAMBI, A., GRUN, P., GANESH, V., KHARE, A., DUTT, N., AND NICOLAU, A. 1999. EXPRESSION: A

language for architecture exploration through compiler/simulator retargetability. In Proceedings
of Design Automation and Test in Europe (DATE). IEEE, Los Alamitos, 485–490.

HO, P., ISLES, A., KAM, T. 1998. Formal verification of pipeline control using controlled token

nets and abstract interpretation. In Proceedings of International Conference on Computer-Aided
Design (ICCAD). ACM, New York, 529–536.

HO, R., YANG, C., HOROWITZ, M. A., DILL, D. 1995. Architecture validation for processors. In Pro-
ceedings of International Symposium on Computer Architecture (ISCA). ACM, New York.

IWASHITA, H., KOWATARI, S., NAKATA, T., HIROSE, F. 1994. Automatic test program generation for

pipelined processors. In Proceedings of International Conference on Computer-Aided Design (IC-
CAD). ACM, New York, 580–583.

JACOBI, C. 2002. Formal verification of complex out-of-order pipelines by combining model-

checking and theorem-proving. In Proceedings of Computer Aided Verification (CAV). Springer-

Verlag, Berlin, 309–323.

JHALA, R. AND MCMILLAN, K. L. 2001. Micro-architecture verification by compositional model-

checking. In Proceedings of Computer-Aided Verification (CAV). Springer-Verlag, Berlin, 396–

410.

JIN, H. AND F. SOMENZI, F. 2005. An incremental algorithm to check satisfiability for bounded

model-checking. In Proceedings of the International Workshop on Bounded Model-Checking (BMC
2004). Elsevier, 51–65.

KOO, H. AND MISHRA, P. 2006a. Functional test generation using property decompositions for val-

idation of pipelined processors. In Proceedings of Design Automation and Test in Europe (DATE).
IEEE, Los Alamitos.

KOO, H. AND MISHRA, P. 2006b. Test generation using SAT-based bounded model-checking for

validation of pipelined processors. In Proceedings of the ACM Great Lakes Symposium on VLSI
(GLSVLSI). ACM, New York.

KOO H., MISHRA, P., BHADRA, J., AND ABADIR, M. 2006. Directed micro-architectural test generation

for an industrial processor: A case study. In Proceedings of Micro-processor Test and Verification
(MTV). IEEE, Los Alamitos.

HENNESSY, J. AND PATTERSON, D. 2003. Computer Architecture: A Quantitative Approach. Morgan

Kaufmann Publishers, St. Louis.

KOHNO, K. AND MATSUMOTO, N. 2001. A new verification methodology for complex pipeline behav-

ior. In Proceedings of the Design Automation Conference (DAC). ACM, New York, 816–821.

MARQUES-SILVA, J. AND SAKALLAH, K. 1999. Grasp: A search algorithm for propositional satisfia-

bility. IEEE Trans. Comput. 48, 5, 506–521.

MATHAIKUTTY, D., KODAKARA, S., DINGANKAR, A., SHUKLA, S., AND LILJA, D. 2007. Design fault directed

test generation for micro-processor validation. In Proceedings of Design Automation and Test in
Europe (DATE). IEEE, Los Alamitos.

MATHAIKUTTY, D., AHUJA, S., DINGANKAR, A., AND SHUKLA, S. 2007. Model-driven test generation

for system level validation. In Proceedings of High-Level Design Validation and Test (HLDVT).
IEEE, Los Alamitos.

MISHRA, P. AND DUTT, N. 2002. Automatic functional test program generation for pipelined proces-

sors using model-checking. In Proceedings of High-Level Design Validation and Test (HLDVT).
IEEE, Los Alamitos, 99–103.

MISHRA, P. AND DUTT, N. 2004. Graph-based functional test program generation for pipelined

processors. In Proceedings of Design Automation and Test in Europe. IEEE, Los Alamitos, 182–

187.

MISHRA, P. AND DUTT, N. 2005. Functional coverage driven test generation for validation of

pipelined processors. In Proceedings of Design Automation and Test in Europe. IEEE, Los

Alamitos, 678–683.

MISHRA, P. AND DUTT, N. (EDS.). 2008. In Processor Description Languages. Morgan Kaufmann,

St. Louis.

MOSKEWICZ, M., MADIGAN, C., ZHAO, Y., ZHANG, L., AND MALIK, S. 2001. Chaff: Engineering an

efficient SAT solver. In Proceedings of the Design Automation Conference (DAC). ACM, New

York, 530–535.

NUSMV. http://nusmv.irst.itc.it/.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

Test Generation Using Design and Property Decompositions Techniques • 32:33

PARTHASARATHY, G., IYER, M., CHENG, K. T., AND WANG, L. 2004. Safety property verification using

sequential SAT and bounded model-checking. IEEE Des. Test Comput. 21, 2, 132–143.

PATEL, H. AND SHUKLA, S. 2007. Model-driven validation of SystemC designs micro-processor. In

Proceedings of the Design Automation Conference (DAC). ACM, New York, 29–34.

PRASAD, M., BIERE, A., AND GUPTA, A. 2005. A survey of recent advances in SAT-based formal

verification. Int. J. Softw. Tools Tech. Trans. (STTT) 7, 2, 156–173.

PROPERTY SPECIFICATION LANGUAGE. http://vhdl.org/ieee-1850/.

SHEN, J. AND ABRAHAM, J. 2000. An RTL abstraction technique for processor micro-architecture

validation and test generation. J. Electron. Test. 16, 1-2, 67–81.

STRICHMAN, O. 2001. Pruning techniques for the SAT-based bounded model-checking problem. In

Proceedings of Correct Hardware Design and Verification Methods (CHARME). Springer-Verlag,

Berlin, 58–70.

TUERK, T., SCHNEIDER, K., AND GORDON, M. 2007. Model-checking PSL using HOL and SMV. In

Proceedings of the International Haifa Verification Conference (HVC 2006). Springer, Berlin,

1–15.

UR, S. AND YADIN, Y. 1999. Micro-architecture coverage directed generation of test programs. In

Proceedings of the Design Automation Conference (DAC). ACM, New York, 175–180.

UTAMAPHETHAI, N., BLANTON, R. D. S., AND SHEN, J. P. 2000. Effectiveness of micro-architecture

test program generation. IEEE Des. Test 17, 4, 38–49.

WAGNER, I., BERTACCO, V., AND AUSTIN, T. 2005. Stresstest: An automatic approach to test gener-

ation via activity monitors. In Proceedings of the Design Automation Conference (DAC). ACM,

New York, 783–788.

WHITTEMORE, J., KIM, J., AND SAKALLAH, K. 2001. SATIRE: A new incremental satisfiability engine.

In Proceedings of the Design Automation Conference (DAC). ACM, New York, 542–545.

Received May 2008; revised November 2008; accepted December 2008

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 32, Publication date: July 2009.

