
A Retargetable Framework for Instruction-Set
Architecture Simulation

MEHRDAD RESHADI and NIKIL DUTT

University of California, Irvine

and

PRABHAT MISHRA

University of Florida

Instruction-set architecture (ISA) simulators are an integral part of today’s processor and software

design process. While increasing complexity of the architectures demands high-performance sim-

ulation, the increasing variety of available architectures makes retargetability a critical feature

of an instruction-set simulator. Retargetability requires generic models while high-performance

demands target specific customizations. To address these contradictory requirements, we have

developed a generic instruction model and a generic decode algorithm that facilitates easy and effi-

cient retargetability of the ISA-simulator for a wide range of processor architectures, such as RISC,

CISC, VLIW, and variable length instruction-set processors. The instruction model is used to gener-

ate compact and easy to debug instruction descriptions that are very similar to that of architecture

manual. These descriptions are used to generate high-performance simulators. Our retargetable

framework combines the flexibility of interpretive simulation with the speed of compiled simula-

tion. The generation of the simulator is completely separate from the simulation engine. Hence,

we can incorporate any fast simulation technique in our retargetable framework without intro-

ducing any performance penalty. To demonstrate this, we have incorporated fast IS-CS simulation

engine in our retargetable framework which has generated 70% performance improvement over

the best known simulators in this category. We illustrate the retargetability of our approach using

two popular, yet different, realistic architectures: the SPARC and the ARM.

Categories and Subject Descriptors: I.6.5 [Simulation And Modeling]: Model Development; I.6.7

[Simulation And Modeling]: Simulation Support Systems

General Terms: Design, Language, Performance

Additional Key Words and Phrases: Retargetable instruction-set simulation, generic instruction

model, instruction binary encoding, decode algorithm, architecture description language

This research was partially supported by NSF grants CCR-0203813 and CCR-0205712. We would

like to acknowledge Nikhil Bansal for his contribution in generating the SPARC simulator.

Authors’ addresses: Mehrdad Reshadi and Nikil Dutt, Center for Embedded Computer Systems,

University of California Irvine, CA 92697; email: {reshadi,dutt}@cecs.uci.edu; Prabhat Mishra,

Department Computer and Information Science and Engineering, University of Florida, FL 32611;

email: prabhat@cise.ufl.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1539-9087/06/0500-0431 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006, Pages 431–452.

432 • M. Reshadi et al.

1. INTRODUCTION

Instruction-set architecture (ISA) simulators are indispensable tools in the
development of new architectures. They are used to validate an architecture
design, a compiler design, as well as to evaluate architectural design decisions
during design space exploration. Running on a host machine, these tools mimic
the behavior of an application program on a target machine. These simulators
should be fast to handle the increasing complexity of processors; flexible to
handle features of applications and processors, such as runtime self-modifying
codes and multimode processors; and retargetable to support a wide spectrum
of architectures. Although in the past years, performance has been the most
important quality measure for the ISA simulators, retargetability is now an im-
portant concern, particularly in the area of the embedded systems and system-
on-chip (SoC) design.

A retargetable ISA simulator requires a generic model, supported by a lan-
guage, to describe the architecture and its instruction set. The simulator uses
the architecture description to decode instructions of the input program and
execute them. The challenge is to have a model that is efficient in terms of both
quality of the description and performance of the simulator. To have a high-
quality description, the model must easily capture the architectural information
in a natural, compact and manageable form for a wide range of architectures.
On the other hand, to generate a high-performance simulator and to reduce
the operations that the simulator must do dynamically at runtime, the model
should provide as much static information as possible about the architecture
and its instruction-set.

In general, the instruction model, used in a retargetable ISA simulation,
must capture the complexities of addressing modes, binary encoding, and exe-
cution semantics of the instructions in an architecture. Designing an efficient
model that captures a wide range of architectures is a hard problem, because
such architectures have different instruction-set format complexities. There is
a tradeoff between speed and retargetability in ISA simulators. Some of the
retargetable simulators use a very general processor model and support a wide
range of architectural features, but are slow, while others use some architec-
tural or domain specific performance improvements, but support only a limited
range of processors. Furthermore, existing languages require lengthy descrip-
tions of all possible formats of instructions to derive a fast simulator.

An efficient instruction model should support extensive reuse of descriptions.
To facilitate reuse, all architecture-description languages (ADLs) use the notion
of symbol or identifier to represent an entity. Therefore, instead of repeating
the description of an entity, its corresponding symbol is used to refer to it.
This is similar to the use of variable names and function calls in programming
languages. The existing architecture-description languages use symbols that
correspond to only one entity. Besides, these symbols only represent operands
of instructions. As a result, they are limited by the number, as well as the type, of
entities that they can represent. In contrast, in our proposed instruction model,
a symbol represents more than one entity. It can also represent different types
of entities such as operands and opcodes of instructions. This leads to a compact

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

A Retargetable Framework for Instruction-Set Architecture Simulation • 433

architecture-description and also facilitates exploitation of all possible symbol
values to generate highly optimized instruction-set simulators.

In this paper, we present a retargetable simulation framework that supports
many variations of architectures with complex instruction sets, while gener-
ating high-performance ISA simulators. To achieve maximum retargetability,
we have developed a generic instruction model coupled with a decoding tech-
nique that flexibly supports variations of instruction formats for widely dif-
ferent contemporary processors. A combination of different addressing modes
with various operations results in different instruction formats. Our model can
also be used to exploit all possible instruction formats to generate optimized
code for simulating them. We use this generic model to capture the behavior
and binary encoding of the instructions. The EXPRESSION ADL [Halambi
et al. 1999] is used to capture the structure of the architecture. The instruc-
tion descriptions, based on our generic model, are very compact and easy to
debug and verify. In our framework, we have used the instruction-set compiled
simulation (IS-CS) technique [Reshadi et al. 2003] that has the flexibility of
interpretive simulation and the speed of compiled simulation. The IS-CS tech-
nique uses instruction templates to aggressively generate optimized code for
executing instructions. We automatically generate the templates from the in-
struction descriptions. However, our retargetable framework is generic enough
to incorporate any other simulation optimization techniques.

The rest of the paper is organized as follows. Section 2 presents related
work addressing ISA simulator-generation techniques and distinguishes our
approach. Section 3 outlines our retargetable simulation framework. The three
key components of the framework, i.e., a generic instruction model, a decod-
ing algorithm, and the simulation code generation, are described in Section
4, 5, and 6, respectively. Section 7 compares the efficiency of our instruction
model with other ADLs, and presents simulation performance results using
two contemporary processor architectures: ARM7 and SPARC. Finally, Section
8 concludes the paper.

2. RELATED WORK

An extensive body of recent work has addressed retargetable instruction-set
architecture simulation. A fast and retargetable simulation technique is
presented by Zhu and Gajaski [1999]. It improves traditional static compiled
simulation by mapping the target machine registers to the host machine
registers through a low-level code generation interface at compile time.
The code-generation interface explicitly defines the mappings between the
target architecture instructions and the host assembly. FACILE [Schnarr
et al. 2001] is a language that retargets FastSim simulator [Schnarr and
Larus 1998], but compromises its performance significantly. The nML lan-
guage [Freericks et al. 1991] is a hierarchical formalism for instruction-set
modeling and is used by several code generation and instruction-set simula-
tion tools. Sim-nML [Hartoog et al. 1997] is based on nML. It targets DSP
processors and generates relatively slow simulators. ISDL [Hadjiyiannis
et al. 1997] is mainly suitable for assembly/binary code generation and

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

434 • M. Reshadi et al.

follows a grammar similar to that of lex and yacc tools used for describ-
ing programming languages. The JACOB system [Leupers et al. 1999]
generates both interpretive and compiled simulators from the MIMOLA
[Bashford et al. 1994], which describes the architecture in RTL level.
FLEXWARE simulator [Paulin et al. 1997] uses a VHDL model of a generic
parameterizable model. SimC [Engel et al. 1999] is based on a machine descrip-
tion in ANSI C. It uses compiled simulation and has limited retargetability.
Babel [Mong and Zha 2003] was originally designed for retargeting the binary
tools and has been recently used for retargeting the SimpleScalar simulator
[Simplescalar].

MDES [Gyllenhaal et al. 1996] was designed for compilation and has been
used for simulator generation in Trimaran framework [Trimaran]. However, it
allows retargetability only for the class of architectures in the HPL-PD family.
It does not appear to have language support for specifying instruction syntax
and semantics and the attendant task of instruction binary decoder generation.
The Liberty Simulation Environment (LSE) [Vachharajani et al. 2002] models
processors by connecting the hardware modules through their interfaces. It
generates cycle-accurate simulators from such descriptions. This environment
does not provide any facility for capturing the instruction behavior, binary en-
coding, and generating the decoder. The instruction decoder must be explicitly
described in C language

The just-in-time cache compiled simulation (JIT-CCS) [Nohl et al. 2002] tech-
nique is the closest to our approach. It combines retargetability, flexibility, and
high simulation performance. It uses the LISA machine description and its
performance improvement is gained by caching the decoded instruction infor-
mation. LISA supports simple RISC-like instruction formats. Efficient support
of complex instruction formats requires extensive coding in this language.

In contrast, in our simulation framework, the proposed instruction model
efficiently supports a wide variety of instruction formats supported by contem-
porary processor architectures, as well as architectures with complex hybrid
instruction-sets. While our generic instruction model results in a compact
and easy to debug description, the proposed decode algorithm can extract
the required information for any simulator generation technique from the
specification.

3. RETARGETABLE SIMULATION FRAMEWORK

In a retargetable ISA-simulation framework, the range of architectures that
can be captured and the performance of the generated simulators depend on
three issues: first, the model based on which the instructions are described;
second, the decoding algorithm that uses the instruction model to decode the
input binary program; and third, the execution method of decoded instructions.
These issues are equally important and ignoring any of them results in a sim-
ulator that is either very slow, but general, or very fast, but restricted to some
architecture domains. However, the instruction model significantly affects the
complexity of decode and the quality of execution. A simple instruction model
will require a simple decode algorithm, but may not provide enough informa-
tion for aggressive execution optimizations. On the other hand, a very detailed

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

A Retargetable Framework for Instruction-Set Architecture Simulation • 435

Fig. 1. Generating the simulator from ADL.

and complex instruction model may include all the information needed for op-
timizations, but may require a very complex decode algorithm or may result in
complex descriptions. A complex description is less readable and maintainable.
Similarly, a more human friendly instruction description may have negative
effects on the complexity of decode and applicability of optimizations. We have
developed a generic instruction model coupled with a simple decoding algorithm
that lead to an efficient and flexible execution of decoded instructions.

Figure 1 shows our retargetable simulation framework that uses the ADL
specification of the architecture and the application program binary (compiled
by gcc) to generate the simulator. The ADL captures the behavior and structure
of the target architecture. We describe the binary encoding and behavior of in-
structions, based on our generic instruction model, as described in Section 4.
Using the instruction specifications from ADL description, the Static Instruc-
tion Decoder decodes the target program, one instruction at a time, as described
in Section 5. We use the IS-CS technique [Reshadi et al. 2003] for simulating
the instructions. It achieves high-performance by executing aggressively opti-
mized instructions. The optimizations are done through instruction templates,
which are automatically generated from the behavioral description of the ar-
chitecture. After decoding the instructions, the Static Instruction Decoder uses
the extracted instruction templates to generate the optimized source code of the
decoded instructions (Section 6.1), which is loaded in the instruction memory.
In other words, the instruction model is used for both decoding the instructions
and generating the corresponding source codes for simulation.

The Structure Generator compiles the structural information of the ADL into
components and objects that keep track of the state of the simulated processor.
It generates proper source code for instantiating these components at runtime.
The target independent components are described in the Library. This library is
finally combined with the Structural Information and the Decoded Instructions
and is compiled on the host machine to obtain the final ISA simulator. Figure 2
shows the flow of the simulation engine. This engine fetches each instruction
from instruction memory and looks it up in a software cache, which provides a
mapping between <address, opcode> of the instruction and its corresponding

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

436 • M. Reshadi et al.

Fig. 2. Simulation engine flow.

decoded information. The decoded information contains the behavior and the
length of the instruction. If the decoded information of the instruction is found
in the software cache, it is executed. Otherwise, the instruction is decoded prior
to its execution, and the decoded instruction is stored back in the software cache.
Finally, PC is incremented by the length of the instruction.

In order to support self-modifying codes, both the address and the opcode
of instructions are used for look up in the software cache. In our framework,
the original instructions of a program are statically decoded and the optimized
behaviors are stored in the software cache. At runtime, an instruction is decoded
if the opcode of the instruction differs from the one stored in the cache; otherwise
the decoded information is reused. Details of generating executable behaviors
of instructions are described in Section 6.

The simulation engine is specified by the Library component. Therefore, we
can integrate other simulation techniques and optimizations in our retargetable
framework by modifying the library component.

In the remainder of this section, we describe the generic instruction model
for capturing the binary encoding and behavior of the instruction set. Next,
we explain how the decoding algorithm decodes the program binary using the
description of instructions in the ADL. Finally, we show how optimized code is
generated for fast simulation.

4. GENERIC INSTRUCTION MODEL

In general, several instructions of an instruction set have very similar behavior,
i.e., they have similar components with identical relations among them. Such
instructions can be described using a single template. This template describes
the components of these instructions and the relation between the components.
For example, a set of three operand instructions can be described as <opcode
dest src1 src2>, and the relation can be described as dest = fopcode(src1,
src2). Such instructions have four components, viz., opcode, dest, src1, and
src2; execution of the instruction results in applying the functionality of opcode
on the values of src1 and src2 and storing the result in the dest. We call such
a template an OperationClass. While components of the instruction may have
different values, their relation is always preserved as described by the template.
For example, opcode can be any functionality, such as addition or subtraction
and src2 can be any kind of operand, such as constant or register; however,
their relation always remains the same. This style of description is also used in

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

A Retargetable Framework for Instruction-Set Architecture Simulation • 437

many architecture manuals. The similarity in the behavior of a group of instruc-
tions stems from the fact that these instructions are usually executed by the
same hardware unit in the architecture. Previously proposed ADLs have par-
tially exploited such commonalities in instruction behaviors, by using symbols
or parameters for operands; however, none of them have exploited the possibil-
ity of using parameters for both operands and operations in the instructions.
Besides, the parameters in these ADLs can represent only one value. In our
proposed instruction model, symbols represent both functionalities and values.
Furthermore, a symbol can represent multiple entities depending on the actual
instruction instance. For instance, in different instruction instances, symbol
src2 in the above example may represent a constant (value) or an addressing
mode (functionality).

A major challenge in retargetable simulation is the ability to capture a wide
variety of instructions. Our proposed instruction model is generic enough to
capture the variations of instruction formats of contemporary processors. The
focus of this model is on the complexities of different instruction binary formats
in different architectures. As an illustrative example, we use the integer arith-
metic instructions of the SPARC V7 processor, shown in Example 1, to describe
the model. The complete description is shown in Figure 5 (see later).

Example 1 (SPARC integer arithmetic instructions). SPARC V7 [SPARC]
is a single-issue processor with 32-bit instruction width. The integer-arithmetic
instructions, IntegerOps (as shown below), perform certain arithmetic opera-
tion on two source operands and write the result to the destination operand.
The destination and first source operand are always register operands. The
second source operand can be either a register operand or a constant integer.
This subset of instructions is distinguished from the others by the following bit
mask:

Bitmask: 10xxxxx0 xxxxxxxx xxxxxxxx xxxxxxxx
IntergerOps: <opcode dest src1 src2>

A bit mask is a string of “1”, “0” and “x” symbols and it matches the bit pattern
of a binary instruction if, and only if, for each “1” or “0” in the mask, the binary
instruction has a 1 or a 0 value in the corresponding position respectively. The
“x” symbol matches with both 1 and 0 values.

Figure 3 shows an overview of our instruction model. In this model, each
VLIW instruction consists of some slots. Each slot contains one of the possible
operation classes. An operation class consists of a set of symbols and a behav-
ior, described based on the symbols. A symbol can be a constant, a register or
a microoperation. A microoperation is itself an operation class that represents
a subfunctionality within other operation classes. A non-VLIW instruction is
considered as a VLIW instruction with only one slot. In Figure 3, a node is se-
lected if the binary of the instruction matches with the mask. In the remainder
of this section, we describe the instruction model in detail. Figure 4 shows the
complete description of the instruction model.

In this model, an instruction of a processor is composed of a series of slots
and each slot contains only one operation from a subset of operations. All the

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

438 • M. Reshadi et al.

Fig. 3. Overview of proposed instruction model.

Fig. 4. Grammar of instruction description.

operations in an instruction execute in parallel. Each operation is distinguished
by a mask pattern. Therefore, each slot (sli) contains a set of operation-mask
pairs (opi, maski) and is defined by the following format. The length of an
operation is equal to the length of its corresponding mask pattern.

sloti = <(op0i, mask0i) | (op1i, mask1i) | . . . >

An operation class refers to a set of similar operations in the instruction
set that can appear in the same instruction slot and have similar format. The
previous slot description can be rewritten using an operation class: sloti =
<(opClassi, mi)>. For example, integer arithmetic instructions in SPARC V7
can be grouped in a class (IntegerOps), as shown below:

ISPARC = <(IntegerOps, 10xx-xxx0 xxxx-xxxx xxxx-xxxx xxxx-xxxx) | . . . >

An operation class is composed of a set of symbols and an expression that
describes the behavior of the operation class in terms of the values of its symbols.
For example, the operation class in Example 1 has four symbols: opcode, dest,
src1, and src2. The expression for this example is: dest = fopcode(src1, src2).
Each symbol may have a different type depending on the bit pattern of the
operation instance in the program. For example, the possible types for src2
symbol in Example 1 are register and immediate integer. The value of a symbol
depends on its type and can be static or dynamic. For example, the value of a
register symbol is dynamic and is known only at runtime, whereas the value
of an immediate integer symbol is static and is known at compile time. Each

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

A Retargetable Framework for Instruction-Set Architecture Simulation • 439

symbol in an operation class has a possible set of types T. A general operation
class is defined as:

opClass = <(sym0, T0), (sym1, T1), . . . | exp(sym0, sym1, . . .)>

where (symi, Ti) are (symbol, types) pairs and exp(sym0, sym1,. . .) is the be-
havior of the operations based on the values of the symbols.

The type of a symbol can be defined as a register (∈Registers), an imme-
diate constant (∈Constants) or a microoperation (∈Operations). A microoper-
ation is itself an operation class that performs a subfunctionality in another
operation class. For example, a data-processing instruction in ARM (e.g., add)
uses shift (microoperation) to compute the second-source operand, known as
ShifterOperand. Each possible type of a symbol is coupled with a mask pattern
that determines what bits in that operation must be checked to find out the
actual type of the corresponding symbol. Possible types of a symbol are defined
as:

T = {(t, m) | t ∈ Operations ∪ Registers ∪ Constants, m ∈ (1|0|x)∗}
Each mask represents the value of one or more bytes. The right-most byte

in the mask represents the LSB and, therefore, bytes from right to left in the
mask are compared to bytes from lower to higher addresses in the program
binary stream. The little/big endianness of the processors is supported by either
ordering the bytes correctly in the masks or updating the decode algorithm to
compare bytes in correct order. Pairs of <operation, mask> in a slot or <type,
mask> in a set of types are processed from left to right during decode. Therefore,
the right mask must not be a subset of the left mask for any two pairs. For
example, the opcode symbol in Example 1 (valid integer arithmetic operations)
can be described as:

OpTypes = {
(Add, xxxx-xxxx 0000-xxxx xxxx-xxxx xxxx-xxxx),
(Sub, xxxx-xxxx 0100-xxxx xxxx-xxxx xxxx-xxxx), . . .

}
Note that, use of a binary mask instead of an integer provides more freedom

for describing the operations, because the symbols are not directly mapped to
some contiguous bits in the instruction and a symbol can correspond to multiple
bit positions in the instruction binary.

The actual register in a processor is defined by its class and its index. The
index of a register in an instruction is defined by extracting a slice of the in-
struction bit pattern and interpreting it as an unsigned integer. An instruction
can use a specific register with a fixed index, as in a branch instruction that
update the program counter. A register is defined as:

r = [regClass, index-function(. . .)]

where index-function() is a function that extracts the actual register index from
the instruction binary or returns a constant value. For example, the dest symbol
(in Example 1) is indicated by 25th to 29th bits in the instruction and is an

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

440 • M. Reshadi et al.

Fig. 5. Integer arithmetic instcutions in SPARC.

integer register. Its type can be described as:

DestType = [IntegerRegClass, extract-slice(29, 25)]

Similarly a portion of an instruction may be considered as a constant. For
example, one bit in an instruction can be equivalent to a Boolean type or a set of
bits can make an integer immediate. It is also possible to have constants with
fixed values in the instructions. A constant type is defined by:

c = #constant-extraction-function(. . .)#

The functions that extract the constants or register indexes are defined with
a C-like language. The instruction binary is an implicit parameter of these
functions and does not need to appear in the parameter list. The actual body of
the function depends on the implementation details of how the binary stream is
represented. Figure 5 shows the complete description of the integer-arithmetic
instructions in SPARC processor (Example 1).

Figure 6 describes how to capture data-processing instructions of the ARM
processor using our instruction model. ARM has complex 32-bit instruction for-
mats that are all conditional. In data-processing operations (DPOperation), if
the condition (16 possibilities) is true, some arithmetic operation (16 possibili-
ties) is performed on the two source operands and the result is written in the
destination operand. The destination and the first source operand are always
registers. The second source operand, called ShifterOperand (11 possibilities),
has three fields: shift operand, shift operation, and shift value. The shift value
shows the number of shifts that must be performed on the shift operand by the
specified shift operation. For example, the “ADD r1, r2, r3 SL #10” is equiv-
alent to “r1 = r2 + (r3 � 10)” expression. If indicated in the instruction op-
code, the flag bits (Z, N, C, and V) are updated. Therefore, 16 × 16 × 11 ×
2 = 5632 formats of instruction binaries are possible for the data-processing
instructions. All these formats are covered by the description in Figure 6. In

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

A Retargetable Framework for Instruction-Set Architecture Simulation • 441

Fig. 6. Data processing instructions in ARM.

the remaining sections, we show how all these possibilities are explored for
generating an optimized code for each type of instruction. We defined a set of
macros that can be used for compact description. For example mask(8,2,“10”)
macro generates an 8-bit mask that has a “10” at position 2, i.e., xxxx-x10x. In
other words, it copies “1” at position 2, and “0” at position 1, and fills the rest
with “x”. The position number starts from 0 for the right-most bit of the mask
and increases from right to left.

In this model, instructions that have similar format are grouped together
into one class. Most of the time, this information is readily available from the
instruction set architecture manual. For example, we defined six instruction
classes for the ARM processor viz., Data Processing, Branch, LoadStore, Mul-
tiply, Multiple LoadStore, Software Interrupt, and Swap.

4.1 Detecting the Length of Instructions

In some processors, the instruction set is divided into distinct subsets and usu-
ally an internal processor mode determines which subset is used for decoding
the instructions. For example, the ARM instruction set consists of a set of 32-bit

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

442 • M. Reshadi et al.

Fig. 7. Pentium general instruction format.

Table I. Field Values of ModR/M and Their Effect on Instruction Length

mod reg r/m Description #Bytes

00 xxx 110 Memory access using 2-byte address displacement 3

00 xxx xxx Memory access no address displacement 1

01 xxx xxx Memory access using 1-byte address displacement 2

10 xxx xxx Memory access using 2-byte address displacement 3

11 xxx xxx Register Access 1

instructions and a set of 16-bit instructions, known as Thumb instructions. The
Intel IA32 also has a 16-bit and a 32-bit mode, which also determines the size
of the constant field of instructions. In such cases, each subset of instruction
set can be easily modeled by our instruction model and then during decode,
the proper set of instruction specifications is selected and passed to the decode
algorithm (described in Section 5).

Our instruction model is also applicable to architectures with complex ISA.
The ISA description of such architectures must first detect the actual length
of instructions and then capture their field structure and behavior. The previ-
ous examples of this section showed how different fields of an instruction are
described and then used in the behavior description of the instruction. In the
remainder of this section, we show how to detect the length of a group of in-
structions in the Pentium architecture [IA-32], in order to demonstrate how
variable length instructions can be captured in our model.

Figure 7 shows the general instruction format of Pentium [Figure B-1 in IA-
32]. The instructions of Pentium may have one or two bytes of opcode, followed
by a ModR/M byte. Depending on the opcode and ModR/M field, the instructions
may have an SIB byte and one or two constant fields (address displacement and
immediate data). The length of each constant field depends on the configuration
of the opcode and ModR/M, as well as the processor mode. In the 16-bit mode,
instructions do not have an SIB byte and their constant fields are, at most two
bytes.

The ModR/M field provides 8 register and 24 possible addressing modes.
Table I shows the values of subfields of ModR/M and the number of bytes that
is added to the length of instruction in each case. The details of ModR/M field
can be found in Table 2-1 in [IA-32].

For each operation, the Pentium ISA has multiple opcodes and different
instruction structures to perform that operation on different types of operands.
For example, in the 16-bit mode, operations such as Add, Sub, Or, and Xor have

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

A Retargetable Framework for Instruction-Set Architecture Simulation • 443

Table II. Field Values of ModR/M and Their Effect on Instruction Length

opcode ModR/M byte Immediate data bytes #Bytes

0xxx-00xx 1 0 2+address displacement (if any)

1xxx-00x0 1 1 3+address displacement (if any)

1xxx-00x1 1 2 4+address displacement (if any)

xxxx-0100 0 1 2

xxxx-0101 0 2 3

Fig. 8. Detecting the length of a subset of instructions in Pentium.

five different opcode configurations. Table II shows possible opcodes for such
operations and their effect on the length of an instruction. This information
is extracted from Table B-10 in [IA-32]. We can group these operations and
describe them by one OperationClass in our model. We call this OperationClass
IS1.

In order to detect the length of instructions described by OperationClass IS1,
we need to combine the information of the first three rows of Table I (which have
a ModR/M byte) with the rows of Table II. Therefore, there will be 17 masks (3
× 5 + 2) that detect this set of instructions. Once the length of the instructions
are detected, the IS1 OperationClass can be described based on its fields. The
description of fields may need to consider different combinations of ModR/M
byte and its effect on the length. Other than that, the effort for describing the
IS1 OperationClass will be similar to that of previous examples. Figure 8 shows
the structure of the IS1 OperationClass as well as the masks that detect the
length.

In this section, we have demonstrated two key features of our instruction
model: first, it is generic enough to capture architectures with complex instruc-
tion sets; second, it captures the instructions efficiently by allowing instruction
grouping.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

444 • M. Reshadi et al.

5. GENERIC INSTRUCTION DECODER

A key requirement in a retargetable simulation framework is the ability to auto-
matically decode application binaries of different processor architectures. This
necessitates a generic decoding technique that can decode the application bi-
naries based on instruction specifications. In this section, we propose a generic
instruction-decoding technique that is customizable, depending on the instruc-
tion specifications captured through our generic instruction model. Based on
our proposed instruction model, the main task of decoding algorithm is to find
the actual values of symbols for each individual instance of an instruction bi-
nary. This is done by comparing the instruction binary with different mask
patterns used in the description.

Algorithm 1: StaticInstructionDecoder

Input: Target Program Binary Application,
Instruction Specifications InstSpec;

Output: Decoded Program DecodedOperations;
Begin

Addr = Address of first instruction in Application;
DecodedOperations = {};
While (Application not processed completely)
BinStream = Binary stream in Application starting at Addr;
(Exp, Length) = DecodeOperation (BinStream, InstSpec);
DecodedOperations = DecodedOperations ∪ <Exp, Addr>;
Addr = Addr + Length;

EndWhile;
return DecodedOperations;

End;

Algorithm 1 describes the operation of the Static Instruction Decoder shown
in Figure 1. This algorithm accepts the target program binary and the instruc-
tion specification as inputs and generates a source file containing decoded in-
structions as output. Iterating on the input binary stream, it finds an operation,
decodes it using Algorithm 2, and adds the decoded operation to the output
source file. Algorithm 2 also returns the length of the current operation that is
used to determine the beginning of the next operation.

Algorithm 2: DecodeOperation

Input: Binary Stream BinStream, Specifications Spec;
Output: Decoded Expression Exp, Integer DecodedStreamSize;
Begin

(OpDesc, OpMask) = findMatchingPair(Spec, BinStream);
OpBinary = initial part of BinStream whose length is equal to OpMask;
Exp = the expression part of OpDesc;
ForEach pair of (s, T) in the OpDesc
Find t in T whose mask matches the OpBinary;
v = ValueOf (t, OpBinary);
Replace s with v in Exp;

EndFor
return (Exp , size(OpBinary));

End;

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

A Retargetable Framework for Instruction-Set Architecture Simulation • 445

Algorithm 2 gets a binary stream and a set of specifications containing op-
eration or microoperation classes. The binary stream is compared with the ele-
ments of the specification to find the specification-mask pair that matches with
the beginning of the stream. The length of the matched mask defines the length
of the operation that must be decoded. The type of a symbol is determined by
comparing its masks with the binary stream. Finally, using the symbol types, all
symbols are replaced with their values in the expression part of the correspond-
ing specification. The resulting expression is the behavior of the operation. This
behavior and the length of the decoded operation are produced as outputs.

Algorithm 3: ValueOf

Input: Type t, Operation Binary OpBinary;
Output: Extracted Value extValue;
Begin

Switch (t)
case Constant:
extValue = constant-extraction-function(OpBinary);

endcase
case Register:
extValue = REGS[registerClass][index-function(OpBinary)];

endcase
case microoperation:
(extValue, tmp) = DecodeOperation(OpBinary, t);

endcase
EndSwitch;
return extValue;

End;

Algorithm 3 gets a symbol type and an operation binary (OpBinary) and re-
turns the actual value of the corresponding symbol. If the type itself is a micro-
operation specification, the DecodeOperation function (Algorithm 2) is called
again and the result is returned. If the type is a constant, the appropriate
function is called to extract the intended portion of the instruction binary and
convert it to a constant. If the type is a register, the corresponding function is
called to extract the index of the register and then corresponding register is
selected.

Example 2 shows the decoding process of an Add instruction in SPARC pro-
cessor. The Add instruction belongs to the class of integer-arithmetic instruc-
tions described in Example 1. In the worst case, each instruction of the input
program should be compared with all the mask patterns in all the operation
classes of the description. Therefore, the complexity of the decoding algorithm
is O(n×m), where n is the number of operations in the input binary program
and m is the number of binary masks in the description.

Example 2 (Decoding an Add instruction of the SPARC processor). Consi-
der the following SPARC Add operation example and its binary pattern:

Add g1, #10, g2 1000-0100 0000-0000 0110-0000 0000-1010

Using the specifications of Figure 5, in the first line of Algorithm 2, the (In-
tegerOps, 10xx-xxx0 xxxx-xxxx xxxx-xxxx xxxx-xxxx) pair matches with the

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

446 • M. Reshadi et al.

instruction binary. This means that the IntegerOps operation class matches
this operation. It calls Algorithm 3 to decode the symbols of IntegerOps viz.
opcode, dest, src1, src2. Symbol opcode’s type is OpTypes in which the
mask pattern of Add matches the operation pattern. Thus the value of opcode is
Add function. Symbol dest’s type is DestType, which is a register type. It is an
integer register whose index is bits 25th to 29th (00010), i.e., 2. Similarly, the
values for the symbols src1 and src2 can be computed. By replacing these val-
ues in the expression part of the IntegerOps, the final behavior of the operation
would be: g2 = Add(g1,10), which means g2 = g1 + 10.

6. GENERATING EXECUTABLE INSTRUCTION BEHAVIORS

The DecodeOperation (Algorithm 2) and ValueOf (Algorithm 3) algorithms can
be called both statically at compile time and dynamically at runtime. The only
difference between the static and dynamic versions of these algorithms is the
structure of the expressions that they generate after decoding the instructions.
In the dynamic version, the expressions are a combination of pointers to con-
stants, registers, and functions. This is a traditional implementation that other
simulators such as JIT-CCS [Nohl et al. 2002] have used before. However, us-
ing our instruction model, the instructions can also be statically decoded at
compile time. The static version of decode algorithms will generate C++ source
code that are optimized at compile time to speed up the execution of instruc-
tions during simulation. The basis of the static code generation is described in
the next section.

6.1 Generating Optimized Code for Fast Simulation

Typically in simulators, for each instruction, a general piece of code (in the
form of a function or switch-case statements) simulates the behavior of the
instances of that instruction. However, these instances may have a constant
value for a particular field that can be used for further optimizations. For ex-
ample, a majority of the ARM instructions execute unconditionally (condition
field has value always) and, hence, it is a waste of time to check the condition
for such instructions every time they are executed. By considering these con-
stant (static) values and applying the partial evaluation technique [Futamura
1971], it is possible to generate a customized code for different formats of in-
structions. To take advantage of such situations, we need separate functions
(or case statements) for each and every possible format of instructions so that
the function can be optimized by the compiler at compile time and produce the
best performance at runtime. In our instruction model, all of these formats and
their corresponding functions can be constructed by generating all of the per-
mutations of the symbol values in an operation class. The number of generated
formats (functions) can be controlled by excluding some of the symbols or iter-
ating only on a subset of symbol values. Controlling the level of optimizations
and number of generated formats using the same small description is one of
the unique features of our model.

However, generating all the instruction formats of an instruction set may
not be feasible in practice. For example, as discussed in Section 4, there are

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

A Retargetable Framework for Instruction-Set Architecture Simulation • 447

Fig. 9. Code generation for an ARM instruction.

5632 possible formats for the data-processing instructions of the ARM processor
and generating all these formats, imposes a huge overhead on the compiler. To
solve this problem in our framework, we generate the customized code only
for the instruction instances of the simulated program. Furthermore, instead
of generating distinct functions, we use C++ templates and customize them
during decode. We generate a template for each operation or microoperation
class specification. For each symbol in the operation class, the corresponding
template has a parameter in its parameter list. During the decode phase, these
parameters are replaced with the values of the symbols. Finally, during the
compilation on host machine, these customized templates are optimized by
the compiler. After extracting the templates in this way, we can use IS-CS
technique for generating a high-performance simulator. The details of using
and optimizing these templates in IS-CS technique are described in Reshadi
et al. [2003]. Figure 9 shows the extracted template and its parameters for
data-processing instructions in ARM (described earlier in Figure 6).

Note that the decode algorithm, described in Section 5, relies only on the
descriptions of instructions to extract the values of symbols corresponding to
an instruction instance. These values can be used either dynamically in some
conditional statements or statically to generate the source code for appropriate
functions. Therefore, although we use the IS-CS technique in this paper, the

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

448 • M. Reshadi et al.

generic instruction model and the proposed decode algorithm can be coupled
with any other existing simulation techniques.

7. EXPERIMENTS

In order to evaluate the applicability of our framework, we modeled two con-
temporary, yet very different, processors: ARM7 [ARM7] and SPARC [SPARC]
to demonstrate the usefulness of our approach. The ARM7 processor is a RISC
machine with fairly complex instruction set. We used arm-linux-gcc for gener-
ating target binaries for ARM7 and validated the generated simulator by com-
paring traces with Simplescalar-arm [Simplescalar] simulator. The SPARC V7
is a high-performance RISC processor with 32-bit instructions. We used gcc3.1
to generate the target binaries for SPARC and validated the generated simula-
tor by comparing traces with Shade [Cmelik and Keppel 1994] simulator. The
benchmarks are taken from MiBench [MiBench] (BlowFish, crc), MediaBench
[Lee et al. 1997] (adpcm, jpeg, epic, g721), and SPEC95 [SPEC] (compress, go)
suites.

To evaluate the instruction model we consider two aspects: the efficiency
of the description and the performance of the generated simulator. We first
compare the descriptions of our model with that of LISA and Babel in terms of
compactness. Next, we present the simulation performance results of running
the selected benchmarks on two processor models.

7.1 Efficiency of Description

It took us one man-month to study the manual and generate the correspond-
ing simulator for each processor. This very short generation time was mainly
due to three reasons. First, the description of the instructions in our model is
very similar to their representation in the architecture manual, and therefore,
we needed a simple mapping between manual and the language. Second, the
description is very compact and efficient because of extensive reuse. For exam-
ple, in Figure 6, to add a new instruction, we need to add a small code for an
operation and its mask to the Operations. This way, we reuse the rest of the
description of operations classes that use the Operations. Third, since all of the
operations in an operation class share the same expression, it is very easy to
debug and verify the descriptions. For example, in Figure 6, if the expression of
DPOperations class works correctly for Add, it will also work well for Sub, and
other operations that can be replaced by symbol opcode.

Figure 10 shows a sample code in LISA language taken from a recent pub-
lication [Nohl et al. 2002]. In this figure, an operation Add with register pa-
rameters is described. To describe an Add operation with immediate integer
operands the “OPERATION ADD” section (lines 5–10) must be repeated again with
minor modification. In other words, for every possible addressing mode in the
architecture, a separate section for an operation is needed in LISA description.
In LISA, a C function is generated in the simulator for the BEHAVIOR section of
each operation. Therefore, to exploit different instruction formats and generate
faster simulation, the formats must be explicitly included in the description.
For example, consider the data-processing instructions in ARM (Section 4). In

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

A Retargetable Framework for Instruction-Set Architecture Simulation • 449

Fig. 10. LISA sample code for Add operation.

these operations since one of the sources can be a ShifterOperand addressing
mode, each instruction needs at least 11 OPERATION sections, one for each type of
ShifterOperand. Now consider the optimizations discussed in Section 6.1. Since
all ARM instructions are predicated, but the majority of them execute uncon-
ditionally in a program, we can generate two formats for each instructions: the
conditional version that checks the proper condition and the unconditional one
that executes faster. This is only one of the many possible optimizations. Con-
sidering 11 formats for the ShifterOperand addressing mode and only 2 formats
for the optimization, each instruction needs 22 OPERATION sections similar to the
one presented in lines 5–10 (5 lines) in Figure 10. Finally for 16 instructions in
this group, we need at least 16 × 2 × 11 × 5 = 1760 lines in the LISA description.
As shown in Figure 6, in our model, this group of instructions is represented
by only three operation classes (DPOperation, Conditions, and Operations) in
less than 50 lines.

A similar approach to LISA is used in Babel [Mong and Zhu 2003]. In Babel, a
separate section is needed to describe each individual format of an instruction.
For example, SPARC description in Babel is more than 2300 lines long, while
its description in our model contains less than 400 lines of code.

In addition, in these languages, an instruction can contain only contiguous
fields. Therefore, dummy or multiple fields are needed to describe noncontigu-
ous opcodes (as in SPARC) making the description less readable. These extra
fields not only increase the size of the description, but also make the decoder
inefficient. On the other hand, our model is more natural and does not require
such tricks because of the use of bit masks.

7.2 Performance of the Simulator

The JIT-CCS technique relies on LISA description of instructions for generating
the instruction decoder and utilizes a software cache for reusing the decoded
instructions and improving the simulation speed. To the best of our knowl-
edge, they have reported the best interpretive simulation performance among

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

450 • M. Reshadi et al.

Fig. 11. Simulation results of ARM7 processor.

Fig. 12. Simulation results of SPARC processor.

retargetable simulators. For an ARM processor, they have reported a simula-
tion performance of 8 and 7.5 MIPS for adpcm and jpeg benchmarks, respec-
tively [Nohl et al. 2002]. On a similar machine, the ARM simulator using IS-CS
technique [Reshadi et al. 2003] runs at 15 and 12 MIPS for adpcm and jpeg
benchmarks, respectively.

The IS-CS performance results presented in Reshadi et al. [2003] are based
on generating the instruction templates manually. We extracted similar in-
struction templates automatically from our instruction model and generated
the simulator. Typically retargetable approaches slow down the simulation.
In our framework, since the generation of the simulator and extraction of the
templates is completely separate from the simulation engine itself, there are
no negative effects imposed on the performance. Figure 11 shows the simula-
tion performance of our technique on ARM7 processor model. The performance
results of the retargetable framework are exactly similar to that of manually
generated instruction templates in [Reshadi et al. 2003].

Figure 12 shows the simulation performance on SPARC processor model.
Note that, the overall performance of ARM simulator is slightly better than
that of SPARC. ARM instructions are more complex and, in most cases, are
equivalent to more than one SPARC instruction. Therefore, optimizing one
ARM instruction is equivalent to optimizing multiple instructions in SPARC.
Also simulating SPARC model on a Pentium host machine requires a data

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

A Retargetable Framework for Instruction-Set Architecture Simulation • 451

encoding translation (Big-Endian to Little-Endian) that causes performance
degradation.

The proposed instruction model results in compact, readable, easy to debug
and easy to maintain descriptions. In addition, the decode algorithm has no
negative effect on the execution method of instructions. As a result, the perfor-
mance results of the retargetable framework using IS-CS technique are exactly
the same as that of former nonretargetable simulators.

8. CONCLUSION

In this paper, we presented a retargetable framework for generating fast and
flexible instruction set simulators. We proposed a generic instruction model as
well as a generic decode algorithm that can specify and decode many variations
of instruction binary formats with various complexities. We demonstrated the
applicability of the approach on two radically different architectures, viz., ARM
and SPARC processors. Use of symbols in the generic instruction model enables
maximum reuse of descriptions among operations, and results in very compact
descriptions. It also simplifies the debug and verification of the description. Fur-
thermore, describing instructions in our generic model is very simple because
of its similarity with the architecture manual.

The instruction set described using our generic instruction model is an order
of magnitude smaller in size than other languages, such as LISA and Babel.
To achieve high-performance simulation, we have integrated the IS-CS sim-
ulation technique in our retargetable framework by automatically extracting
the required templates for simulating the instructions. Since the generation of
the simulator is completely separate from the simulation engine, we can incor-
porate any other fast simulation techniques without any performance penalty.
Future work will concentrate on using this framework for cycle accurate simu-
lation of complex architectures including reconfigurable platforms.

REFERENCES

ARM7 User Manual, http://www.arm.com

BASHFORD, S., BIEKER, U., HARKING, B., NEUMANN, A. AND VOGGENAUER, D. 1994. The MIMOLA

Language V4.1. Technical Report, University of Dortmund, Dept. of Computer Science.

CMELIK, B., AND KEPPEL, D. 1994. Shade: A fast instruction-set simulator for execution profiling.

ACM SIGMETRICS Performance Evaluation Review 22, 1, 128–137.

ENGEL, F., NÜHRENBERG, J., AND FETTWEIS, G. P. 1999. A generic tool set for application specific

processor architectures. The Eighth International Workshop on Hardware/Software Codesign.

126–130.

FREERICKS, M. 1991. “The nML Machine Description Formalism.” Tech. Rep. 1991/15, TU Berlin,
Fachbereich Informatik.

FUTAMURA, Y. 1971. Partial evaluation of computation process—An approach to a compiler–

compiler. Systems, Computers, Controls 2, 5, 45–50.

GYLLENHAAL, J. C., HWU, W. W., AND RAU, B. R. 1996. HMDES Version 2.0 Specification. Technical

Report IMPACT-96-3. University of Illinois at Urbana-Champaign, Urbana-Champaign, IL.

HADJIYIANNIS, G., HANONO, S., AND DEVADAS, S. 1997. ISDL: An instruction set description language

for retargetability. Design Automation Conference (DAC).

HALAMBI, A., GRUN, P., GANESH, V., KHARE, A., DUTT, N., AND NICOLAU, A. 1999. EXPRESSION:

A language for architecture exploration through compiler/simulator retargetability. Design Au-
tomation and Test in Europe (DATE).

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

452 • M. Reshadi et al.

HARTOOG, M. R., ROWSON, J. A., REDDY, P. D., DESAI, S., DUNLOP, D. D., HARCOURT, E. A., AND KHULLAR, N.

1997. Generation of software tools from processor descriptions for hardware/software codesign.

Design Automation Conference (DAC).

IA-32 Intel® Architecture Software Developer’s Manual, Vol. 2: Instruction Set Reference,

http://www.intel.com.

LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. H. 1997. Mediabench: A tool for evaluating

and synthesizing multimedia and communications systems. In Proceedings of the 30th Annual
International Symposium on Microarchitecture (Micro 30).

LEUPERS, R., ELSTE, J., AND LANDWEHR, B. 1999. Generation of interpretive and compiled instruc-

tion set simulators. In Proceeding of Asian-Pacific Design Automation Conference, Hong Kong.

MiBench benchmarks available at http://www.eecs.umich.edu/mibench

MONG, W. S. AND ZHU, J. 2003. A retargetable micro-architecture simulator. Design Automation
Conference (DAC). 752–757.

NOHL, A., BRAUN, G., HOFFMANN, A., SCHLIEBUSCH, O., MEYR, H., AND LEUPERS, R. 2002. A univer-

sal technique for fast and flexible instruction-set architecture simulation. Design Automation
Conference (DAC). 22–27.

PAULIN, P. G., LIEM, C., MAY, T. C., AND SUTARWALA, S. 1997. Flexware: A flexible firmware devel-

opment environment for embedded systems. Code Generation for Embedded Processors. 67–84.

RESHADI, M., MISHRA, P., AND DUTT, N. 2003. Instruction-set compiled simulation: A technique for

fast and flexible instruction-set simulation. Design Automation Conference (DAC). 758–763.

SCHNARR, E. AND LARUS, J. R. 1998. Fast out-of-order processor simulation using memoization. In

Proceedings of ASPLOS98, San Jose CA. 283–294.

SCHNARR, E., HILL, M. D., AND LARUS, J. R. 2001. Facile: A language and compiler for high-

performance processor simulators. Programming Language Design and Implementation (PLDI).
321–351.

Simplescalar Home page: http://www.simplescalar.com

SPARC Version 7 Instruction set manual: http://www.sun.com

SPEC benchmarks available at http://www.specbench.org

Trimaran Home page: http://www.trimaran.org

VACHHARAJANI, M., VACHHARAJANI, N., PENRY, D. A., BLOME, J. A., AND AUGUST, D. I. 2002. Microar-

chitectural exploration with Liberty. International Symposium on Microarchitecture.

ZHU, J. AND GAJSKI, D. D. 1999. A retargetable, ultra-fast instruction set simulator. Design Au-
tomation and Test in Europe (DATE). 298–302.

Received September 2003; revised January 2005; accepted July 2005

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

