
1224 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009

A Universal Placement Technique of Compressed
Instructions for Efficient Parallel Decompression

Xiaoke Qin, Student Member, IEEE, and Prabhat Mishra, Senior Member, IEEE

Abstract—Instruction compression is important in embedded
system design since it reduces the code size (memory requirement)
and thereby improves the overall area, power, and performance.
Existing research in this field has explored two directions: effi-
cient compression with slow decompression, or fast decompression
at the cost of compression efficiency. This paper combines the
advantages of both approaches by introducing a novel bitstream
placement method. Our contribution in this paper is a novel
compressed bitstream placement technique to support parallel
decompression without sacrificing the compression efficiency. The
proposed technique enables splitting a single bitstream (instruc-
tion binary) fetched from memory into multiple bitstreams, which
are then fed into different decoders. As a result, multiple slow
decoders can simultaneously work to produce the effect of high
decode bandwidth. We prove that our approach is a close ap-
proximation of the optimal placement scheme. Our experimental
results demonstrate that our approach can improve the decode
bandwidth up to four times with minor impact (less than 3%) on
the compression efficiency.

Index Terms—Code compression, decompression, embedded
systems, memory.

I. INTRODUCTION

M EMORY is one of the most constrained resources in an
embedded system, because a larger memory implies in-

creased area (cost) and higher power/energy requirements. Due
to the dramatic complexity growth of embedded applications,
it is necessary to use larger memories in today’s embedded
systems to store application binaries. Code compression tech-
niques address this problem by reducing the size of application
binaries via compression. The compressed binaries are loaded
into the main memory and then decoded by a decompression
hardware before its execution in a processor. The compression
ratio (CR) is widely used as a metric for measuring the effi-
ciency of code compression. It is defined as the ratio between
the compressed program size (CS) and the original program
size (OS), i.e., CR = CS/OS. Therefore, a smaller CR implies
a better compression technique. There are two major challenges
in code compression: 1) how to compress the code as much as
possible and 2) how to efficiently decompress the code without
affecting the processor performance.

Manuscript received November 29, 2008; revised February 7, 2009 and
April 2, 2009. Current version published July 17, 2009. This work was
supported in part by the National Science Foundation under CAREER Award
0746261. This paper was recommended by Associate Editor G. E. Martin.

The authors are with the Department of Computer and Information Science
and Engineering, University of Florida, Gainesville, FL 32611-6120 USA
(e-mail: xqin@cise.ufl.edu; prabhat@cise.ufl.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2009.2021730

The research in this area can be divided into two categories
based on whether it primarily addresses the compression or de-
compression challenges. The first category tries to improve the
code compression efficiency by using state-of-the-art coding
methods, such as Huffman coding [1] and arithmetic coding [2],
[3]. Theoretically, they can decrease the CR to its lower bound
governed by the intrinsic entropy of the code, although their
decode bandwidth is usually limited to 6–8 bits/cycle. These so-
phisticated methods are suitable when the decompression unit
is placed between the main memory and the cache (precache).
However, recent research [4] suggests that it is more profitable
to place the decompression unit between the cache and the
processor (postcache). This way, the cache retains the data that
are still in a compressed form, increasing the cache hits and
therefore achieving potential performance gain. Unfortunately,
this postcache decompression unit demands a higher decode
bandwidth than what the first category of techniques can offer.
This leads to the second category of research that focuses on
a higher decompression bandwidth by using relatively simple
coding methods to ensure fast decoding. However, the effi-
ciency of the compression result is compromised. The variable-
to-fixed coding techniques [5], [6] are suitable for parallel
decompression, but it sacrifices the compression efficiency due
to fixed encoding.

In this paper, we combine the advantages of both approaches
by developing a novel bitstream placement technique that en-
ables parallel decompression without sacrificing the compres-
sion efficiency. This paper makes two important contributions.
First, it is capable of increasing the decode bandwidth by
using multiple decoders to simultaneously work to decode
single/adjacent instruction(s). Second, our methodology allows
designers to use any existing compression algorithm, includ-
ing variable-length encodings with little or no impact on the
compression efficiency. We also prove that our approach can be
viewed as an approximation of the optimal placement scheme,
which minimizes the stalls during decompression. We have
applied our approach using several compression algorithms
to compress applications from various domains compiled for
a wide variety of architectures, including TI TMS320C6x,
PowerPC, SPARC, and MIPS. Our experimental results show
that our approach can improve the decode bandwidth by up to
four times with minor impact (less than 3%) on the compression
efficiency.

The rest of this paper is organized as follows: Section II
introduces the related work that addresses code compression for
embedded systems. Section III describes our code compression
and bitstream placement methods. Section IV presents our
experimental results. Finally, Section V concludes this paper.

0278-0070/$25.00 © 2009 IEEE

QIN AND MISHRA: UNIVERSAL PLACEMENT TECHNIQUE OF COMPRESSED INSTRUCTIONS FOR DECOMPRESSION 1225

II. RELATED WORK

A great deal of work has been done in the area of code
compression for embedded systems. The basic idea is to take
one or more instruction(s) as a symbol and use common coding
methods to compress the application programs. Wolfe and
Chanin [1] first proposed the Huffman-coding-based code com-
pression approach. A line address table is used to handle the
addressing of branches within the compressed code. Bonny and
Henkel [7]–[9] further improved the code density by compress-
ing the lookup tables used in Huffman coding. Lin et al. [10]
used Lempel–Ziv–Welch (LZW)-based compression by apply-
ing it to variable-sized blocks of very long instruction word
(VLIW) codes. Liao et al. [11] explored dictionary-based com-
pression techniques. Das et al. [12] proposed a code com-
pression method for variable length instruction set processors.
Lekatsas and Wolf [2] constructed SAMC using arithmetic
coding-based compression. These approaches significantly re-
duce the code size, but their decode (decompression) bandwidth
is limited.

To speed up the decode process, Prakash et al. [13] and
Ros and Sutton [14] improved the dictionary-based techniques
by considering bit changes. Seong and Mishra [15], [16] fur-
ther improved these approaches by using bitmask-based code
compression. Lekatsas et al. [17] proposed a dictionary-based
decompression technique, which enables decoding one instruc-
tion per cycle. These techniques enable fast decompression,
but they achieve inferior compression efficiency compared
with those based on well-established coding theory. Instead
of treating each instruction as a symbol, some researchers
observed that the numbers of different opcodes and operands
are quite smaller than that of entire instructions. Therefore,
dividing an instruction into different parts may lead to more
effective compression. Nam et al. [18] and Lekatsas and Wolf
[19] divided the instructions into several fields and employed
different dictionaries to encode them. Bonny and Henkel [20]
separately reencoded different fields of instructions to improve
the CR. CodePack [21] divided each MIPS instruction at the
center, applied two prefix dictionary to each of them, and then
combined the encoding results together to create the finial
result. However, in their compressed code, all these fields are
stored one after another (in a serial fashion). As a result, the
decode bandwidth cannot benefit very much from such an
instruction division.

Parallel decoding is a common choice to increase the de-
coding bandwidth. There are many existing efforts in this
field, which can broadly be classified into two categories. The
approaches in the first category perform parallel decoding of
patterns compressed with fixed-length encoding. Since all the
instructions/data are compressed into fixed-length codes, such
as variable-to-fixed coding [5], [6] and LZW-based coding [10],
the boundaries between codes in the compressed stream are
also fixed. Therefore, during decompression, multiple decoders
can directly be applied on each code in parallel. Unfortunately,
the compression efficiency is usually sacrificed when a fixed-
length coding is used [22]. The efforts in the second cate-
gory enable the parallel decoding of patterns compressed with
variable-length coding. Based on the granularity (size of each

compressed pattern), the second category can further be divided
into two subcategories: block-level (coarse-grained) parallelism
and code-level (fine-grained) parallelism. In block-level paral-
lelism, the compressed data are organized into blocks, which
are identified by block header or index tables. Decoders are
concurrently applied to each block to achieve coarse-grained
parallelism. This approach is widely used in multimedia de-
compression.1 For example, Iwata et al. [23] employed parallel
decoding at the slice level (collection of macroblocks) with
prescanning for MPEG-2 bitstream decompression. In [24], a
macroblock-level parallelization is developed to achieve higher
MPEG-2 decoding speed. Roitzsch [25] improved the parallel
H.264 decoding performance by applying slice decoding time
prediction at the encoder stage. However, it is not practical to
directly apply block-level parallelism for decoding compressed
instructions. The reason is that if we split the branch blocks
for parallel instruction decompression, the resultant blocks
are much smaller (10–30 B) compared with the typical mac-
roblocks in MPEG-2 or H.264 (several hundreds of bytes).
As a result, common block identification techniques like block
header, byte alignment, or index table will introduce a signifi-
cant overhead in both instruction compression and decompres-
sion, which result in unacceptable compression efficiency and
reduced decompression performance (for each decoder).

When code-level parallelism is employed, the decompression
unit attempts to concurrently decode several successive codes
(compressed data) instead of blocks. Since variable-length cod-
ing is used, parallel decoding is difficult because we do not
know where the next code starts. Nikara et al. [26] addressed
this problem by using speculative parallel decoders. Since the
code boundary is unknown, they need one speculative decoder
for each possible position in the input buffer. As a result, their
method will require at least 32 decoders to achieve two or
four times speed up for a 32-bit binary, whereas our approach
only needs two or four decoders. Clearly, their approach will
introduce a significant area/power overhead and may not be
applicable in many scenarios.

III. EFFICIENT PLACEMENT OF COMPRESSED BINARIES

This paper is motivated by previous variable-length coding
approaches based on instruction partitioning [18], [19], [21] to
enable the parallel compression of the same instruction. The
only obstacle preventing us from simultaneously decoding all
fields of the same instruction is that the beginning of each
compressed field is unknown unless we decompress all previous
fields.

One intuitive way to solve this problem, as shown in Fig. 1,
is to separate the entire code into two parts, compress each of
them separately, and then place them separately. Using such
a placement, the different parts of the same instruction can
simultaneously be decoded using two pointers. However, if one
part of the code (part B) is more effectively compressed than
the other part (part A), then the remaining unused space for

1A typical video stream consists of several frames, where each frame is a
collection of slices, each slice is a set of macroblocks, and each macroblock
consists of several blocks.

1226 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009

Fig. 1. Intuitive placement for parallel decompression. (a) Uncompressed
code. (b) Compressed code.

Fig. 2. Storage block structure.

part B will be wasted. Therefore, the overall CR will remark-
ably be hampered. Furthermore, the identification of branch
targets will also be a problem due to unequal compression. As
mentioned earlier, fixed-length encoding methods are suitable
for parallel decompression, but it sacrifices the compression
efficiency due to fixed encoding. The focus of this paper is
to enable parallel decompression for binaries compressed with
variable-length encoding methods.

The basic idea of our approach to address this problem is to
develop an efficient bitstream placement method. Our method
enables the compression algorithm to automatically make max-
imum use of the space. At the same time, the decompression
mechanism will be able to determine which part of the newly
fetched 32 bits should be sent to which decoder. This way, we
exploit the benefits of instruction division in both compression
efficiency and decode bandwidth.

A. Overview of Our Approach

We use the following two definitions to explain our method.
Definition 1: Branch block is “the instructions between two

consecutive possible branch targets” [10]. Note that there may
be multiple branch instructions within a branch block, but
only one branch target at the beginning of each branch block.
Therefore, a branch block is a collection of basic blocks with
no branch targets between them.

Definition 2: Input Storage block is a block of memory space
that is used as the basic input unit of our compression algo-
rithm. Informally, an input storage block contains one or more
consecutive instructions in a branch block. Fig. 2 illustrates the
structure of an input storage block. We divide it into several
slots. Each of them contains adjacent bits of an instruction. All
slots within an input storage block have the same size.

Our placement technique is applied to each branch block
in the application. Fig. 3 shows the block diagram of our
proposed compression framework. It consists of four main
stages: compression (encode), bitstream merge, bitstream split,
and decompression (decode).

During compression [Fig. 3(a)], we first break every input
storage block, which contains one or more instructions, into

Fig. 3. Proposed instruction compression framework. (a) Compression
technique. (b) Decompression mechanism.

several fields and then apply specific encoders to each of them.
The resultant compressed streams are combined together by a
bitstream merge logic based on a carefully designed bitstream
placement algorithm (BPA). Note that the bitstream placement
cannot rely on any information invisible to the decompression
unit. In other words, the bitstream merge logic should merge
streams based solely on the binary code and the intermediate
results produced during the encoding process.

During decompression [Fig. 3(b)], the scenario is exactly the
opposite of compression. Every word fetched from the cache
is first split into several parts, each of which belongs to a
compressed bitstream produced by some encoder. Then, the
split logic dispatches them to the buffers of correct decoders,
according to the BPA. These decoders decode each bitstream
and generate the uncompressed instruction fields. After com-
bining these fields together, we obtain the final decompression
result, which should be identical to the corresponding original
input storage block.

From the viewpoint of overall performance, the compres-
sion algorithm affects the CR and the decompression speed
in an obvious way. The bitstream placement actually governs
whether multiple decoders are capable of working in parallel. In
previous works, researchers tend to use a very simple placement
technique, such as appending the compressed code for each
symbol one after the other. When variable-length coding is
used, the symbols must be decoded in order. In this paper, we

QIN AND MISHRA: UNIVERSAL PLACEMENT TECHNIQUE OF COMPRESSED INSTRUCTIONS FOR DECOMPRESSION 1227

demonstrate how a novel bitstream placement enables parallel
decoding and boosts the overall decode performance. In the
remainder of this section, we describe the four important stages
in our framework: compression, bitstream merge, bitstream
split, and decompression using an illustrative example. Then,
we perform a theoretical analysis of our placement technique
and prove that our approach is close to optimal in most practical
scenarios. In the following discussion, we use the term symbol
to refer to a sequence of uncompressed bits used as input to
the encoder and code to refer to the compression result (of a
symbol) produced by the encoder.

B. Compression Algorithm

Our bitstream placement method is compatible with a wide
variety of fixed-to-variable compression algorithms. The only
requirement for the compression algorithm is that the upper
bound of the length of code required to produce an uncom-
pressed symbol should be close to the length of an uncom-
pressed symbol. Therefore, our placement method can be used
to accelerate “stateless” algorithm like Huffman coding [1], as
well as more complex algorithms like arithmetic coding [2],
which may maintain internal states across the decompression
of successive output symbols.

Before we apply a compression algorithm to separate
streams, we need to split the original binary into multiple
streams. As stated above, this will enable us to use parallel
decoders during decompression. Many previous works [18],
[19], [21], [27], [28] suggest that compressing different parts
of a single instruction separately is profitable, because the
number of distinct opcodes and operands is far less than the
number of different instructions. We have observed that for
most applications, it is profitable to divide the instruction at the
center. In the rest of this paper, we use this division pattern, if
not stated otherwise.

In the following discussion, we use Huffman coding as the
compression algorithm in each encoder [Encoder1 − EncoderN
in Fig. 3(a)]. We use Huffman coding here as an example
because it is a pure dictionary-based algorithm with no internal
state. It will be much easier to explain how our placement
method works based on such a relatively simple compression
algorithm. As mentioned earlier, any compression technique
with a fixed upper bound of code length can be used in our
framework. We also use bitmask-based compression and arith-
metic coding to demonstrate the applicability our placement
method. The implementation details and experimental results
are shown in Section IV.

Our implementation of Huffman coding is based on [1].
To improve its performance on instruction compression, we
modify the original scheme by adding selective compression.
Selective compression is a common choice in many compres-
sion techniques [16], [29]–[32]. Since the alphabet for instruc-
tion compression is usually very large, Huffman coding may
produce many dictionary entries with a quite long compressed
code. This is harmful for overall compression, because the size
of the dictionary entry must also be taken into account. Instead
of using bounded Huffman coding, we address this problem
using selective compression. First, we create the conventional

Fig. 4. Instruction compression using modified Huffman coding.

Fig. 5. Two compressed bitstreams from the example in Fig. 4.

Huffman coding table. Next, we remove any entry e that does
not satisfy

(Length(Symbole) − Length(Codee)) ∗ Timee > Sizee.
(1)

Here, Symbole is the uncompressed symbol (one part of
an instruction), Codee is the code of Symbole created by
Huffman coding, Timee is the total time for which Symbole
occurs in the uncompressed symbol sequence, and Sizee is the
space required to store this entry. For example, two unprofitable
entries from Dictionary II (Fig. 4) are removed.

Once the unprofitable entries are removed, we use the
remaining entries to build the dictionary. Fig. 4 shows an
illustrative example of our compression algorithm. For the
simplicity of illustration, we use 8-bit binaries instead of
the 32-bit binaries used in real applications. We divide each
instruction in half and use two dictionaries, one for each part.
The final compressed program is reduced from 72 to 45 bits.
The dictionary requires 15 bits. The CR for this example is
83.3%. The two compressed bitstreams (Stream1 and Stream2)
are also shown in Fig. 5.

C. Bitstream Merge

The bitstream merge logic merges multiple compressed bit-
streams into a single bitstream for storage. We first explain
some basic models and terms that we will use in the following
discussion. Next, we describe the working principle of our
bitstream merge logic.

Definition 3: Output Storage block is a block of memory
space that is used as the basic output unit of our merge logic

1228 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009

(also the input unit of the split logic). An output storage block
contains the placed compressed bitstreams. Like the input stor-
age block, we also divide each output storage block into several
slots like Fig. 2. Each slot contains adjacent bits extracted from
the same compressed bitstream. For most of the time, all slots
within an output storage block have the same size. However, we
also allow some slots to have different sizes.

Definition 4: Sufficient decode length (SDL) is the maximum
number of bits that should be pushed into the decompressor
to produce the next uncompressed symbol. For example, the
SDL will be the maximum length of all dictionary entries for
Huffman coding. In case of arithmetic coding, the SDL is usu-
ally equal to �log2(the minimum allowed symbol probability)�.
In our implementation, this number is equal to one plus the
length of an uncompressed symbol, because selective com-
pression is used.

Our bitstream merge logic performs two tasks to produce
each output storage block filled with compressed bits from
multiple bitstreams: 1) use the given BPA to determine the bit-
stream placement within the current storage block and 2) count
the numbers of bits left in each buffer as if they finish decoding
the current storage block. We pad extra bits after the code at the
end of the stream to align on a storage block boundary.

Algorithm 1: Placement of Two Bitstreams
Input: Every Storage Block
Output: Placed Bitstreams

Set the size of Slot1 and Slot2 to LSBlock/2;
if !Ready(1)2 and!Ready(2) then

if 2 ∗ SDL − Len(1) − Len(2) ≤ LSBlock
3then

Set the size of Slot1 to SDL − Len(1);4

Set the size of Slot2 to LSBlock − (SDL − Len(1));
end
Assign Stream1 to Slot 1 and Stream2 to Slot 2;

else if !Ready(1) and Ready(2) then
Assign Stream1 to Slot 1 and 2;

else if Ready(1) and !Ready(2) then
Assign Stream2 to Slot 1 and 2;

else if !Full(1)5 and!Full(2) then
Assign Stream1 to Slot 1 and Stream2 to Slot 2;

else
No action;

end

Algorithm 1 is developed to support the parallel decom-
pression of two bitstreams. The goal is to guarantee that each
decoder has enough bits to decode in the next cycle after they
receive the current storage block. Fig. 6 illustrates our bitstream
merge procedure using the example in Fig. 4. The size of
the storage blocks and slots are 8 and 4 bits, respectively. In
other words, each storage block has two slots. The SDL is 5.
When the merge process begins [translates Fig. 6(a) to 6(b)],

2Ready(i) checks whether the ith decoder’s buffer has at least SDL bits.
3LSBlock is the size of each output storage block.
4Len(i) returns the number of bits left in the ith decoder’s buffer.
5Full(i) checks whether the ith buffer has space to hold more slots.

the merge logic gets A1, A2, and B′
1 and then assigns them

to the first and second slots.6 Similarly, A3, A4, B′′
1 , and B′

2

are placed in the second iteration (step 2). When it comes to
the third output storage block, the merge logic finds that after
Decoder2 receives and processes the first two slots, there are
only 3 bits left in its buffer, whereas Decoder1 still has enough
bits to decode in the next cycle. Therefore, it assigns both slots
in the third output storage block from Stream2. This process
repeats until both input (compressed) bitstreams are placed.
The “Full()” checks are necessary to prevent the overflow of
decoders’ input buffers. Our merge logic automatically adjusts
the number of slots assigned to each bitstream, depending on
whether they are effectively compressed.

D. Bitstream Split

The bitstream split logic uses the reverse procedure of the bit-
stream merge logic. The bitstream split logic divides the single
compressed bitstream into multiple streams using the following
guidelines.

1) Use the given BPA to determine the bitstream placement
within the current compressed storage block, and then
dispatch different slots to the corresponding decoder’s
buffer.

2) If all the decoders are ready to decode the next instruc-
tion, start decoding.

3) If the end of the current branch block is encountered,
force all the decoders to start.

We use the example in Fig. 6 to illustrate the bitstream split
logic. When the placed data in Fig. 6(b) is fed to the bitstream
split logic [translates Fig. 6(b) to 6(c)], the length of the input
buffers for both streams are less than SDL (i.e., 5). Therefore,
the split logic determines the first slot, and the second slot must
belong to Stream1 and Stream2, respectively, in the first two
cycles. At the end of the second cycle, the number of bits in the
buffer of Decoder1, Len(1) (i.e., 6), is greater than SDL, but
Len(2) (i.e., 3) is smaller than SDL. This indicates that both
slots must be assigned to the second bitstream in the next cycle.
Therefore, the split logic dispatches both slots to the input
buffer of Decoder2. This process repeats until all the placed data
are split.

E. Decompression Mechanism

Depending on the input compression algorithm, we employ
the corresponding decompression mechanism with minor mod-
ification. For example, in case of Huffman coding, the design
of our decoder is based on the Huffman decoder hardware pro-
posed by Wolfe and Chanin [1]. The only additional operation is
to check the first bit of an incoming code to determine whether
it is compressed using Huffman coding. If it is, then decode it
using the Huffman decoder; otherwise, send the rest of the code
directly to the output buffer. Therefore, the decode bandwidth
of each single decoder [Decoder1 to DecoderN in Fig. 3(b)]
should be similar to the one given in [1]. Since each decoder

6We use ′ and ′′ to indicate the first and second parts of the same code in
case it does not fit in the same storage block.

QIN AND MISHRA: UNIVERSAL PLACEMENT TECHNIQUE OF COMPRESSED INSTRUCTIONS FOR DECOMPRESSION 1229

Fig. 6. Bitstream placement using two bitstreams in Fig. 5. (a) Unplaced data remaining in the input buffer of merge logic. (b) Bitstream placement result.
(c) Data within Decoder1 and Decoder2 when the current storage block is decompressed.

can decode 8 bits/cycle, two parallel decoders can produce
16 bits per cycle. Decoders are allowed to begin decoding only
when 1) all decoder buffers contain more bits than the SDL or
2) the bitstream split logic forces it to begin decoding. After
combining the outputs of these parallel decoders together, we
obtain the final decompression result.

F. Bitstream Placement for Four Streams

To further boost the output bandwidth, we have also de-
veloped a BPA that enables four Huffman decoders to work
in parallel. During compression, we take every two adjacent
instructions as a single input storage block. Four compressed
bitstreams are generated by high 16 bits and low 16 bits of all
odd instructions, as well as high 16 bits and low 16 bits of all
even instructions. Each output storage block has 64 bits. Nor-
mally, each slot within an output storage block contains 16 bits.
Therefore, there are four slots in each storage block. The
description of this algorithm is given in Algorithm 2. It is a
direct extension of Algorithm 1. The goal is to provide each
decoder with a sufficient number of bits so that none of them
are idle at any point. Since each decoder can decode 8 bits per
cycle, four parallel decoders can produce 32 bits per cycle.

Although we can still employ more decoders, the overall
increase of output bandwidth will slow down by introducing
more startup stalls. For example, we have to wait two cycles
to decompress the first instruction using four decoders in the
worst case. As a result, a high sustainable output bandwidth
using too many parallel decoders may not be feasible if its
startup stall time is comparable with the execution time of
the branch block itself. For example, based on our simulation
results on SimpleScalar, while a branch block usually contains
30–50 instructions, only 10.5 instructions are executed before a
jump instruction on an average. Therefore, it is not profitable
to allow startup stalls to exceed two cycles. However, there
are many applications, such as field-programmable gate array
(FPGA) configuration bitstream compression [33], where the
startup stalls are not so critical. If our framework is used to
accelerate decompression in such cases, then it is profitable
to use more streams (more than four) to achieve a higher
decompression bandwidth.

Algorithm 2: Placement of Four Bitstreams
Input: Every Storage Block
Output: Placed Bitstreams
Set the size of Slot 1, 2, 3 and 4 to LSBlock/4;
i0, i1, i2, i3 used as stream indexes is any permutation of
{1, 2, 3, 4}.
if !Ready(i0) and Ready(i1)

and Ready(i2) and Ready(i3) then
Assign Stream i0 to Slot 1, 2, 3 and 4;

else if !Ready(i0) and !Ready(i1)
and Ready(i2) and Ready(i3) then

Assign Stream i0 to Slot 1 and 2;
Assign Stream i1 to Slot 3 and 4;

else if !Ready(i0) and !Ready(i1)
and !Ready(i2) and Ready(i3) then

Set the size of Slot i0, i1, i2 to �LSBlock/3�;
Assign all bits left in the storage block to i3;
Assign Stream i to Slot i (i = 1, 2, 3, 4);

else if !Ready(1) and !Ready(2)
and !Ready(3) and !Ready(4) then

if 4 ∗ SDL −
∑4

i=1 Buf(i) ≤ LSBlock then
Set the size of Slot i to SDL − Len(i) (i = 1, 2, 3);
Assign all bits left in the storage block to Slot 4;

end
Assign Stream i to Slot i (i = 1, 2, 3, 4);

else if !Full(1) and !Full(2)
and !Full(3) and !Full(4) then

Assign Stream i to Slot i (i = 1, 2, 3, 4);
else

No action;
end

G. Analysis of Our BPAs

In this section, we first formalize the bitstream placement
problem. Then, we introduce the definition of optimal bitstream
placement and illustrate how to construct the theoretically
optimal placement. Finally, we prove that our placement meth-
ods (BPA1 and BPA2) are very close approximations of the
optimal placement scheme. We show that BPA1 and BPA2 will
introduce at most one and two stall cycles, respectively.

1230 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009

Fig. 7. Storage space structure.

In the postcache decompression scenario, the most important
criteria for a placement algorithm is to ensure that it will not
cause additional processor stalls. Since multiple decoders are
used in parallel, all of them must get enough bits to decode
before the complete instruction can be composed and sent to the
processor. Therefore, if some decoder cannot get enough bits
from the cache to produce the next symbol in a certain cycle,
then the processor must stall for at least one cycle. Ideally, an
optimal placement algorithm should minimize the total number
of stalls required during decompression. However, it may not be
easy to directly perform such a minimization. Instead, we will
construct a placement algorithm and then prove that it achieves
the smallest number of stalls.

To formalize the problem, we first introduce some notations.
Since our method is applied to each branch block, we only
need to consider the decompression of one branch block. Each
branch block is split and compressed into bitstreams and then
placed within storage space (as defined below).

Definition 5: Compressed Bitstream is a series of com-
pressed codes that can be fed to a decoder to generate a
series of uncompressed symbols, each of which is a part of
successive instructions. We denote the set of NS compressed
bitstreams as S = {Si|i ∈ I}, where I = {1, . . . , NS} is the
stream index set. Since they are split from the same branch
block, each stream has Ncode codes. The length of the kth code
in stream Si is bi(k), 1 ≤ k ≤ Ncode. In the following discus-
sion, we use “stream” as “compressed bitstream” unless stated
otherwise.

Definition 6: Storage Space is a collection of output stor-
age blocks within which we can place all the Ns bitstreams.
Formally, a storage space B is a NSBlock × L matrix of bits
(Fig. 7), which can be expressed as

B = {(r, c)|1 ≤ r ≤ NSBlock, 1 ≤ c ≤ L}

where L is the number of bits in an output storage block, and
NSBlock is the number of output storage blocks used to place
these NS streams.

For example, in BPA1 with Huffman coding, we have two
streams S = {S1, S2}, so NS = 2. Here, bi(k) is the length
of a Huffman code representing the original 16-bit symbol.
Ncode is equal to the number of instructions within the branch
block, and L = 32. In case of BPA2, we have four streams:
S = {S1, S2, S3, S4}, Ncode is equal to half of the total number
of instructions within the branch block, and L = 64, because
each output storage block in BPA2 has 64 bits.

Definition 7: The Placement of stream set S within storage
space B is a function

P : B → I

such that the bit (r, c) is assigned to stream SP (r,c). Note that
the selection of P does not need to ensure that such a placement
can be split during decompression without using any other
information as our approach. Therefore, our proof holds for any
possible bitstream placement.

For simplicity, we make some assumptions about the decom-
pression process.

1) For all streams, the decode process of a single code
requires one cycle. We perform our discussion based on
this assumption to guarantee that our results are valid in
the worst case. If the decoding needs more cycles, which
happens in many published instruction compression algo-
rithms, then the stalls caused by improper placement can
easily be hidden.

2) (NS − 1) ∗ SDL ≤ L. Most published instruction com-
pression algorithms satisfy this assumption. They tend
not to use too many bits to encode a symbol because such
a code will be harmful to both the overall CR and the
decode speed.

The remainder of this section is organized as follows: We
first define what is the optimal placement of the compressed
bitstream. Then, we show that optimal placement exists by
constructing a placement POPT and proving that POPT is
optimal. Finally, we prove that the performance of our practical
placement algorithms (BPA1 and BPA2) are very close to this
optimal placement with an additional stall of one and two
cycles, respectively. It should be noted that POPT is not a
practical placement algorithm, but it is a general theoretical
model for analyzing the performance of BPA1 and BPA2.

Intuitively, the kth input storage block (recall that an input
storage block contains one or more consecutive instructions)
can only be decompressed when all the corresponding com-
pressed codes are sent to the decompressor. If this is not
satisfied in the kth cycle, then some stalls are required.

Definition 8: Required Stalls RS(P, k) is the number of
stalls required to decompress the kth input storage block on
the decompressor side when the compressed streams are placed
using P .

By definition, RS(P, k) is equal to the minimum number t
that satisfies

∀i ∈ I :
k+t∑
j=1

Mi(P, j) ≥
k∑

j=1

bi(j) (2)

where Mi(P, j) represents the number of bits assigned to Si

according to placement P in row j of B, and B is the NSBlock ×
L bit matrix in Fig. 7. The left-hand side (LHS) of (2) is the
number of bits assigned to stream i in the first k + t rows of B.
The right-hand side (RHS) is the total size of the first k codes in
stream Si. LHS must be greater or equal to RHS for any i so that
in cycle k + t, the kth input storage block can be decompressed.

Since there may be many branch instructions within the
branch block, it is usually not profitable to eliminate stalls
during the execution of the last part of the branch block by

QIN AND MISHRA: UNIVERSAL PLACEMENT TECHNIQUE OF COMPRESSED INSTRUCTIONS FOR DECOMPRESSION 1231

unnecessarily stalling the previous instructions. In other words,
the optimal placement should enable the decompressor to out-
put instructions as soon as possible. Formally, we define the
optimal placement as follows.

Definition 9: A placement P0 is optimal such that it has a
minimum number of required stalls for all the input storage
blocks, i.e., RS(P0, k) is the minimum among any placement
P for 1 ≤ k ≤ Ncode.

An optimal placement POPT can be constructed as shown
in Algorithm 3. To show its optimality, we use the following
Lemma and Theorem 1.

Algorithm 3: Construction of POPT

Input: S, B
t0 = 0;
for k = 1 to Ncode do

if

∑
i∈I

⎛
⎝ k∑

j=1

bi(j) −
k−1+tk−1∑

j=1

Mi(POPT, j)

⎞
⎠ > L (3)

then
tk = tk−1 + 1;

else
tk = tk−1;

end
Choose 7 POPT(r, c) from I , where
k + tk−1 ≤ r ≤ k + tk, 1 ≤ c ≤ L, so that

∀i ∈ I :
k+tk∑
j=1

Mi(POPT, j) ≥
k∑

j=1

bi(j) (4)

holds;
end

Lemma: RS(P, k) is bounded by

RS(P, k) ≥ max

⎧⎨
⎩0, max

1≤l≤k

⎧⎨
⎩

⎡
⎢⎢⎢

∑
i∈I

l∑
j=1

bi(j)/L

⎤
⎥⎥⎥ − l

⎫⎬
⎭

⎫⎬
⎭ .

Proof: Based on the definition of RS(P, k)

∀i ∈ I :
k+RS(P,k)∑

j=1

Mi(P, j) ≥
k∑

j=1

bi(j).

If we sum both sides over I , then we will get

(k + RS(P, k)) L =
∑
i∈I

k+RS(P,k)∑
j=1

Mi(P, j) ≥
∑
i∈I

k∑
j=1

bi(j)

which simply states that all the bits required to decompress the
first k input storage blocks must be delivered to the decompres-

7The “choose” statement is always possible. Since (Ns − 1) ∗ SDL ≤ L,

2L ≥
∑k

j=1
bi(j), for any i0 ∈ I , 1 ≤ j ≤ Ncode. This guarantees that two

output storage blocks will be enough to place all the bits required to produce
any one input storage block.

sor before the kth input storage block is produced. Therefore

RS(P, k) ≥

⎡
⎢⎢⎢

∑
i∈I

k∑
j=1

bi(j)/L

⎤
⎥⎥⎥ − k.

Since we must decompress one instruction after another, all
stalls required to decompress the previous instructions will be
cumulated for the following instructions. Therefore

RS(P, k) ≥ max

⎛
⎝RS(P, k − 1),

⎡
⎢⎢⎢

∑
i∈I

k∑
j=1

bi(j)/L

⎤
⎥⎥⎥ − k

⎞
⎠ .

If we expand the recursive expression for k times, we have

RS(P, k) ≥ max

⎧⎨
⎩0, max

1≤l≤k

⎧⎨
⎩

⎡
⎢⎢⎢

∑
i∈I

l∑
j=1

bi(j)/L

⎤
⎥⎥⎥ − l

⎫⎬
⎭

⎫⎬
⎭ .

�
We denote this lower bound as MS(k)

MS(k) = max

⎧⎨
⎩0, max

1≤l≤k

⎧⎨
⎩

⎡
⎢⎢⎢

∑
i∈I

l∑
j=1

bi(j)/L

⎤
⎥⎥⎥ − l

⎫⎬
⎭

⎫⎬
⎭ .

Theorem 1: Any placement P0 that satisfies

∀i ∈ I :
k+MS(k)∑

j=1

Mi(P0, j) ≥
k∑

j=1

bi(j) (5)

for all k from 1 to Ncode is optimal.
Proof: If P0 satisfies (5) for any k with 1 ≤ k ≤ Ncode,

then P0 is guaranteed to generate at most MS(k) stalls when
the first k input storage blocks are decompressed. However,
MS(k) is also the lower bound of RS(P, k) for any placement
P because of the lemma. Therefore, P0 generates the smallest
number of required stalls compared to any placement. There-
fore, P0 is optimal by our definition. �

Theorem 2: POPT is an optimal placement.
Proof: We just need to show that POPT satisfies (5) for

all k from 1 up to Ncode. First, we prove that tk defined in
Algorithm 3 is equal to MS(k) for all k from 1 up to Ncode.
We prove it by induction. In the basis step, t1 is obviously equal
to MS(1) based on the definition. For any number k ≤ Ncode,
suppose tj = MS(j) for any j with 1 ≤ j < k. Since MS(k)
is monotonically increasing with k, there are two cases.

1) MS(k) > MS(k − 1). MS(k) must equal MS(k −
1) + 1 because 2L ≥

∑k
j=1 bi(j). However, we also have

tk = tk−1 + 1. Otherwise, tk = tk−1 = RS(POPT, k) <
MS(k), which violates the lemma. Therefore, MS(k) =
tk in this case.

2) MS(k) = MS(k − 1). We prove tk = tk−1 by contra-
diction. If tk = tk−1, then (3) must be true. Therefore

L +
∑
i∈I

k−1+tk−1∑
j=1

Mi(POPT, j) <
∑
i∈I

k∑
j=1

bi(j).

1232 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009

Or

∑
i∈I

k∑
j=1

bi(j) > L + L(k − 1 + tk−1) = L(k + tk−1).

Notice that tk−1 = MS(k − 1) = MS(k), and we have

∑
i∈I

k∑
j=1

bi(j) > L (k + MS(k)) .

Therefore

MS(k) <

⎡
⎢⎢⎢

∑
i∈I

k∑
j=1

bi(j)/L

⎤
⎥⎥⎥ − k

which contradicts the definition of MS(k).
Since we have proved that tk = MS(k) for all k from 1

up to Ncode, POPT automatically satisfies (5) based on our
construction. By Theorem 1, POPT is optimal. �

Now, we use POPT as a reference model to evaluate our
placement methods BPA1 and BPA2 proposed in the previous
sections. First, we define an extended decoder.

Definition 10: Extended decoder is a decoder with a decode
buffer (see Fig. 3), which starts decoding when there are at least
SDL bits available within its decode buffer. The extended de-
coder behaves like a “delayed” version of the original decoder.
It requires SDL bits to produce the first output symbol. Then,
it consumes exactly the same number of bits to produce the
kth output symbol as the original decoder consumes to produce
the k − 1th symbol. Formally, let b′i(k) be the number of bits
consumed by the ith extended decoder to produce the kth output
symbol. Then, we have

b′i(k) =
{

SDL, k = 1,
bi(k − 1), otherwise.

Compared with the construction of POPT, our BPA1 and
BPA2 can be viewed as two special cases of POPT when
NS = 2 and 4 with two constraints: 1) they do not have an
infinite decode buffer and 2) they use extended decoders. For
the first constraint, we observed that for most real branch
blocks, a buffer with a length of 50 bits will rarely be fully
filled. For the second constraint, the number of stalls required
by POPT using extended decoders is

max

⎧⎨
⎩0, max

1≤l≤k

⎧⎨
⎩

⎡
⎢⎢⎢

∑
i∈I

l∑
j=1

b′i(j)/L

⎤
⎥⎥⎥ − l

⎫⎬
⎭

⎫⎬
⎭

= max

⎧⎨
⎩0, max

2≤l≤k

⎧⎨
⎩

⎡
⎢⎢⎢NS ∗ SDL/L

+
∑
i∈I

l−1∑
j=1

bi(j)/L

⎤
⎥⎥⎥ − l

⎫⎬
⎭

⎫⎬
⎭

≤ max

⎧⎨
⎩0, �NS ∗ SDL/L�

+ max
2≤l≤k

⎧⎨
⎩

⎡
⎢⎢⎢

∑
i∈I

l−1∑
j=1

bi(j)/L

⎤
⎥⎥⎥ − (l − 1)

⎫⎬
⎭

⎫⎬
⎭

= max

⎧⎨
⎩0, �NS ∗ SDL/L�

+ max
1≤l≤k−1

⎧⎨
⎩

⎡
⎢⎢⎢

∑
i∈I

l∑
j=1

bi(j)/L

⎤
⎥⎥⎥ − l

⎫⎬
⎭

⎫⎬
⎭

≤ MS(k − 1) + �NS ∗ SDL/L�
≤ MS(k) + �NS ∗ SDL/L�.

Therefore, our placement method together with the decom-
pression mechanism will cause at most �NS ∗ SDL/L� more
stalls compared with POPT. For BPA1 and BPA2, this bound is
equivalent to one and two cycles, respectively.

IV. EXPERIMENTS

The instruction compression and parallel decompression ex-
periments of our framework are carried out using different
application benchmarks compiled using a wide variety of target
architectures. Our placement method is used with different
compression algorithms. We implemented the decompression
method using Verilog HDL to evaluate the hardware overhead
introduced by our parallel decompression mechanism.

A. Experimental Setup

We used benchmarks from MediaBench and MiBench
benchmark suites: adpcm_en, adpcm_de, cjpeg, djpeg, gsm_to,
gsm_un, mpeg2enc, mpeg2dec, and pegwit. These benchmarks
are compiled for four target architectures: TI TMS320C6x,
PowerPC, SPARC, and MIPS. The TI Code Composer
Studio is used to generate the binary for TI TMS320C6x.
GCC is used to generate the binary for the rest of them.
Our computation of CS includes the size of the compressed
instructions and the dictionary and all the other data required
by our decompression unit.

We have evaluated the relationship between the division
position and the CR on different target architectures. Fig. 8
demonstrates the relationship between the division position and
the CR on different target architectures. The result is interesting
because the center is the best position for most architectures.
Only TI TMS320C6x has a slightly biased best position after
the seventeenth bit.

The optimal partition position for the TI TMS320C6x in-
struction set is slightly different, because the position after the
seventeenth bit is the common boundary between the opcode
and the source/destination operand in this instruction set. For all
the other instruction sets like MIPS or PowerPC, this boundary
is usually between the fifteenth and sixteenth bits. When a sta-
tistical compression scheme like Huffman coding is employed,

QIN AND MISHRA: UNIVERSAL PLACEMENT TECHNIQUE OF COMPRESSED INSTRUCTIONS FOR DECOMPRESSION 1233

Fig. 8. CR with different division positions.

Fig. 9. Decode bandwidth of different techniques.

the number of repeated symbols has a positive impact on the
CR. If we partition based on the common boundary between
opcode and source/destination operands, it is very likely that
the number of repeated symbols will increase, because the
same opcode or operand will create the same symbol. This
explains the relation between the CR and partition position in
our experiments. The fact that the TI TMS320C6x data set has
the best partition position after the seventeenth bit just reflects
the position of the common boundary in its instruction set.

We have also analyzed the impact of dictionary size on
compression efficiency using different benchmarks and archi-
tectures. Although larger dictionaries produce better compres-
sion, our approach produces reasonable compression using only
4096 B for all the architectures. Based on these observations,
we divide each 32-bit instruction from the middle to create two
bitstreams. The maximum dictionary size is set to 4096 B. The
output bandwidth of the Huffman decoder is computed as 8 bits
per cycle [1] in our experiments. To the best of our knowledge,
there has been no work on bitstream placement for enabling the
parallel decompression of variable-length coding. Therefore,
we compare our work (BPA1 and BPA2) with CodePack [21],
which uses a conventional bitstream placement method.
Here, BPA1 is our BPA in Algorithm 1, which enables two
decoders to work in parallel, and BPA2 represents Algorithm 2
in Section III-F, which supports four parallel decoders.

B. Decompression Performance With Huffman Coding

Fig. 9 shows the efficiency of our different BPAs. Here,
“decode bandwidth” means the sustainable output bits per cycle
after the initial stalls. The number shown in the figure is the av-
erage decode bandwidth over all benchmarks. It is important to

Fig. 10. CR for different benchmarks.

Fig. 11. CR on different architectures.

note that the decode bandwidth for each benchmark also shows
the same trend. As expected, the sustainable decode bandwidth
increases as the number of decoder grows. Our bitstream place-
ment approach improves the decode bandwidth by up to four
times. As discussed earlier, it is not profitable to use more than
four decoders since it will introduce more startup stalls.

We have studied the impact of bitstream placement on com-
pression efficiency. Fig. 10 compares the CRs between the
three techniques using various benchmarks compiled for the
MIPS architecture. The results show that our implementation of
bitstream placement has less than 3% penalty on compression
efficiency. This result is consistent across different benchmarks
and target architectures, as demonstrated in Fig. 11, which
compares the average CR of all benchmarks on different
architectures.

C. Performance With Other Compression Algorithms

We also studied the impact of using our bitstream placement
technique on a wide variety of compression algorithms, includ-
ing arithmetic coding, bitmask-based compression, canonical
Huffman coding [9], and Instruction-Set Architecture (ISA)
dependent compression [34]. Our implementation of these
algorithms is based on [2], [9], [16], and [34], respectively.
The only modification we made is that we applied them to
separated bitstreams instead of the original instruction stream.
For bitmask-based compression, we also changed the dictionary
size to 64 per stream. The reason is that after the stream split,
the original optimal dictionary size of 4096 can be split into two
dictionaries of size 64, since 64 ∗ 64 = 4069. Figs. 12 and 13
show the CRs using the benchmark programs compiled for the
MIPS architecture. The results show that the penalty on CR is
quite small.

1234 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009

Fig. 12. CR using arithmetic coding.

Fig. 13. CR using bitmask-based compression.

Fig. 14. Decompression bandwidth using arithmetic coding.

Fig. 14 presents the average decompression bandwidth of
arithmetic coding using different BPAs. Although arithmetic
coding is believed to have the best theoretical compression
performance, the decompression is quite slow. The decom-
pression of each 16-bit symbol may need three cycles in the
worst case [2]. Our results suggest that we can speed up
the decompression of arithmetic coding to four times using
parallel decoders. Even for compression algorithms with a
high decoding bandwidth, like bitmask-based compression, our
approach can still be employed to accelerate its decompression
performance. Fig. 15 illustrates the experimental results using
bitmask-based compression. With four parallel decoders, the
proposed approach can push the decompression bandwidth to
the bound determined by the CR and the bandwidth between
the instruction cache and the decoder. Note that such output
bandwidth will be impossible without using parallel decoders,
because each decoder needs at least one cycle to output a 32-bit
symbol.

Fig. 15. Decompression bandwidth using bitmask-based compression.

Fig. 16. CR comparison for MIPS using canonical Huffman coding [9].

TABLE I
COMPARISON USING DIFFERENT PLACEMENT ALGORITHMS

Canonical Huffman coding with lookup table compression
[9] is a more recent compression technique with both good
CR and low decode overhead. Since this approach satisfies all
the requirements of our parallel decompression technique, we
have applied our approach on top of their framework. Fig. 16
shows the compression penalty for employing our approach. It
can be seen that the CR penalty introduced by using parallel
decoders is small (less than 3%) compared with the results
reported in [9]. For the decompression bandwidth, we observed
a similar increase (two to four times), as demonstrated in
Section IV-B, because the behavior of their decoder is very
similar to the selective Huffman decoder used in our previous
experiments.

We have also applied our technique with ISA-dependent
dictionary-based compression like [34], and the results show
a similar decompression bandwidth improvement.

D. Decompression Overhead

We have implemented the Huffman decompression unit us-
ing Verilog HDL. The decompression hardware is synthesized
using Synopsys Design Compiler [35] and TSMC 0.18 cell
library. Table I shows the reported results for area, power, and
critical path length.

QIN AND MISHRA: UNIVERSAL PLACEMENT TECHNIQUE OF COMPRESSED INSTRUCTIONS FOR DECOMPRESSION 1235

TABLE II
DECOMPRESSION HARDWARE OVERHEAD

USING 180- AND 65-nm TECHNOLOGY

It can be seen that “BPA1” (uses 2 16-bit decoders) and
CodePack have a similar area/power consumption. However,
“BPA2” (uses 4 16-bit decoders) requires almost double the
area/power compared with “BPA1” to achieve a higher decode
bandwidth, because it has two more parallel decoders. The
decompression overhead in area and power is negligible (100
to 1000 times smaller) compared with the typical reduction
in overall area and energy requirements [4] due to instruction
compression.

We have also computed the decompression overhead using
the 65-nm library. The results are shown in Table II. As ex-
pected, the leakage power has significantly increased (four to
five times) compared with the 180-nm technology. Fortunately,
the area is decreased by eight times at the same time. Thus, the
dynamic power consumption has decreased. As a result, there
is no significant difference in overall power consumption.

However, at the rate of four to five times, the leakage power
will eventually dominate in the future. In other words, the
overall power consumption can increase in 45 nm and beyond.
In spite of the increase in power consumption, the overall
energy saving due to compression will still be significantly
higher than the energy consumed by decompression hardware.
To quantitatively show this, let us assume that the power con-
sumed by the decompression engine and the entire system are
Pd and Ps, respectively, using current technology. Since code
compression improves both cache instruction hits and commu-
nication bandwidth, it will improve the overall performance
[4]. Suppose that the overall task execution time is reduced by
r%, i.e., from T0 to (1 − r%)T0. The ratio between the total
energy saving for this task and the energy consumed by the
decompression hardware is

Ps × T0 − (Pd + Ps) × (1 − r%)T0

Pd × (1 − r%)T0
=

r%
1 − r%

Ps

Pd
− 1.

Ps is usually several orders of magnitude larger than Pd, and
the value of r% is typically 30%–50% [4]. Therefore, based
on the above ratio, the energy consumed by the decompression
hardware is negligible compared with the overall energy saving
due to code compression.

When a new technology is employed, the power consump-
tions of both the system and the decompression hardware will
increase, but Ps/Pd should roughly be constant because the
same technology is used for both of them. Since the cache
access pattern of the task will not change, r% will not change
either. Hence, even if new technology is used, the relation
between the overall energy saving and the energy consumed by
the decompression unit will still hold.

TABLE III
SPLIT LOGIC IMPACT ON OF DECOMPRESSION

We have also studied the impact of bitstream split logic8

on the area and performance of our decompression unit. The
results are shown in Table III. It can be seen that the bitstream
split logic occupies a relatively small (4%–6%) area compared
with the overall decompression unit. For the critical path, the
overhead caused by the split logic is less than 1 ns.

V. CONCLUSION

Memory is one of the key driving factors in embedded system
design, since a larger memory indicates an increased chip area,
more power dissipation, and higher cost. As a result, memory
imposes constraints on the size of the application programs.
Instruction compression techniques address the problem by
reducing the program size. Existing research has explored two
directions: efficient compression with slow decompression, or
fast decompression at the cost of the compression efficiency. In
this paper, we have studied the relationship between bitstream
placement, CR, and decompression speed. We developed a
novel bitstream placement that enables parallel decoding. This
efficient placement of bitstreams allows the use of multiple
decoders to decode different parts of the same/adjacent instruc-
tion(s) to improve the decode bandwidth. We proved that our
approach can be viewed as an approximation of the theoretical
optimal placement scheme, which minimizes the number of
stalls during decompression. Moreover, the proposed placement
method is not restricted to a specific compression algorithm. It
can be employed to speed up almost any compression algorithm
with negligible penalty in CR. We applied our technique using
several typical compression algorithms to demonstrate the use-
fulness of our approach. Our experimental results using vari-
ous embedded benchmarks compiled for different architectures
demonstrated that our approach improved the decompression
bandwidth by up to four times with less than 3% penalty in
compression efficiency.

Currently, our technique models the decompressor as a black
box that consumes incoming bitstream. In the future, we plan
to investigate whether it is possible to make a finer analysis of
the bits available within the decode buffer and to predict the
number of bits that will be consumed in the next cycle. We also
plan to apply our technique in other domains, which usually
demand both efficient compression and fast decompression,
such as test data compression for manufacturing testing and
FPGA bitstream compression.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
constructive comments and suggestions.

8Since the bitstream merge step is done offline during compression, it does
not impact the area/performance of the decompression unit.

1236 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009

REFERENCES

[1] A. Wolfe and A. Chanin, “Executing compressed programs on an em-
bedded RISC architecture,” in Proc. Annu. Int. Symp. Microarchitecture,
1992, pp. 81–91.

[2] H. Lekatsas and W. Wolf, “SAMC: A code compression algorithm for em-
bedded processors,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 18, no. 12, pp. 1689–1701, Dec. 1999.

[3] H. Lekatsas, J. Henkel, and W. Wolf, “Approximate arithmetic coding for
bus transition reduction in low power designs,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 13, no. 6, pp. 696–707, Jun. 2005.

[4] H. Lekatsas, J. Henkel, and W. Wolf, “Code compression for low
power embedded system design,” in Proc. Des. Autom. Conf., 2000,
pp. 294–299.

[5] Y. Xie, W. Wolf, and H. Lekatsas, “A code decompression architec-
ture for VLIW processors,” in Proc. Annu. Int. Symp. Microarchitecture,
Dec. 1–5, 2001, pp. 66–75.

[6] Y. Xie, W. Wolf, and H. Lekatsas, “Code compression for VLIW proces-
sors using variable-to-fixed coding,” in Proc. Int. Symp. Syst. Synthesis,
Oct. 2–4, 2002, pp. 138–143.

[7] T. Bonny and J. Henkel, “Using Lin–Kernighan algorithm for look-up
table compression to improve code density,” in Proc. 16th ACM Great
Lakes Symp. VLSI, 2006, pp. 259–265.

[8] T. Bonny and J. Henkel, “Efficient code density through look-up table
compression,” in Proc. Conf. Des., Autom. Test Eur., 2007, pp. 809–814.

[9] T. Bonny and J. Henkel, “Efficient code compression for embedded
processors,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16,
no. 12, pp. 1696–1707, Dec. 2008.

[10] C. H. Lin, Y. Xie, and W. Wolf, “LZW-based code compression for VLIW
embedded systems,” in Proc. Conf. Des., Autom. Test Eur., 2004, vol. 3,
pp. 76–81.

[11] S. Liao, S. Devadas, and K. Keutzer, “Code density optimization for em-
bedded DSP processors using datacompression techniques,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 17, no. 7, pp. 601–608,
Jul. 1998.

[12] D. Das, R. Kumar, and P. P. Chakrabarti, “Dictionary based code compres-
sion for variable length instruction encodings,” in Proc. Int. Conf. VLSI
Des., 2005, pp. 545–550.

[13] J. Prakash, C. Sandeep, P. Shankar, and Y. Srikant, “A simple and fast
scheme for code compression for VLIW processors,” in Proc. Data Com-
pression Conf., 2003, p. 444.

[14] M. Ros and P. Sutton, “A hamming distance based VLIW/EPIC code com-
pression technique,” in Proc. Int. Conf. Compilers, Architecture, Synthesis
Embedded Syst., 2004, pp. 132–139.

[15] S. Seong and P. Mishra, “A bitmask-based code compression technique
for embedded systems,” in Proc. Int. Conf. Comput.-Aided Des., Nov. 5–9,
2006, pp. 251–254.

[16] S. Seong and P. Mishra, “Bitmask-based code compression for embed-
ded systems,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 27, no. 4, pp. 673–685, Apr. 2008.

[17] H. Lekatsas, J. Henkel, and V. Jakkula, “Design of an one-cycle decom-
pression hardware for performance increase in embedded systems,” in
Proc. Des. Autom. Conf., 2002, pp. 34–39.

[18] S. J. Nam, I. C. Park, and C. M. Kyung, “Improving dictionary-based code
compression in VLIW architectures,” IEICE Trans. Fundam. Electron.,
Commun. Comput. Sci., vol. E82-A, no. 11, pp. 2318–2324, Nov. 1999.

[19] H. Lekatsas and W. Wolf, “Code compression for embedded systems,” in
Proc. Des. Autom. Conf., 1998, pp. 516–521.

[20] T. Bonny and J. Henkel, “Instruction re-encoding facilitating dense em-
bedded code,” in Proc. Conf. Des., Autom. Test Eur., 2008, pp. 770–775.

[21] C. R. Lefurgy, “Efficient execution of compressed programs,” Ph.D. dis-
sertation, Univ. Michigan, Ann Arbor, MI, 2000.

[22] Y. Xie, W. Wolf, and H. Lekatsas, “Code compression using variable-to-
fixed coding based on arithmetic coding,” in Proc. Conf. Data Compres-
sion, 2003, p. 382.

[23] E. Iwata and K. Olukotun, “Exploiting coarse grain parallelism in the
MPEG-2 algorithm,” Stanford Univ., Stanford, CA, Tech. Rep. CSL-TR-
98-771, 1998.

[24] K. Li, H. Chen, Y. Chen, D. W. Clark, P. Cook, S. Damianakis, G. Essl,
A. Finkelstein, T. Funkhouser, T. Housel, A. Klein, Z. Liu, E. Praun,
J. P. Singh, B. Shedd, J. Pal, G. Tzanetakis, and J. Zheng, “Building
and using a scalable display wall system,” IEEE Comput. Graph. Appl.,
vol. 20, no. 4, pp. 29–37, Jul./Aug. 2000.

[25] M. Roitzsch, “Slice-balancing h.264 video encoding for improved scala-
bility of multicore decoding,” in Proc. Int. Conf. Embedded Softw., 2007,
pp. 269–278.

[26] J. Nikara, S. Vassiliadis, J. Takala, and P. Liuha, “Multiple-symbol parallel
decoding for variable length codes,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 12, no. 7, pp. 676–685, Jul. 2004.

[27] G. Araujo, P. Centoducatte, M. Cortes, and R. Pannain, “Code compres-
sion based on operand factorization,” in Proc. Annu. Int. Symp. Microar-
chitecture, 1998, pp. 194–201.

[28] B. Gorjiara, M. Reshadi, and D. Gajski, “Merged dictionary code com-
pression for FPGA implementation of custom microcoded pes,” ACM
Trans. Reconfigurable Technol. Syst., vol. 1, no. 2, pp. 1–21, Jun. 2008.

[29] J. Lee, W. Hong, and S. Kim, “Design and evaluation of a selective
compressed memory system,” in Proc. Int. Conf. Comput. Des., 1999,
pp. 184–191.

[30] Y. Xie, W. Wolf, and H. Lekatsas, “Profile-driven selective code compres-
sion,” in Proc. Conf. Des., Autom. Test Eur., 2003, pp. 462–467.

[31] O. Ozturk, H. Saputra, M. Kandemir, and I. Kolcu, “Access pattern-based
code compression for memory-constrained embedded systems,” in Proc.
Conf. Des., Autom. Test Eur., 2005, vol. 2, pp. 882–887.

[32] R. Kumar and D. Das, “Code compression for performance enhancement
of variable-length embedded processors,” ACM Trans. Embed. Comput.
Syst., vol. 7, no. 3, pp. 1–36, Apr. 2008.

[33] J. H. Pan, T. Mitra, and W. F. Wong, “Configuration bitstream compres-
sion for dynamically reconfigurable FPGAs,” in Proc. Int. Conf. Comput.-
Aided Des., 2004, pp. 766–773.

[34] K. Lin and C. P. Chung, “Code compression techniques using operand
field remapping,” Proc. Inst. Elect. Eng.—Comput. Digital Tech., vol. 149,
no. 1, pp. 25–31, Jan. 2002.

[35] [Online]. Available: http://www.synopsys.com/

Xiaoke Qin (S’08) received the B.S. and M.S. de-
grees from Tsinghua University, Beijing, China, in
2004 and 2007, respectively. He is currently work-
ing toward the Ph.D. degree in the Department of
Computer and Information Science and Engineering,
University of Florida, Gainesville.

His research interests are in the area of code com-
pression, model checking, and system verification.

Prabhat Mishra (S’00–M’04–SM’08) received the
B.E. degree in computer science from Jadavpur Uni-
versity, Calcutta, India, in 1994, the M.Tech. degree
in computer science from the Indian Institute of
Technology, Kharagpur, India, in 1996, and the Ph.D.
degree in computer science from the University of
California, Irvine, in 2004.

He spent several years with various semicon-
ductor and design automation companies including
Texas Instruments Incorporated, Synopsys, Intel, and
Freescale (Motorola). He is currently an Assistant

Professor in the Department of Computer and Information Science and En-
gineering, University of Florida, Gainesville. His research interests include
the design automation of embedded systems, reconfigurable architectures, and
functional verification. He is the coauthor of the book Functional Verification of
Programmable Embedded Architectures (Kluwer, 2005). He is also the coeditor
of the book Processor Description Languages (Morgan Kaufmann, 2008).

Dr. Mishra is a Professional Member of the Association for Computing
Machinery (ACM). He currently serves as the Program Chair of the IEEE
High Level Design Validation and Test workshop, Information Director of the
ACM Transactions on Design Automation of Electronic Systems, Guest Editor
of the Springer International Journal of Parallel Programming (IJPP), as a
program/organizing committee member of several ACM and IEEE conferences,
and as a reviewer of many premier journals, conferences, and workshops. His
research has been recognized by various awards, including the CODES+ISSS
Best Paper Award in 2003, the EDAA Outstanding Dissertation Award in 2005,
and an NSF CAREER Award in 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

