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System optimization techniques based on dynamic reconfiguration are widely adopted for energy con-
servation. While dynamic voltage scaling (DVS) techniques have been extensively studied for processor
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energy conservation, dynamic cache reconfiguration (DCR) for reducing cache energy consumption in
multitasking systems is still in its infancy. In this paper, we propose a general and flexible algorithm
for energy optimization based on dynamic reconfiguration in multitasking systems. Our algorithm is
flexibly parameterized and can be used to provide tradeoffs between running time and solution qual-
ity. Furthermore, it can easily incorporate variable reconfiguration overhead. Experimental results show
that our technique can generate near-optimal solutions with significantly low running time and memory
nergy optimization, Energy-aware

cheduling, Cache requirements.

. Introduction

Power efficiency and energy conservation are key design con-
iderations for embedded systems. Various techniques have been
roposed over the years to reduce the energy consumption of
rocessor and memory subsystems as they are the two major con-
ributors of overall system energy dissipation. Dynamic voltage
caling (DVS) can be effectively used to reduce the power require-
ent quadratically while only slowing the processor performance

inearly. Recent studies show that memory hierarchy, especially the
ache subsystem, has become comparable to the processor in terms
f energy consumption [2]. Dynamic cache reconfiguration (DCR)
rovides the ability to change cache configuration at run time so
hat it can satisfy each application’s unique requirement in terms
f cache size, line size and associativity. By specializing the cache
ubsystem, DCR is capable of improving cache energy efficiency as
ell as overall performance [3].

In real-time systems, multiple tasks execute in the system

imultaneously by sharing common resources such as processor
nd memory. In uniprocessor systems, only one task can execute at
ny point of time. Furthermore, each task in such system normally
as its arrival time and deadline constraints. Therefore, we have
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to decide when (start point and execution length) and how (under
which voltage level and/or cache configuration) to execute each
task. While the former decision is made by scheduling algorithms,
e.g., Earliest Deadline First (EDF) [4], the latter one is decided by
DVS/DCR techniques.

In this paper, we develop a general algorithm that com-
prehensively solves energy-aware reconfiguration problems in
uniprocessor multitasking systems. Our contribution can be sum-
marized as:

1. The algorithm assumes that each task can be executed under one
or multiple configurations and finds the optimal configuration
assignment to minimize energy consumption while ensuring all
the time constraints. Each configuration could correspond to one
cache configuration, one voltage level or a combination of them.
Therefore the algorithm can either separately or simultaneously
accommodate DCR and DVS techniques.

2. It allows differential cost of switching from one configuration to
another. Thus, it has advantages over existing techniques that it
can effectively take variable runtime overhead into account.

3. The algorithm can be flexibly parameterized to tradeoff between
algorithm running time and solution quality. Our experimental
results show that the running time can be drastically reduced
while only minor quality degradation is observed.
Furthermore, our algorithm is relatively independent of
the scheduling policy and task properties. It can support
tasks with/without time constraint, preemptive/non-preemptive
scheduling or periodic/aperiodic tasks.

dx.doi.org/10.1016/j.suscom.2010.10.006
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The rest of the paper is organized as follows. Related works
re surveyed in Section 2. We formulate and analyze the problem
n Section 3. Next, we describe our algorithm and various design
onsiderations in Section 4. Section 5 presents our experimental
esults. Finally, Section 6 concludes the paper.

. Related work

DCR has recently drawn considerable interests in both general-
urpose [5] as well as real-time systems [6,7]. DCR needs the
upport of reconfigurable cache architectures as proposed in [2,3,8].
or general-purpose systems, both dynamic and static analysis
ased cache reconfiguration techniques are proposed in [5,9],
espectively. Tuning cache configuration for each phase of appli-
ation execution is investigated in [10]. In real-time systems, a
umber of techniques exist for employing caches effectively either
y avoiding intra-task interference and unpredictability [11] or
roving schedulability through cache-aware timing analysis [12].
ache locking [11] and cache partitioning [13] techniques are pro-
osed for improve the predictability of the cache behavior. The
ajor challenge for employing DCR in multitasking systems is to

etermine when and how to reconfigure the cache so that energy
onsumption is minimized while each task’s timing constraints are
atisfied. Wang and Mishra applied DCR in soft real-time systems,
n which task’s arrival time and deadline are not known in priori,
y utilizing static profiling information at runtime for both sin-
le level cache [6] and multiple level cache hierarchy [7]. Recent
fforts [14] tried to combine DCR and DVS together in hard real-
ime systems. However, these techniques are either designed for
pecific systems (e.g., soft real-time systems in which missing task
eadlines are tolerable) or specific task characteristics (e.g., peri-
dic tasks). Moreover, they are also based on certain assumptions
hich do not always hold, e.g., negligible or fixed reconfiguration

verhead.
DVS is widely supported in many general as well as specific-

urpose processors [15,16]. State-of-the-art DVS techniques have
een developed for periodic task sets [17], aperiodic tasks [18],
reemptive and non-preemptive tasks [19,20]. Inter-task DVS, in
hich each task is solely assigned one voltage level, is exploited in
ost existing works [21]. Its counter-part, intra-task DVS, which

xploits dynamic slack created by early finished jobs and adjusts
oltage level multiple times in each task, is studied in [22]. Algo-
ithms have also been developed for fixed-priority real-time jobs
23] as well as priority-driven tasks [24]. PreDVS [25] can lead
o more energy savings than optimal inter-task DVS without
ntroducing any extra overhead. Temperature constraint is also
onsidered in recent DVS approaches [26]. Recently, energy-aware
ask scheduling and resource allocation on multi-core systems as
ell as computational grids are studied in [27,28]. Chen and Kuo

29] present a survey on DVS techniques in real-time systems.
waminathan and Chakrabarty [30] modeled the uniprocessor volt-
ge scaling for real-time system as a generalized network flow
roblem and solved it using network flow algorithms. However,
heir method does not support cache reconfiguration and only
onsidered voltage switching at task boundaries. Moreover, their
ethod cannot incorporate variable runtime overhead nor make

radeoff between running time and design quality. We address
hese limitations in the methods proposed in this paper.

. Problem formulation
.1. Energy model

Cache energy model: Our cache energy model is adopted from
3] which proposed a highly reconfigurable cache architecture. Let
rmatics and Systems 1 (2011) 35–45

Edynamic and Estatic denote the dynamic energy and static energy
of the cache subsystem, respectively. The total cache energy con-
sumption hence is Ecache = Edynamic + Estatic. Specifically, we have:

Edynamic = num accesses · Eaccess + num misses · Emiss (1)

Emiss = Eoffchip access + E�P stall + Eblock fill (2)

Estatic = Pstatic · CC · tcycle (3)

where Eaccess, Emiss and Pstatic are the energy required per cache
access, per cache miss and static power consumption, respectively,
which are all collected from CACTI [31] for all cache configurations.
Here, CC denotes the number of clock cycles that is required to exe-
cute the task, and tcycle is the length of each clock cycle. Following
[3], we represent energy consumption for fetching data from off-
chip memory, processor stall due to cache miss and cache block
refilling after a miss by Eoffchip access, E�P stall and Eblock fill, respec-
tively.

Processor energy model: The dynamic power dissipation of the
processor can be characterized as:

Pdynamic = K · Ceff · V2
dd · f (4)

where K is an application-specific constant which represents the
average number of switches in one cycle, Ceff is the total switching
capacitance of the processor, Vdd is the supply voltage and f denotes
the operation frequency. Note that different applications may have
various processor energy profile decided by how much effective
switches they actually use during execution (K · Ceff). Leakage power
is given by [32]:

Pstatic = Vdd · Isubth + |Vbs| · Ij (5)

where Isubth and Ij are the subthreshold current and reverse
bias junction current, respectively. Vbs denotes the body
bias voltage. Note that Isubth is in direct proportion to Vdd
and Vbs. Processor energy consumption is calculated as:
Eprocessor = (Pdynamic + Pstatic) · (CC/f). This energy model is also
used in [14].

3.2. Task model

We are given:

• A highly configurable cache architecture which supports h differ-
ent configurations C{c1, c2, . . ., ch} and/or,

• A voltage scalable processor which supports l different voltage
levels V {v1, v2, . . . , vl}.

Task set can be characterized as the following:

• A set of m independent tasks T{�1, �2, . . ., �m}.
• Each task �i ∈ T has known attributes including arrival time, dead-

line or period (if it is periodic).
• Each task �i has known worst-case workload.

We use worst-case workload of each task since we focus on static
slack allocation. In practice, the bound can be found by any existing
worst-case execution time analysis techniques. Our goal is to find
a voltage/cache configuration assignment for each task that min-
imizes the total energy consumption while ensuring that all the
time constraints are met.
4. Energy-aware reconfiguration algorithm

Our proposed approach accepts a trace of execution blocks as the
input. Given a task set and a scheduling policy, we first execute all
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Fig. 1. Tasks and execution blocks.
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Fig. 2. EC

he tasks under the base case (under the base cache configuration3

n DCR or the highest voltage level for DVS) assuming each of them
equires its worst-case workload. The scheduler generates the exe-
ution blocks in temporal order. Note that for non-preemptive
cheduling, execution blocks are essentially a sequence of task
nstances (jobs) with each of them having an absolute deadline and
arliest start time (arrival time). In preemptive systems, however,
xecution blocks can be segments of tasks produced by preemp-
ions. Fig. 1 illustrates the relation between execution blocks and
he tasks which they belong to. Suppose there are three periodic
asks �1, �2 and �3 with the characteristics of (1,3,3),4 (2,5,5) and
4,12,12). Under EDF schedule, there are 10 execution blocks (b1,
2, . . ., b10) before time unit 12. Our algorithm makes reconfigu-
ation decisions on the granularity of each execution block. Thus,
t is optimal in non-preemptive systems with inter-task manner
VS/DCR. It can also generate more energy savings in preemptive

ystems without introducing additional runtime overhead since a
ontext switching has to be carried out during task preemption.

For DVS, if tasks’ energy profiles are identical, the energy con-
umption and execution time of each execution block can be
alculated according to the processor energy model. For DCR or
VS with variable task energy profile, these values need to be col-

ected using static profiling [6]. Only Pareto-optimal configurations
re considered for each block. Specifically, for DVS, since leakage
ower is considered, the minimum voltage level is lower bounded
as a further decrease will lead to increasing in overall energy con-

umption [14]). For DCR as well as the scenario where DVS and DCR
re employed simultaneously, each block’s Pareto-optimal points
re those configurations which are not dominated by any other con-
guration in terms of both energy consumption and performance.

3 The base cache is defined as the configuration used in the system without DCR
apability that meets all task deadlines.

4 Here the three numbers stand for execution time, period and relative deadline,
espectively.
del of ℘.

Note that Pareto-optimal configuration set is application-specific.
In this section, we define a general term configuration which
could be a cache configuration, a voltage level, a combination of
them or any other form of system configuration. Let h and hi
denote the total number of available configurations and the num-
ber of Pareto-optimal configurations for the ith execution block,
respectively.

We model the runtime reconfiguration overhead as variables
depending on the transition from one configuration to another. For
example, the overhead for reconfiguring a 4 kB cache to a 8 kB cache
is generally larger than just changing the line size from 16 bytes to
32 bytes since the former requires waking up cache banks but the
later is done by line concatenation. The input to our algorithm can
be formally represented as:

• A set of n execution blocks B{b1, b2, . . .,bn}.
• Execution block bi ∈ B has an arrival time ai if it is the first block in

the task instance and an absolute deadline di if it is the last block.
• Execution block bi has execution time tk

i
and energy consumption

ek
i

under configuration k(ck).
• Reconfiguration energy overhead �(i, j) and time overhead �(i, j)

for converting from configuration ci to configuration cj.

Note that ai and di correspond to the task to which the execution
block belongs. ai and di are set to −1 when they are not applicable
to block bi. If we denote ti as the start time and ki as the index of the
configuration assigned to block bi given in the solution, the general
dynamic reconfiguration problem ℘ can be formulated as5:
minimize E =
n∑

i=1

(eki
i + �(cki−1

, cki
)) (6)

5 ck0
denotes the initial configuration.
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n blocks 

Tmax – Tmin time units

h configurations

D[i][τ][j] 

Fig. 3. Illustration of our algorithm.

Fig. 4. Ensuring the time constraints.
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Fig. 6. Energy consumption compared with two heuristics: DVS + DCR.
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Fig. 5. Illustration of the approximate version of our algorithm.

ubject to,

i ≥ ai, ∀ai ≥ 0 (7)

i + �(cki−1
, cki

) + tki
i ≤ di, ∀di ≥ 0 (8)

i+1 ≥ ti + �(cki−1
, cki

) + tki
i , ∀i ∈ [1, n) (9)

Eq. (7) represents the timing constraint that all the execution
locks must start executing after the task instance’s arrival time.
q. (8) ensures deadline is not violated for any task. Note that time
verhead is accounted at the beginning of task execution. Since
e stick to the original schedule, Eq. (9) guarantees the execution

rder of all the blocks in the final solution. The goal is to find ki for
ll blocks in B so that Eq. (6) can be achieved. The described model-
ng method makes our approach generally applicable—it does not
epend on any task set characteristic or scheduling algorithm.

.1. Extended complete bipartite graph

We formulate the dynamic reconfiguration problem ℘ as a
inimum-cost path finding problem in an extended complete

ipartite graph (ECBG) as shown in Fig. 2. Unlike traditional com-
lete bipartite graph, an ECBG has multiple (specifically, n) disjoint

ets {V1, V2, . . ., Vn} and a single source node as well as a single
estination node. Every node in one set is connected to every node

n its neighboring sets. The source node is fully connected with
ll the nodes in the first set and all the nodes in last set is con-
ected to the destination node. Formally, an ECBG can be defined
 DVS

Fig. 7. Energy consumption compared with two heuristics: (a) DCR; (b) DVS.

as ECBG{V1 + V2 + · · · + Vn, E} such that for any two nodes vk
i
∈ Vi and

vj
i+1 ∈ Vi+1, there is an edge (vk

i
, vj

i+1) in E.
Semantically, each disjoint set Vi represents an execution block

b in B. Each node in the disjoint set stands for one configura-
i
tion for that block. Hence, the number of nodes in set Vi is hi.
Each edge (vk

i
, vj

i+1) in E is associated with two values: ek
i

and tk
i
.

It means that, by moving from set Vi to Vi+1 through this edge
(choosing ck), it requires tk

i
time units and ek

i
units of energy to
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xecute block bi. The runtime overhead is also taken into account
n each edge. Specifically, edge (vk

i
, vj

i+1) carries a pair of values:

ek
i

+ �(ck, cj), tk
i

+ �(ck, cj)). Therefore, the objective shown in Eq.
6) is algorithmically equal to finding a path from the source node
o the destination node in the ECBG which has the minimum accu-

ulative energy E. This path contains one and only one node from
ach disjoint set (choosing one edge between neighboring sets),
hich corresponds to selecting one configuration for each block.
oreover, all the constraints shown in Eqs. (7), (8) and (9) have

o be satisfied in the path. For those nodes with arrival time con-
traint, say bi, it is possible that the finish time of its previous node
i−1 is earlier than ai. To ensure ti ≥ ai, there is an idle node before
very block node to represent the possible idle intervals. Note that
dge (v1

1, v1
2) does not involve any overhead since no reconfigu-

ation is carried out (i.e., k1 = k2). However, edge (v1
2, v2

3) includes
econfiguration overhead �(c1, c2) and �(c1, c2).

.2. Minimum-cost path algorithm

In this paper, we employ a dynamic programming based algo-
ithm to find the minimum-cost path. Let Ei and Ti denote the total
nergy consumption (cost) and execution time up to node bi. Start-
ng from the first node, for each node bi, we find the lowest cost Ei
nder each possible value of Ti and possible configuration choice
or bi (i.e., cki

), in a node by node manner until the destination node
s reached. If there is no such partial path which has an accumu-

ative execution time no larger than a specific value of Ti and ends
p with a specific configuration for bi, the corresponding Ei is set
o infinity. The calculation of all Ei values for each node is based on
he lowest cost values of its previous node calculated in last step.
t each step, say bi, we know the lowest total energy of last i − 1
on effect for DCR.

nodes under each possible value of Ti−1 and configuration for bi−1.
Based this information and various overhead, we can easily find the
minimum Ei under all possible Ti and cki

.
Since the execution time is continuous but the design space is

actually discrete (consists of finite number of choices), it is neither
possible nor necessary to consider all possible values of Ti. Hence,
we discretize Ti into a finite set of values. The interval between
two adjacent discretized values is regarded as one time unit, which
could be as small as one clock cycle or as large as one millisec-
ond in practice. To reduce running time, we can limit Ti within the
rage of [Tmin, Tmax]. We set Tmin =

∑n
i=1th

i
where th

i
is the execu-

tion time under the most performance efficient configuration. Tmax

can be set to the deadline constraint of last task instance or the
common deadline for all tasks. In other words, all blocks need to
be completed before Tmax. A three-dimensional array D is created
for dynamic programming in which each element D[i][�][j] stores
the lowest total cost for nodes b1, b2, . . ., bi while total execution
time Ti is equal or less than �(Ti ≤ �) and configuration choice for
bi is cj. As a result, there are n rows in D with each row consisting
of (Tmax − Tmin) vectors and each vector has h elements. Therefore,
the recursive relation for our dynamic programming scheme can
be represented as:

D[i][�][j] = min
k ∈ [1,hi−1]

{D[i − 1][� − tj
i
− �(ck, cj)][k] + ej

i
+ �(ck, cj)}

(10)

D is filed up in a row by row manner and in an order so that all the

previous i − 1 rows are filled when the ith row is being calculated.
Note that only those elements corresponding to the Pareto-optimal
configuration of bi is calculated in each vector of D[i][�][ ]. Finally,
the solution quality is decided by min{D[n][�][j]}, for � ∈ [Tmin,
Tmax] and j ∈ [1, hn], which is the lowest value in last row of D.
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ig. 3 provides a pictorial representation of our algorithm. A possi-
le solution and one of the configuration on the path are shown for

llustrative purpose.
Complexity analysis: Our algorithm iterates over all the nodes

1 to n). In other words, the input size of our algorithm is actually
he number of execution blocks. In each iteration, all discretized
i values (Tmax − Tmin) as well as all Pareto-optimal configuration
oints (1 to hi) for current and previous nodes are examined. Hence
he time complexity is O(n · (max{hi})2 · (Tmax − Tmin)). The memory
equirement of our algorithm is determined by the size of D, which
tores n · (Tmax − Tmin) · h · sizeof(element) bytes. To reduce the mem-
ry complexity, in each entry of D, we can simply use minimum
umber of bits to remember the configuration choice instead of real
i values. For calculation purposes, two two-dimensional arrays
re used for temporarily storing Ei values for current and previous
odes.

Deadline constraint: To ensure that the solution we find does
ot violate any task’s deadline, during each step of the dynamic
rogramming process, if bi has deadline constraint, all the entries
ith Ti value larger than di are set to infinity. As a result, in the next

tep, those entries will be regarded as invalid.
Arrival time constraint: In the final solution, we have to guarantee

hat none of the initial blocks of each task instance starts execution
efore the task’s arrival time as shown in Eq. (7). However, since it is

ossible that one execution block finishes earlier than its very next
lock (thus creating an idle interval), the entries (each of which is
vector) with Ti ≤ ai+1 in the ith row of D are valid. One important
bservation is that, for block bi+1, it does not really matter when
xactly bi ends if bi finishes before bi+1’s arrival time. In other words,
on effect for DVS.

the Ti values of these entries have no impact on the decision making
in bi+1. Hence, in the final solution, if bi actually ends before ai+1,
the choice we make for bi must be the one that results in the lowest
Ei value.

We partition the ith row into three ranges by the next block’s
arrive time ai+1 and the current block’s deadline di as shown in Fig. 4.
The first range, named range A, in which entries with finish time
earlier than ai+1, are all valid but not all are needed during decision
making. The ones with minimum Ei, for each configuration choice
of bi, are selected and stored in the vector D[i][ai+1][ ]. All entries in
range A are then set to infinity. By doing this, without losing any
precision, we force bi+1 to start no earlier than its arrival time. The
second range (range B) in which entries with Ti values between ai+1
and di are all valid for the calculation of next iteration since they
make bi+1 start after ai+1. The last range are all discarded due to
deadline constraint of bi.

For periodic task set, if each task’s deadline is equal to its period,
ai+1 is always earlier than di. It can be proved by contradiction. If
ai+1 is larger than di, it implies that the next job of the task cor-
responding to bi arrives before bi+1 does. Therefore, there exists a
ready-to-execute task between bi and bi+1, which contradicts the
fact that bi+1 is the very next execution block of bi. In cases where
ai+1 may be after di (e.g., for aperiodic task set), range B vanishes and,
as a result, the problem essentially becomes two independent sub-

problems (one consists of blocks before bi while the other consists
of blocks after bi+1, inclusively).

Tradeoff by time discretization: As discussed above, the time com-
plexity of our algorithm is dominated by the term (Tmax − Tmin).
A tradeoff can be made between solution quality and algorithm
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Fig. 10. Variable overhead aware effect in DVS.

erformance by further discretizing the execution time Ti. Dur-
ng the dynamic programming, instead of calculating for every
ime unit, we can compute in interval of multiple units. We define
his number of time units as a parameter ı. For example, if ı = 2,
very row of D will contain [(Tmax − Tmin)/ı] vectors which are
Tmin, Tmin + 2, Tmin + 4, . . ., Tmax}. The time complexity is reduced
o O(n · (max{hi})2 · ((Tmax − Tmin)/ı)). By doing this, we actually
xamine every possible path at a coarser granularity. Our exper-
mental results demonstrate that time discretization only brings
inor design quality degradation in terms of energy consumption
hile the algorithm efficiency can be greatly improved.

Approximate approach: To further reduce the algorithm com-
lexity, we can use an approximate version of our approach by
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storing only one element instead of a vector in D[i][�][ ]. In other
words, D is now a two-dimensional array in which each element
D[i][�] stores the lowest Ei for nodes b1, b2, . . ., bi while Ti ≤ �, dis-
regarding the end configuration (for bi) of that specific path. As a
result, the approximate version cannot support variable time over-
head since we do not know the configuration of the previous block
without knowing the variable time overhead (which contradicto-
rily depends on the previous block’s configuration) during each
step. Although variable energy overhead is used in actual calcu-
lation, we do not consider it for all possible configurations of the
previous block in order to make tradeoff for efficiency. Therefore,
the recursive relation becomes:

D[i][�] = min
j ∈ [1,h]

{D[i − 1][� − tj
i
− �] + ej

i
+ �(ck, cj)} (11)

where � represents the constant time overhead and ck stands for
the configuration of D[i − 1][� − tj

i
− �]. For safety, � can be set

to the worst case time overhead. Similarly, the solution quality is
decided by min{D[n][�]}, � ∈ [Tmin, Tmax]. The time complexity is
reduced to O(n · max{hi}· ((Tmax − Tmin)/ı)). This is reduction of a
factor of max{hi} over the exact algorithm. Fig. 5 shows a pictorial
illustration of our approximate approach.

5. Experiments

5.1. Experimental setup
we use real applications which are selected benchmarks from Medi-
aBench [33], MiBench [34] and EEMBC [35] to form four task sets,
each consisting 4–7 tasks, as shown in Table 1. In order to avoid
scenarios where some task dominates the others in terms of energy
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Table 1
Task sets consisting of real benchmarks.
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Set 1 ospf, susan, pegwit, pktflow
Set 2 cjpeg, epic, dijkstra, FFT, qsort
Set 3 CANRDR01, PUWMOD01, AIFIRF01, BITMNP01, CACHEB01, AIFFTR01
Set 4 stringsearch, ospf, CRC32, pegwit, untoast, qsort, toast

onsumption, we select the benchmarks such that all the tasks in
he same set have comparable sizes. For example, in set 1, the task
ime requirements under base cache are around hundreds of mil-
iseconds. Similarly, for set 2, all tasks require around thousands of

illiseconds of execution. For each task set, we consider both cases
f periodic and aperiodic/sporadic tasks. In the former scenario
periodic tasks), we assign the period and task’s worst-case work-
oad so that the system utilization varies in the range of 0.3–0.96

n incremental step of 0.1. In the later scenario (aperiodic/sporadic
asks), for each task, all the jobs are randomly generated with total
ccumulative system utilization at any moment under the schedu-
ability constraint (e.g., 1). The job inter-arrival time is generated
ased on an exponential distribution. Note that, since we consider
preemptive system (although the simpler case, non-preemptive

ystem, is also supported), the input size of our algorithm is actually
he number of execution blocks as described in Section 4. Different
ask set characteristics will result in drastically different number of
locks.

The reconfigurable cache architecture we utilized [3] is a four-
ank cache with tunable cache sizes of 4 kB, 8 kB and 16 kB, line
izes of 16 bytes, 32 bytes and 64 bytes and associativity of 1-
ay, 2-way and 4-way. Therefore, we have h = 18 different cache

onfigurations.7 Empirically, there are around 3–5 Pareto-optimal
ache configurations for conventional applications [7]. Runtime
econfiguration overhead is dependent on the original cache con-
guration (ci) and the one tuned to (cj). We use SimpleScalar [36]
o collect the static profiling information including the number of
ache accesses numaccesses, cache misses nummisses and clock cycles
C as shown in Section 3.1.

DVS: To evaluate our algorithm for DVS, we consider Mar-
ell’s StrongARM [15] as the underlying DVS-enabled processor,
hich supports four voltage/frequency levels (1.5 V/206 MHz,

.4 V/192 MHz, 1.2 V/162 MHz and 1.1 V/133 MHz). The energy
odel is as described in Section 3.1. We randomly generate four

ynthetic task sets, with similar characteristics in DCR, both for
eriodic and aperiodic/sporadic scenarios.

DVS + DCR: We also evaluate our approach in the case where
oth DVS and DCR are employed in the system. We use the same
ask sets as described in Table 1. The total energy consumption
s therefore Etotal = Ecache + Eprocessor. Task execution time is depen-
ent on both voltage level (which decides the length of each cycle)
nd cache configuration (which decides the total number of cycles).
untime overhead is thus the sum of both the cache reconfiguration
verhead and the voltage scaling overhead.

.2. Results

Energy reduction: We compare our algorithm with two heuristics

hich are applicable to both DVS and DCR, namely Uniform Slow-
own and Greedy Repairing, since the techniques proposed in [6]
nd [7] are only for soft real-time systems and thus not applicable
o our case. These two heuristics are adapted from DVS techniques

6 This is a practical and reasonable range since below 0.3 the solution can be
rivially found by selecting most energy-efficient configurations for all tasks.

7 h does not equal to 33 since several parameter combinations lead to invalid
onfigurations.
Fig. 12. Comparison of our exact approach and approximate approach: (a) energy
consumption normalized to uniform slowdown heuristic; (b) running time.

[37,38]. Generally, in uniform slowdown, we choose the config-
uration for task �i which consumes minimum energy while has
equal or less execution time compared to tbase

i
/�, where tbase

i
is the

execution time under base case and � is the system utilization. In
greedy repairing, we first assign the most energy efficient configu-
ration to every task. If the task set becomes unschedulable, we run
a greedy repairing phase, during which the next more performance
efficient configuration for one of the tasks is selected which leads to
minimum ratio of energy increase to system utilization decrease.
The process repeats until the task set becomes schedulable. This
heuristic is also used in [39]. Note that these two heuristics assign
only one configuration per task and are not able to consider vari-
able overhead. Figs. 6 and 7 show the comparison results for both
the scenarios where DVS and DCR are employed simultaneously
and separately, respectively. The time discretization parameter ı
is set to 1, 2, 4 and 8 ms.8 As normalized to the uniform slow-
down heuristic, 25% of energy savings for DCR and 17% for DVS on
average can be achieved using our approach. Compared with the
greedy repair method, the energy savings are 17% and 11% for DCR

and DVS, respectively. When both techniques are employed, the
energy saving achieved are less compared with employing them
separately.

8 In DCR, since tasks in set 3 have smaller sizes in terms of energy consumption
and execution time than other sets, the unit of ı is microsecond.
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Fig. 13. Comparison of our exact approach and appro

Time discretization effect: Figs. 8 and 9 illustrate the flexibil-
ty of our algorithm by varying the time discretization. Results
re the average of both periodic and aperiodic scenarios and nor-
alized to the ı = 1 ms scenario. ı is increased exponentially from
ms to 128 ms. The important observation is that, although our
lgorithm running time is drastically reduced, the design qual-
ty (total energy consumption) is only slightly sacrificed and still
ery close to the case where ı = 1 ms. For example, for task set
in DCR which has 679 execution blocks in the hyper-period,

ur algorithm gives the solution in 1.5 s with ı = 128 ms. The

nergy consumption of this solution is only 7% worse than the
ne generated with ı = 1 ms, which requires 19 s of execution
ime.

Variable overhead aware effect: For both DVS and DCR, we com-
are two different versions of our algorithm: one is aware of
Time Discretization Gap

16% overhead

e approach under various reconfiguration overhead.

variable reconfiguration overhead and the other assumes constant
overhead (which is the average of all variable overhead values). For
DVS, the variable overhead matrix is generated so that each value
depends on and is in proportion to how much voltage/frequency
is increased or decreased. For DCR, the matrix is similarly gener-
ated except that the overhead for tuning the cache capacity from
one level to another is 10 times larger than tuning the line size and
associativity. Therefore, the actual overhead is the sum of all three
cache parameters.

First we show how the amount of overhead affect the design

quality in DVS. We vary the average of the variable energy overhead
from 5% to 30% of the average of all block’s energy consumption.
Fig. 10 shows the result averaged over all task sets. Clearly, vari-
able overhead awareness brings more benefit when the amount of
overhead is larger. Fig. 11 demonstrates that effectively utilize the
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ariable overhead can lead to substantial energy saving improve-
ents for all task sets in DCR. Same observation can be made for
VS scenario. However, variable overhead awareness in DCR can

ead to averagely 10% more energy savings than in DVS, which is
ecause the size and variability of DCR’s design space is much larger
han DVS. Note that although DVS and DCR are used as the examples
ere, our approach is generally applicable to any kind of optimiza-
ion problem based on reconfiguration—where the actual overhead
f reconfiguration could be substantial.

Approximate approach effect: We study the performance of the
pproximate version of our approach using a 2-D array dynamic
rogramming with respect to the exact approach using a 3-D
rray, as discussed in Section 4.2. Fig. 12(a) and (b) demonstrates
he normalized energy consumption and absolute running time,
espectively, under different ı values considering DCR. It can be
bserved that the approximate approach requires only 1–1.5% more
otal energy consumption (averaged over all task sets) but requires
ignificantly less running time (for task set 1 with utilization of 0.8).
owever, exact approach is observed to experience relatively less
esign quality degradation with larger time discretization (ı).

We also investigate the impact from various reconfiguration
verhead on the relative energy efficiency of the our approxi-
ate approach and exact approach. Fig. 13 shows the comparison

n energy consumption (normalized to the exact approach with
= 1 ms) using DCR under various cache reconfiguration overhead
alues. We vary the overhead, both energy and time, for tuning the
ache size from one level to its neighboring one (e.g., from 4 K to 8 K
r vise versa) as 1%, 2%, 4%, 8%, 12% and 16%9 (as shown in Fig. 13(a),
b), (c), (d), (e) and (f), respectively) of the average consumption of
ll the blocks. The overhead matrix is generated as described above.

The important observation here is that when the reconfigura-
ion overhead increases, the approximate version of our approach
onsumes more energy than the exact approach. Specifically, when
nly 3% differences is observed in Fig. 13(c), it becomes as large
s 10% when the overhead percentage increases. It is because the
pproximate approach does not consider all possible end config-
ration of the last step (i.e., block) during dynamic programming
rocess and thus variable overhead is not fully incorporated. More-
ver, the approximate approach also scales worse when ı increases.
or example, in Fig. 13(d), when ı becomes 128 ms, the approx-
mate approach gives a solution with very bad quality while the
xact approach behaves acceptably.

Another interesting observation is that, as shown in
igs. 12 and 13, in certain scenarios, the exact algorithm with
arger ı may have very similar or lower running time while achieve
omparable or even better energy saving than the approximate
pproach with smaller ı. For example, in Fig. 13(c), the exact
pproach with ı = 8 ms outperforms the approximate one with
= 1 ms in terms of energy using almost identical running time.

n general, when the overhead is significant, our exact approach
s preferable over the approximate version. However, when
he overhead is small or negligible (e.g., Fig. 13(a) and (b)), the
pproximate approach is more efficient since it can achieve almost
dentical energy savings at small ı as the exact approach while
equires significantly short time frame.

. Conclusion
Dynamic reconfiguration is widely used for improving energy
fficiency in microprocessor systems. We proposed a general and
exible algorithm for both cache reconfiguration and voltage scal-

ng in multitasking systems with timing constraints. Our approach

9 In other words, the overhead for changing the line size and associativity is 0.1%,
.2%, 0.4%, 0.8%, 1.2% and 1.6%, respectively.
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[

[
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has the following advantages. First, it can lead to more energy sav-
ings than inter-task manner DVS/DCR techniques. Secondly, it can
effectively take variable reconfiguration overhead into considera-
tion. Finally, our algorithm can be flexibly parameterized so that
only slight solution quality degradation can be traded for drasti-
cally reduced running time requirement. It is also independent of
task characteristics and scheduling policy. Extensive experiments
demonstrates the effectiveness of our approach.
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