
SYNERGISTIC INTEGRATION OF CODE COMPRESSION AND ENCRYPTION IN
EMBEDDED SYSTEMS

By

KARTIK SHRIVASTAVA

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2010

c⃝ 2010 Kartik Shrivastava

2

To my family and friends

3

ACKNOWLEDGMENTS

First, I would like to thank my thesis supervisor Dr. Prabhat Mishra for providing me

an opportunity to solve many interesting and complex problems, assisting me to learn

new technologies and recognizing the potential in me to positively contribute in ongoing

research in Embedded Systems Lab. My sincere thanks to Dr. My Thai and Dr. Alin

Dobra for being my thesis committee members and providing me valuable feedback

and constructive comments on my thesis. I would also like to thank all Computer and

Information Science and Engineering Department faculty for offering advanced courses

to augment my knowledge and inspiring me to apply those concepts to solve numerous

complex issues. I would like to extend my profound gratitude to research members in

Embedded System Lab who were there at all times providing me a joyous environment,

listening to all my problems and for assisting me in solving them with great ease. Last

but by no means the least, I would like to convey my heartfelt thanks to my family

and friends who, at all times have been a great source of positive spirit, inspiration,

encouraging me to take bold decisions and accomplish them successfully.

This work is partially supported by the National Science Foundation under Grant

No. CNS-0915376.

4

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS . 4

LIST OF TABLES . 7

LIST OF FIGURES . 8

ABSTRACT . 9

CHAPTER

1 INTRODUCTION . 10

1.1 Code Compression . 10
1.2 Integration of Code Compression and Encryption 12
1.3 Thesis Contributions and Organization . 12

2 RELATED WORK . 14

2.1 Code Compression . 14
2.2 Encryption . 16
2.3 Combination of Code Compression and Encryption 16

3 DUAL CODE COMPRESSION . 18

3.1 Overview . 19
3.1.1 Offline Dual Compression . 19
3.1.2 Decompression Architecture . 20

3.2 Dynamic Frequency based Compression 21
3.2.1 Profile creation . 21
3.2.2 Compression Mechanism . 23
3.2.3 Runtime Decompression . 25

3.3 Static Frequency based Compression . 27
3.4 Experiments . 29

3.4.1 Experimental Setup . 29
3.4.2 Code Size Reduction . 29
3.4.3 Performance Increase . 30

4 INTEGRATION OF CODE COMPRESSION AND ENCRYPTION 36

4.1 Combining Compression and Encryption 36
4.1.1 Encryption followed by compression 36
4.1.2 Compression followed by encryption 36

4.2 Dynamic Code Encryption and Compression 37
4.2.1 Compressed Binary Creation . 37
4.2.2 Performance Analysis . 39
4.2.3 Placement of Cache . 42

5

4.3 Experiments . 44
4.3.1 Experimental Setup . 44
4.3.2 Results . 45

5 CONCLUSION . 48

REFERENCES . 50

BIOGRAPHICAL SKETCH . 52

6

LIST OF TABLES

Table page

3-1 A summary of the number of static and dynamic instructions in the selected
benchmarks where each instruction is of 4 bytes. 29

3-2 Number of clock cycles for the uncompressed and compressed benchmarks
for various cache sizes. The cache sizes are in bytes 31

4-1 Average ratio of the number of cycles for a combination of the used encryption
and compression methods . 45

7

LIST OF FIGURES

Figure page

1-1 Overview of Code Compression . 11

3-1 Overview of Dual Code Compression . 19

3-2 Percent of coverage of dynamic instructions for various dictionary sizes in the
selected benchmarks. 22

3-3 Dynamic Frequency based Compression Mechanism 24

3-4 Decompression and execution of DFC compressed code 25

3-5 Compression encoding used in bit-mask based encoding 28

3-6 Compression ratios for the benchmarks, using SFC 30

3-7 The miss ratios for the benchmarks for various cache sizes 33

3-8 Ratio of the reduction in the number cycles due to compression for various
cache sizes. 33

3-9 Cycles for epic . 34

3-10 Cycles for djpeg . 34

3-11 Cycles for cjpeg . 35

3-12 Cycles for rawcaudio . 35

4-1 Encryption followed by Compression . 37

4-2 Compression followed by Encryption . 37

4-3 Procedure used to compress and encrypt an ECOFF binary 38

4-4 Basic compression followed by encryption model 39

4-5 Processor-Cache-Decoder (PCD) architecture 42

4-6 Processor-Decompressor-Cache-Decryptor (PDCD) architecture 43

4-7 Compression ratio for the various benchmarks 45

4-8 Performance ratios for DES for various cache sizes 46

4-9 Performance ratios for AES for various cache sizes 47

4-10 Ratio of execution cycles between compressed and uncompressed binaries . . 47

8

Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the

Requirements for the Degree of Master of Science

SYNERGISTIC INTEGRATION OF CODE COMPRESSION AND ENCRYPTION IN
EMBEDDED SYSTEMS

By

Kartik Shrivastava

August 2010

Chair: Prabhat Kumar Mishra
Major: Computer Engineering

Embedded systems are used in a wide variety of places today, from cell phones

to automobiles. Architects aim to make embedded systems more powerful and

space efficient as well as secure. Code compression techniques are promising

for reducing the memory requirements, whereas existing encryption techniques

are widely used for application security. Code compression is traditionally used to

reduce the code size by compressing the instructions with higher static frequency.

However, it may produce a decompression overhead. Performance aware compression

strategies try to improve performance through reduction of cache misses by utilizing

the dynamic instruction frequency, but it sacrifices code size. Code compression

and encryption can be integrated to make embedded system efficient (in terms of

area, power and performance) as well as secure. This thesis studies a promising

direction of compression followed by encryption to reduce the decryption overhead while

maintaining the individual advantages of both code compression and encryption. This

thesis also proposes a dual compression scheme that aims to simultaneously optimize

code size reduction and performance improvement. Experimental results show that

dual compression can achieve both compression ratios of up to 60% and an average

performance improvement of 50%. Moreover, compression followed by encryption

reduces the execution time of the encrypted binary by 40% on an average.

9

CHAPTER 1
INTRODUCTION

Embedded systems have a wide variety of applications today, from multipurpose

handheld PDAs to dedicated real-time control systems. Embedded systems are

resource constrained i.e., they generally have limited memory and computational

capabilities and there is a driving need to extract as much space efficiency and

performance from the available resources as possible. There is also a need of securing

proprietary programs from espionage and sabotage, while minimizing the effect on

performance. Code compression addresses the memory requirements, whereas

encryption provides security for application programs. This chapter is organized as

follows. Section 1.1 describes code compression techniques. Section 1.2 motivates the

need for combining code compression with encryption. Finally, Section 1.3 describes the

thesis’ contributions and organization.

1.1 Code Compression

General data compression techniques like Huffman [1], LZW [2] etc. are used

to reduce the size of the targeted data to better utilize storage space. Compressing

the application binary and decompressing it at runtime helps us better utilize the

limited memory space in embedded systems. Figure 1-1 shows an overview of code

compression in embedded systems. The compressed code is placed in the main

memory and/or in the instruction cache, thus increasing their effective sizes by enabling

them to hold more number of instructions. During runtime, compressed code is fetched,

decompressed and sent to the next memory level or to the processor. Decompression

introduces a certain overhead which increases the number of cycles for each fetch,

which may reduce the program’s execution rate. However, a reduced binary size of

a compressed application has some features which can improve its performance. If

the compressed code is stored in the main memory, filling up a cache line on a cache

miss will require fewer number of cycles on the average, in effect reducing the average

10

latency to fetch an instruction block from the memory. Moreover, placing the compressed

code in the cache means that it holds more instructions, hence increasing the effective

cache size and causing a reduction in the miss rate.

MemoryProcessor

Compression

Decompression

Offline
Stage

Embedded System

Application
Program

Figure 1-1. Overview of Code Compression

Code compression has been employed to exploit both code size reduction and

performance increase in embedded systems. Compression Ratio is widely accepted as

the metric for measuring the efficiency of compression algorithms and is defined as:

Compression Ratio =
Compressed Code Size

Original Code Size

Good compression ratios can be achieved by compressing the instructions that

occur most frequently in the code, whereas, a speedup is achieved by compressing

the instructions that are fetched most often. Most frequent instructions in static code

may not be the most executed ones and vice versa. Hence, a binary compressed to

maximize one benefit may not provide the best results in the other scenario.

There are some mixed profile based compression schemes which attempt to

achieve both code size reduction and performance improvement. In mixed profiling, the

dictionary consists of instructions from both sets of instructions by selectively combining

both static and dynamic frequencies. This approach can lead to a trade-off but cannot

11

achieve the best of both worlds. Chapter 3 describes how to simultaneously achieve

both code size reduction and performance improvement.

1.2 Integration of Code Compression and Encryption

For more than two decades now, software industry has risen remarkably in

size and importance, and like all other industries it is susceptible to espionage and

sabotage. There are numerous ways devised to recover the logic of the code or even

to alter the instructions in the code from the binaries of poorly protected software. As

our dependency on software increases so does the necessity of better and efficient

protection schemes from these threats i.e., making the software more secure without

highly compromising its execution time and throughput. This thesis proposes a way of

achieving it using encryption over code compression. Encryption has always served

as a dependable way of protecting information. Protecting critical data for storage

and transmission is one of the most commonly used applications of cryptography.

For example, encryption of messages while sending them out in common media is a

common practice by the wireless companies. Ciphering files wile storing them on the

hard disk protects them from being read in case the hardware itself is lost or stolen.

Software or rather binary code is fundamentally different from other static data. Code

encryption itself is a relatively new and open field of research. Encrypting static data

is mainly concerned with the encryption algorithm and the mode of operation. Code

encryption requires that instructions need to be decrypted during execution, and

therefore can introduce significant overhead. Such intricacies of using binary code as

an active process make encryption/decryption more complex. Chapter 4 integrates

code compression with code encryption, attempting to make code execution secure and

efficient at the same time.

1.3 Thesis Contributions and Organization

This thesis has two major contributions: i) a novel dual compression scheme which

aims to simultaneously maximize the reduction in the overall execution cycles and

12

the binary size, and ii) synergistically and efficiently combine encryption with code

compression. In dual compression scheme, first the code is compressed on the basis

of its execution profile and then second compression is done to reduce the binary size,

based on the static occurrences of the instructions after the first compression. During

execution, decompression is first done between the cache and the memory and then

between the processor and cache. I present a detailed description of compression

algorithm and decompression system with performance results and analysis. While

combining encryption and code compression, I present an analysis of the most feasible

and efficient architecture followed by analysis of how various parameters such as

compression ratio, decryption and decompression latency, cache size etc. affect the

application’s performance. The framework is implemented on the SimpleScalar simulator

and validated using MediaBench and MiBench benchmarks.

Rest of the thesis is organized as follows. Chapter 2 surveys related work on code

compression and encryption. Chapter 3 describes the dual compression scheme.

Integration of compression and encryption is discussed in Chapter 4. Finally, Chapter 5

concludes the thesis.

13

CHAPTER 2
RELATED WORK

The existing approaches can be divided into three related categories: code

compression, encryption and a combination of code compression and encryption.

Section 2.1 lists the existing code compression techniques that target code size

reduction, performance improvement and the attempts to combine these two. Sections

2.2 and 2.3 give a listing of some of the encryption techniques and attempts to combine

them with code compression.

2.1 Code Compression
Code compression techniques were first developed for embedded systems by Wolfe

and Channin [3]. They developed a Huffman coding based compression technique in

which the compressed program is stored in the main memory. A Line Address Table

(LAT) is used to map the instructions in the original code to the compressed code.

Lekatsas and Wolfe used Arithmetic coding for code compression in embedded systems

[4]. Nam et al. [5] used dictionary based compression to compress VLIW instructions.

Larin and Conte devised a Huffman based compression on embedded systems

in [6]. Tunstall coding was used by Xie et al. [7] to perform variable to fixed length

compression. Usage of variable sized block was further exploited by Lin et al. [8],

when they proposed LZW compression scheme for code compression of embedded

processors. Code compression techniques were applied on variable length instruction

set processors by Das et al. [9]. Several new techniques have been proposed to

improve the standard dictionary based compression by remembering as many

mismatches as possible. Although different approaches have been proposed to

accomplish this, recent work by Seong et al. [10] has given promising results. They

remember the mismatch positions using bitmasks, which is advantageous since a

number of mismatches can be remembered using a single bitmask. The other major

advantage of this method is that the compressed code can be decompressed in one

cycle and therefore, it has a minimal decompression overhead and does not hamper

14

the processor performance. All these works emphasize on reducing the code size of the

application at the cost of potential performance degradation.

There has also been some work on code compression based on dynamic frequency

profiling to increase performance efficiency. Benini et al. [11] proposed a technique

of selective compression to reduce the energy required by the program to execute on

embedded systems. They compressed the most commonly fetched instructions to

reduce the energy dissipated in memory accesses. Their profiling results show that

256 most frequently fetched instructions in their benchmark took up a large portion of

the program execution time. Therefore, they only compressed these 256 instructions.

The advantage of their method is the simplicity of the decompression logic. However,

they targeted energy dissipation rather than system performance or the code size.

Lekatsas et al. [12] proposed a dictionary based compression technique for code

compression, which exclusively dealt with taking advantage of compressing words with

higher frequencies. They developed a compression scheme and a decompressor which

takes one clock cycle to extract instructions from compressed code through which a

performance increase was achieved. They used fixed and variable-length code words

in their experiments. Their results show an average performance improvement of 25%.

However code size reduction is not discussed.

Netto et al. described [13] a multi-profile based compression technique where

they proposed an approach to mix static and dynamic instruction profiling to effectively

exploit size-performance trade-off. Like our approach, they too used a word-sized sets of

indices, removing any compressed word misalignments, giving a faster decompression.

Their results show a 35% reduction in code size and a 50% reduction in instruction

cache accesses. However, their work uses a single compression scheme, with a single

decompressor. So, for any combination of instructions from their dynamic and static

profiles, both size and performance cannot be optimal at the same time.

15

In the dual compression scheme described in Chapter 3, compression for

speed and size are done separately. To increase speed, we have improved the

code compression technique in [13] with a more compact compression format and

a faster decompression method that uses an auxiliary table. The compression

technique targeting a reduction in size is similar to Seong et al. [10], as it gives the

best compression ratio while faces minor decompression overhead.

2.2 Encryption

Encryption techniques have been used since historic times. These techniques were

basically of two types: substitution ciphers and transposition ciphers. In the former,

substitution rules are defined to substitute one character with another. On the other

hand, transposition ciphers change the order of characters in the code. However, all

these ciphers were easily broken using statistical attacks.

Private key cryptography has been used since early 20th century in which both

parties operating on the data had the same key to encrypt and decrypt. This type of

shared key cryptography is of two types: block and stream. A block cipher operates

on a block of data while a stream cipher works by combining the data with a stream

of pseudo-random bits. Example of block ciphers include AES and DES. RC4 is an

example of stream cipher. However, the problem of sharing the private key forced people

to change to public key cryptography. In this system, there are two sets of keys, public

key and private keys, with the encryptor and the decryptor respectively. These keys are

different and one cannot be produced from the other. The encryptor encrypts the code

using its public key while the decryptor decrypts it using its own private key. Therefore,

the need of key sharing is avoided. RSA is an example of public key cryptography.

2.3 Combination of Code Compression and Encryption

There are few efforts to combine both encryption and compression together.

Johnson et al. [14] proposed a method to compress encrypted data using Low Density

Parity Check codes (LDPC) and they have shown their performance on OTP encrypted

16

data. However, their method is not suitable since LDPC compression is NP hard. Also,

they have used their algorithm only on OTP encrypted data, which is not considered a

good encryption scheme. Ruan et al. [15] improved the Shannon-Fano-Elias technique

of encrypting compressed data by improving the code length. However, the intensive

decryption/decompression of these codes are not applicable in embedded systems.

Although IBM Codepack uses keys for decompression [16], there has been no indication

of encryption in them.

Shaw et al. [17], developed a method in similar lines with ours on combination of

compression and encryption. They work mainly on image and video files and not for

embedded systems. The compression schemes used by them, which comprises of

codebooks is lossy in nature. This may be suitable for data, but certainly not applicable

for the code, since a lossy code can lead to inaccuracy and inadequate functionality.

Cypress, developed by Lekatsas et al. [18] has integrated compression and encryption.

They deal with both code and data sequences for multimedia embedded systems. In

their system, they use a compression/encryption technique which works on both code

and data. The problem arises when operating on data. Data can be written back to the

memory by the processor. They try to counter this by changing the system including

changes in page table and placement of instruction and data caches. This data has to

be encrypted and compressed again before being written. Since, in this case, encryption

and compression have to be performed during runtime, it will significantly affect

processor performance and is not applicable in many systems with real-time constraints.

Moreover, their approach is inherently intrusive, since there is a significant change in

the actual hardware of the system. In chapter 4, I have proposed a method in which the

compression and encryption of the code can be done with minimal modification in the

hardware of the system, while it retains all the advantages of compression as well as

encryption.

17

CHAPTER 3
DUAL CODE COMPRESSION

Dual code compression targets to optimize both system performance and code

size reduction, which is not possible in any singular code compression scheme as

it will target either size reduction or performance improvement. At a high level, dual

code compression scheme is similar to other code compression methods, i.e., first a

compressed binary is created offline, then decompression is done dynamically for each

block of code when it is fetched during execution. The difference of course lies in the fact

that compression and decompression are done twice, first for performance improvement

and then for size reduction, based on frequencies of dynamic and static instructions

respectively. Therefore, there should be a synergy between the two steps. The output

of the first compression step should be a valid input for the second. Moreover, dynamic

decompression for the two steps should be done in such a way that the overhead is

minimal.

To achieve a speedup we must reduce the cache miss ratio which is possible

by placing compressed code in the cache. Holding the most frequently executed

instructions in compressed form will greatly enhance cache usage and correspondingly

improve system performance as the cache miss-rate will reduce. The main memory

utilization is enhanced by holding statically compressed code with minimal code size.

The ordering of the two compression and decompression steps are shown in Figure 3-1.

The rest of the chapter is organized as follows, Section 3.1 presents an overview

of dual compression and decompression. Section 3.2 describes the first half of dual

code compression and its corresponding decompression, i.e., compression to target

performance enhancement. Section 3.3 presents a description for the second half

of dual compression which reduces the code size. Finally, section 3.4 presents the

experimental results and analysis.

18

Dynamic Frequency

Compression (SFC)

based
Static Frequency

based
Compression (DFC)

Processor
Decompression

Instruction

Cache

Compressed

Application Program

Application

Program

OFFLINE COMPRESSION

SFC

Decompression

DFC

RUNTIME DECOMPRESSION

Memory

Figure 3-1. Overview of Dual Code Compression

3.1 Overview

3.1.1 Offline Dual Compression

Algorithms 1 and 2 show an overview of steps involved in generating a compressed

binary. First, code compression is done to improve performance by selecting the most

frequently fetched instructions. We refer to this step as Dynamic Frequency based

Compression (DFC). In the second step, code size reduction is aimed and the most

frequently occurring static instructions are selected for compression which we will call

Static Frequency based Compression (SFC).

Algorithm 1 Dynamic Frequency based Compression
1: Create profile P of most executed basic blocks
2: Create a 256 entry dictionary D1 based on P.
3: Compress each 32-bit vector using D1 to produce C1.
4: Generate Basic Block Mapping Table BBM
5: return C1, D1, BBM

In DFC the most frequently called basic blocks are tightly compressed in such a way

that compressed and uncompressed word lengths are fixed at the original instruction

19

Algorithm 2 Static Frequency based Compression
1: Create Dictionary D2 using the most frequent words in C1
2: Compress C1 using D2 to produce C2
3: Readjust Jump targets in C2
4: return C2, D1, BBM, D2

word length. SFC compresses the output of DFC where the most frequently occurring

static words are compressed. The word boundaries are maintained in DFC, which

facilitates compression in SFC. Bit-mask based code compression algorithm is used in

SFC.

3.1.2 Decompression Architecture

Decompression for DFC is done between cache and memory to enable increase

in cache utilization. The cache holds the most frequently executed instructions in

compressed form, thus, the effective size of the cache increases and the total number

of cache misses gets reduced. As decompressor is invoked for each instruction fetch,

it has to be fast enough to decompress a compressed word and provide it to the

processor’s fetch unit in a single clock cycle.

Decompression for SFC is done between cache and memory to make decompression

distributed and to reduce its overhead. When a cache line needs to be refilled,

compressed words are fetched from the main memory, which are decompressed

and then sent to the cache. As decompression is done only when there is a cache-miss,

the decompressor’s invocation is less frequent. Therefore, we can use high efficient

compression techniques, yielding the best possible compression ratios which may have

a reasonable decompression overhead.

There are various other combinations of placement of DFC and SFC decompression

possible but they are less efficient. Post-cache decompression for both DFC and SFC

will cause a heavy latency for each instruction fetch. Decompressing them together

before the cache would mean that the cache would hold uncompressed instructions.

20

In the decompression architecture, whenever there is a cache miss, compressed

blocks are fetched from the main memory, which would be enough to fill up the cache

line on decompression. This way the cache holds code that is compressed with DFC.

If the instruction present in the cache is in uncompressed form it is directly sent to the

processor. If it is compressed, the decompressor fetches and decompresses it and

stores it in its buffer, and passes on the required instruction to the processor. The details

of DFC and SFC are discussed in the following sections.

3.2 Dynamic Frequency based Compression

The DFC scheme is split into three steps. The first step is profile creation,

which involves identifying all the basic blocks of code in the program and the relative

frequencies with which they are fetched and then creating a dictionary based on the

most frequently fetched blocks. The second step efficiently compresses the code in a

manner which best exploits the locality of the most frequently fetched instructions in the

basic block. The third step performs a fast runtime decompression of the compressed

code.

3.2.1 Profile creation

The first step in profile creation is the identification of the basic blocks and their

relative access frequencies of being fetched. A basic block is a code with one entry

point, one exit point and no jump instructions contained in it. It is a sequence of

instructions which are all executed if the first one in the sequence is executed. The

starting instruction of the block may be jumped to from any location, but none of the

other instructions can be branch targets.

The method used to identify the basic blocks and their respective frequencies is as

follows. We generate an execution trace of the program and calculate the frequency with

which each instruction is fetched. We also identify the targets for the jump instructions.

Here basic blocks are those sequence of instructions which have the same frequency of

execution and no instruction as the jump target except the first one.

21

The next step in profile creation is selecting the basic blocks which are most

frequently fetched. We compress the most frequently fetched basic blocks using a

couple of intuitions. Firstly, keeping the most frequently executed instructions in the

cache in compressed form will help us better utilize its space and reduces the number

of cache misses. If a basic block is compressed it will take less number of fetches to

bring it from the memory, therefore it saves a certain number of cycles for each fetch.

Moreover, higher the frequency of that block being fetched, more the cycles we save

cumulatively over the entire execution. We have to decide exactly how many instructions

should be marked for compression. For this we rely on the 90-10 rule which states that

90% of program execution time is spent on 10% of the code. A dictionary is created

consisting of the most frequently fetched instructions. Figure 3-2 shows percentage

of fetches to the instruction contained in dictionaries for different dictionary sizes. For

example, in epic benchmark, 256 most frequently fetched instructions makeup for 96.9%

of the total number of fetches.

Figure 3-2. Percent of coverage of dynamic instructions for various dictionary sizes in
the selected benchmarks.

22

3.2.2 Compression Mechanism

First we have to decide on the dictionary size. Figure 3-2 suggests that a dictionary

size of 256 is reasonable since it can accommodate around 70 to 99 percent of the

total instructions executed in these benchmarks. To compress the code we replace the

instructions with their respective indices. As the target instruction set architecture here

is Alpha, the instruction size is 32 bit i.e., 4 bytes. By selecting a dictionary size of 256,

the index size would be one byte. Unlike bit-masking or dictionary based compression,

a fixed block encoding is used to better facilitate compression and decompression of

the basic blocks. Groups of words belonging to a basic block are compressed together

to form a single word. The main advantage of this approach is that the compressed

code does not get misaligned, so only a single fetch is required to obtain an instruction.

Moreover, fetching a compressed word aligned to the word boundary is faster and can

enable parallel decompression.

Figure 3-3 illustrates the compression mechanism. Instructions {1, 2, 3, 4, 5} and

{8, 9, 10} form basic blocks in the program and each instruction is of size 32 bits. Due

to the chosen dictionary size of 256, the index size will be 8 bits. Instructions 1, 2, 3

and 4 are replaced to form one word consisting of their respective dictionary indices.

Instruction 5 is put as an index in the next word and the remaining space is filled up with

padding. Similarly, instructions 8, 9 and 10 are put as indices and the remaining space is

left padded. The idea behind such compression is that whenever the first instruction of a

basic block is called, the next few instructions are fetched along with it.

As the words do not contain any information as to whether they are compressed

or not, a Basic Block Mapping (BBM) table is required to indicate if a word is in the

compressed format or not. Each entry in the table consists of information about a basic

block, such as the address of the first instruction of the block, the address of the last

instruction and its address mapped to the compressed form. BBM table eliminates the

necessity of flag bits/bytes that indicate the whether the instruction is compressed or

23

0 0x47FF041F

1 0x01020304

2 0x01FFFFFF

3 0xA7FE0001

4 0x27BA2000

5 0x050600FF

0 0x47FF041F

4 0xB53E0008
5 0xA55E0010
6 0xA7FE0001
7 0x27BA2000
8 0xA55E0010
9 0xA75E0000
10 0x23DEFFF0

1 0xA75E0000

ORIGINAL TEXT COMPRESSED TEXT

2 0x6B5B4000
3 0x27BB2000

BBM TABLE

STARTING
ADDRESS

END
ADDRESS

 NEW ADDRESS

1

8 10

1
5

5

DICTIONARY

1 0xA75E0000

4 0xB53E0008
5 0xA55E0010
6 0xA75E0000

 0 0x23DEFFF0

2 0x6B5B4000
3 0x27BB2000

Figure 3-3. Dynamic Frequency based Compression Mechanism

not. This extra information (used in existing methods) spanned over the entire binary

adds on to the size of the compressed binary. The size of the BBM table itself is very

small as it only contains information about the most frequently fetched basic blocks.

It also eliminates the requirement of Line Address Tables (LAT) which map the jump

targets in the compressed code in existing methods. It is easy to map the jump target

using the BBM table due to fixed encoding.

The dictionary size is important in this type of compression format. One compressed

word fully consists of dictionary indices. Thus, smaller the dictionary, more instructions

could be fit in to one compressed word. In Alpha ISA, an instruction word is 32 bits, if

we choose a dictionary size of 256, i.e., an index of size 8, we would be able to fit in

a maximum of four instructions into one word, as shown in Figure 3-3. A choice has

to be made for the index size; a large index would mean more number blocks to be

24

compressed but they will be loosely compressed, whereas a smaller index will have the

opposite effect.

3.2.3 Runtime Decompression

Here I describe the details of the system that is used to perform the runtime

decompression. The decompressor is placed between the cache and the processor

for DFC that has two advantages. Firstly, compressed code is placed in the cache and

secondly fetching individual words from the cache (compressed or uncompressed) is

straight forward.

0 0x47FF041F
1 0x01020304
3 0x01FFFFFF
4 0x27BA2000
5 0x050600FF

0xA75E0000

0x27BB20000
0xB53E0008

0x6B5B40000

FETCHING PC 3
I−CACHE

DECOMPRESSOR

PROCESSOR

Figure 3-4. Decompression and execution of DFC compressed code

The runtime decompression unit uses the BBM table to see which instructions are

compressed. When the decoder fetches a compressed word, it decompresses it using

the dictionary and sends back the required instruction to the processor and stores the

rest in its buffer. The number of instructions contained in a compressed word depends

on the dictionary size as discussed earlier. As the word boundaries are maintained even

after compression, fetching a compressed word from the cache is fast and simple. If the

instruction to be fetched is uncompressed, we only have to map it to the right location

and fetch the whole word. If the instruction is compressed, we fetch the compressed

word, obtain the index and return the required instruction after a dictionary lookup.

Figure 3-4 shows how an instruction is extracted from a compressed word and executed.

Here we execute the instruction with the original PC 3. By looking at the BBM table,

25

PC 3 is shown to be in the basic block {1,2,3,4,5} which starts from address 1 in the

compressed code which will contain instructions {1,2,3,4}.

Consider another example where PC is not part of the basic block, example PC 6.

In this case the basic block which is before 6 is {1,2,3,4,5}. We need to divide the basic

block size by 4 (right shift by 2) to obtain the number of compressed words and add it to

the offset from the last word of the compressed block, i.e., new address for current PC =

new address for the block above+((block size-1) >> 2)+(current PC- last address of the

block). In this case, new address for PC 6 will be 1+(5-1) >> 2)+(6-5)=3.

After mapping PC, the compressed word at address one is fetched by the

decompressor, the instructions are extracted from it and kept in the decompressor’s

buffer and the required instruction is sent to the processor for execution. The decompressor’s

fetches to the cache is pipelined thus fetching any instruction from the cache only takes

one cycle except for instructions that are jump targets. The additional advantage

of a BBM table is that it enables code compression without the use of an additional

compressed/uncompressed flag with each word. This saves significant space since the

BBM table itself is very small.

Placing the decompressor after the cache also means that the cache holds

compressed code, thereby the effective size of the cache increases. If the cache

only holds the most frequently executed code, i.e., the compressed basic blocks, the

effective size of the cache increases by inverse of the compression ratio of the basic

blocks. In this system where each compressed word holds four instructions, the cache

size effectively increases four times. This increase in effective cache size is the reason

of the expected speedup. A larger cache means less number of overall fetches from the

main memory.

The decompression overhead should also be small in order to obtain a proper

speedup. The decoder in this system uses one cycle to fetch an instruction from

the cache, decompress it and stores the four uncompressed words in its buffer. The

26

processor fetches the instructions from the buffer in the next cycle. Thus, fetching four

instructions from a compressed basic block takes five cycles. Fetching an instruction

which is not compressed will take two cycles, one for the decompressor to fetch it from

the cache and one for the processor to fetch it from the buffer. We can reduce the

number of cycles further by pipelining the fetches by the decompressor. A fetch by the

decoder takes two cycles only if the instruction to be fetched is a jump target, otherwise

all the instructions will take just a single cycle. Cycle time to fetch an instruction from the

decoder’s buffer would be very small compared to that from an L1 cache.

3.3 Static Frequency based Compression

Compression schemes used in optimizing code size can be complex and their

dynamic decompression can have significant decompression latency. Dynamic

decompression for SFC is done before the cache, thus decompression is invoked only

when there is a cache miss. The fact that the decompressor is not in the critical path of

execution, i.e., the decompressor is not invoked for each fetch by the processor gives us

the freedom to use efficient compression mechanisms, such as, Huffman or arithmetic

compression that provide excellent compression ratio but have a high decompression

latency.

The compression mechanism used for SFC is based on the work done by Seong

et al [10], which uses a bit-mask based compression scheme which gives a high

compression efficiency and has a single cycle decompression penalty. Compression is

performed on the DFC compressed code. As mentioned earlier, the word boundaries in

DFC are maintained, hence, direct application of bitmask based compression is possible

to perform SFC.

Unlike [10], we have placed the decompression engine for SFC before the cache.

Thus, decompression is invoked at each cache miss to fill a cache line. As the code in

the main memory is in compressed form, intuitively it will require less number of fetches

to the main memory on the average to fill a cache line. Furthermore, as we are using

27

a fast decompression engine, we should see a further speed increase in the system

because of SFC.

I have used bitmask based compression where a two-bit bitmask is used. The

dictionary consists of the most frequently occurring static instructions and the bitmask is

selected by XORing the variation in the instruction from the dictionary index. Other than

these variations the compression mechanism remains the same as [10] and is outlined

in Algorithm 3. Figure 3-5 shows the encoding used for compression.

Algorithm 3 Bitmask-Based Compression
1: Create the frequency distribution of instructions.
2: Create the dictionary based on frequency as well as bit-mask based savings.
3: Compress each 32 bit vector.
4: Handle and adjust branch targets
5: return Compressed code and dictionary

2−bit MaskDecision bit Mask Displacement

Decision bit 32−bit Instruction

(0)

(1)

Dictionary Index

Figure 3-5. Compression encoding used in bit-mask based encoding

It is useful to consider larger dictionary sizes when the current dictionary size

cannot accommodate all the vectors with frequency value above certain threshold.

(e.g., above 5 is profitable). However, there are certain disadvantages of increasing the

dictionary size. The cost of using larger dictionary is more since the dictionary index

becomes bigger. The cost increase is balanced only if most of the dictionary is full with

high frequency vectors. Most importantly, a bigger dictionary increases access time and

thereby reduces decompression efficiency. A standard dictionary size of 2048 is used.

During execution, each time there is a cache miss, compressed blocks are fetched

from the memory which are then decompressed and placed in the cache. The number

28

Table 3-1. A summary of the number of static and dynamic instructions in the selected
benchmarks where each instruction is of 4 bytes.

Benchmark Dynamic Instructions Static Instructions
epic 59494631 47124
cjpeg 19025567 49896
djpeg 5887958 53852
rawcaudio 7610111 27256
rawdaudio 6309300 27248
bitcnts 5276065 23284
crc32 5108304 28392

of blocks fetched from the memory should be sufficient to fill up the cache line after

decompression. The rest is stored in decompressor’s buffer. As the number of blocks

fetched from the main memory to fill up the cache line would be less compared to

regular execution of uncompressed code, a speedup is expected.

3.4 Experiments

3.4.1 Experimental Setup
Experiments were performed in SimpleScalar performance simulator for MIPS

uniprocessor architecture using a selection of benchmarks from MediaBench and

MiBench compiled for Alpha ISA. The benchmark programs employed were epic, cjpeg

and djpeg image compression utility, adpcm-encode and decode voice compression

program, bitcnt from MiBench’s automotive suite and crc32 from telcom suite. The

simulation system consisted of a Super Scalar MIPS Processor, a decompressor each

for DFC and SFC, a single instruction direct cache with a line size fixed at 16 bytes, and

fetching a cache line from the main memory which takes 64 cycles. Table 3-1 shows a

description of the number of static and dynamic instructions for each benchmark used.

3.4.2 Code Size Reduction

Figure 3-6 shows the code size reduction achieved in the code by SFC. The

implementation of bit-mask based compression for a dictionary size of 2048 entries

give compression ratios from 0.60 to 0.65. These numbers are similar to the results in

29

Figure 3-6. Compression ratios for the benchmarks, using SFC

[10]. As expected, there is almost no size reduction in the DFC stage, therefore, SFC is

exclusively responsible for code size reduction.

3.4.3 Performance Increase

Table 3-2 shows performance of the uncompressed and compressed binary in

terms of the number of clock cycles taken to execute using a range of cache sizes and

the corresponding misses for each benchmark. For each benchmark there is a trend

in performance improvement as the size of the cache decreases. The reason for this

trend lies in the fact that the difference in the cache misses between uncompressed

and compressed code decreases with an increase in cache size. Therefore, the ratio

of reduction in cycles will reduce with cache size increase. The greatest performance

improvement is observed for cache size of 128 bytes. Embedded systems generally use

small caches and our techniques can be beneficial in such environments.

Performance improvement is more for benchmarks whose critical code (the most

frequently executed instructions) is much larger than the cache. This could be seen

30

Table 3-2. Number of clock cycles for the uncompressed and compressed benchmarks
for various cache sizes. The cache sizes are in bytes

Benchmarks Cache(bytes) Clock Cycles Cache misses
Original Compressed Original Compressed

epic

128 291288151 125664394 4790372 1701837
256 144591613 94542719 1915429 178483
512 94687156 81393578 986832 662288

1024 80951000 67085506 660391 317468
2048 63696412 51322191 298124 39456

djpeg

128 86863373 25427322 1474658 540177
256 46942406 19158549 766816 392742
512 24810547 14050627 567226 284815

1024 17415100 11420931 562740 153818
2048 9579240 7054849 114398 95077

cjpeg

128 237649522 104696109 4144970 2056011
256 113684344 90706713 1834525 1710372
512 77921692 67695685 1216562 1159591

1024 59294358 56290566 732964 855303
2048 40666875 29184203 436131 265894

rawcaudio

128 83493514 4454026 436131 312296
256 4584825 4429282 302220 4660
512 4479397 4395664 6771 3551

1024 4360331 4344856 4233 2313
2048 4334726 4339501 1200 1074

rawdaudio

128 83493514 4454026 1480939 4660
256 4584825 4429282 6771 3551
512 4479397 4395664 4233 2313

1024 4360331 4344856 1200 1074
2048 4334726 4339501 702 925

bitcnt

128 55195281 16122581 1480939 265894
256 30083364 9716254 509068 88666
512 16747278 9728918 228571 88377

1024 10459757 5248356 108273 8113
2048 5338534 5220950 7748 7404

crc32

128 3697698 3574271 5215 3529
256 3697698 3574271 5215 3529
512 3662466 3601606 4654 4662

1024 3576362 3538366 2853 2458
2048 3535711 3513130 1958 1936

31

for djpeg which has fairly large critical code size. There is a huge increase in the

percentage reduction in the number of cycles, which decreases steadily with increase in

cache size. For benchmarks whose critical code fits easily in the cache, the difference

between the performance of compressed and uncompressed code is negligible. For

example, there is minor change in the number of cache misses for rawcaudio and

crc32 if we increase the cache size after 256 bytes, which implies that the cache

easily accommodates the entire critical code, even in uncompressd form. Therefore,

compressing the code in that cache configuration would not decrease the number of

cache misses, hence no performance improvement is seen. In the case of bitcnts, no

performance improvement for cache size 2K was observed, a 2K cache holds the whole

critical code. Moreover, that performance is equal to that seen for compressed code in

a 1K cache. This is because compressed version of the critical code fits entirely in a 1K

cache but not the uncompressed form which results in a performance improvement of

two times in this case.

Figure 3-7 summarizes the trends in reduction in cache-misses with increase

in cache size for various benchmarks. The decrease in the cache miss-ratio for the

benchmarks for different cache sizes and reduction in the number of cycles due to

compression follows a similar trend as shown in Figure 3-8.

As discussed earlier, SFC may produce a slight speedup as the total number of

fetches made to the memory is expected to decrease due to reduced binary size. As

a corollary to this, combining DFC with SFC should give a better speedup than DFC

alone. The following figures show the number of cycles for four cases, namely running

an uncompressed binary, a binary compressed using SFC only, compressed using DFC

only and compressed using both DFC and SFC . Running uncompressed code requires

in the most number of cycles, followed by SFC only code, DFC only code, and SFC and

DFC combined. The improvement due to SFC is more apparent in smaller caches. A

smaller cache means a greater miss rate, which results in more number of accesses to

32

Figure 3-7. The miss ratios for the benchmarks for various cache sizes

Figure 3-8. Ratio of the reduction in the number cycles due to compression for various
cache sizes.

the main memory. If the main memory holds compressed code each memory access will

effectively bring in more instructions. Thus, less number of memory accesses is required

during the entire execution. This difference in the number of memory accesses is the

reason for the attributed speedup.

Figure 3-9, Figure 3-10 and Figure 3-11 shows this trend for the larger benchmarks

epic, djpeg and cjpeg respectively. Figure 3-12 shows the same for rawcaudio. The

33

Figure 3-9. Cycles for epic

Figure 3-10. Cycles for djpeg

performance improvement is more apparent in the larger benchmarks because their

critical code is large hence have more cache misses. Critical code is fairly small in

the case of rawcaudio which easily fits in a cache of size 256 bytes if the binary is not

compressed using DFC. When compressed, critical code of rawcaudio also fits in a

cache of 128 bytes. Therefore, no improvement is apparent for all cache sizes after 128

bytes for rawcaudio.

34

Figure 3-11. Cycles for cjpeg

Figure 3-12. Cycles for rawcaudio

35

CHAPTER 4
INTEGRATION OF CODE COMPRESSION AND ENCRYPTION

This chapter presents a description and analysis on integration of encryption and

code compression. In Section 4.1 a basic architectural decision regarding the sequence

of encryption and compression is discussed. Section 4.2 presents a performance model

of compression and encryption with an analysis of the placement of caches. Section 4.3

presents the experimental setup and results.

4.1 Combining Compression and Encryption

There can be two ways in which compression and encryption can be combined:

encryption followed by compression, or compression followed by encryption. Combining

both encryption and compression may lead to a number of problems. The first and major

problem being that both decompression and decryption are slow and hence may prevent

the full utilization of the processor performance. The decompression engine should be

such that the rate at which instructions are produced from it is equal to the rate at which

the instructions are executed by the processor. In the next two subsections, we will

discuss the challenges associated with the two possible combinations of encryption and

compression.

4.1.1 Encryption followed by compression

The first scenario is shown in Figure 4-1. Most compression algorithms take

advantage of the matching patterns in the uncompressed data set. Encrypted data

generally has high entropy and therefore, has less similarity in patterns. As a result, it is

difficult to compress those data.

4.1.2 Compression followed by encryption

This is the most useful sequence when one thinks of combining compression and

encryption. It is easier to compress the unencrypted code as the regularity patterns

present in the instructions are pretty high. Moreover, this compressed data can be easily

encrypted and sent across the insecure channel to the receiving end. The decryptor and

36

Application
Program

Processor Memory

CompressionEncryption

DecompressionDecryption

Figure 4-1. Encryption followed by Compression

the decompressor can do the rest of the work. The whole scenario is shown in Figure

4-2.

Application
Program Compression Encryption

Processor Decompression Cache Memory Decryption

Embedded Systems

Data

Figure 4-2. Compression followed by Encryption

4.2 Dynamic Code Encryption and Compression

The discussion in the previous section concludes that compression followed

by encryption is suitable for embedded systems. This section discusses various

implementation mechanisms that are possible and their impact on performance.

4.2.1 Compressed Binary Creation

Algorithm 4 outlines the basic steps in creating a compressed-encrypted text

segment in a binary.

37

Algorithm 4 Basic Compression-Encryption
1: Compress the text segment of the program.
2: Retarget the jumps where possible.
3: Create a mapping table for the rest of the jumps.
4: Encrypt the compressed text segment.

SECT. HEADER

.DATA, .BSS, etc.

.DICT

.JUMPTBL

SEGMENTS

FILE HEADER

(Remaining segments)

.ENCRTXT

FILE HEADER

SECT. HEADERS

.DATA, .BSS, etc.

(Remaining segments)

.TEXT

Keep the rest of the sections as such

Add section headers for .comptxt, .dict and .jmptbl

Extract and modify the File header

Compress .text

Encrypt .text

Create dictionary
Modify dest. addresses
where possible

for remainder
Create Jump Table

Figure 4-3. Procedure used to compress and encrypt an ECOFF binary

Figure 4-3 illustrates the algorithm for an ECOFF binary1 . The text segment is

extracted from the binary and compression is performed on it using bitmasking [10],

which produces an auxiliary jump-mapping table, a dictionary and a compressed text

segment. This compressed text is then encrypted and a new binary file is created using

the encrypted text, the dictionary, the jump-mapping table and the rest of the segments

from the original file. The creation of the encrypted binary is static, i.e., it is done

offline. Execution of this binary however will be dynamic. The encrypted text segment

is kept in the memory and during fetch of each instruction it has to be decrypted and

decompressed. Dynamic decoding (decryption and decompression) involves dedicated

decoder which fetches instruction blocks from the memory, decodes them and sends

1 ECOFF and EFL are widely used formats for binary representation of application
programs

38

back the decoded instruction to the cache or the fetch unit and stores the rest in its

buffer. There is always a decompression overhead associated with the decoder unit

which can be minimized by pipelining.

Processor Decompressor Decryptor Memory

Figure 4-4. Basic compression followed by encryption model

4.2.2 Performance Analysis

Figure 4-4 shows a basic system on which dynamic decoding is performed. The

decoder sits between the processor and the memory, individual instructions are fetched

from the memory.

As the code is compressed, more instructions would be brought in with a single

fetch of a block on the average. This results in lessening the total number of fetches to

the main memory as a single fetch brings in more instructions in compressed from than

in uncompressed from. Reducing the number of fetches should reduce the total number

of cycles of execution. However, decoding a block of compressed instruction will take up

some cycles depending on the complexity of the compression and encryption algorithm.

Now, if the total cycles taken up in decoding the instructions is less than the total cycles

required to fetch them, we will see a speedup in the execution.

The following equations give a basic mathematical model for the above analysis.

We take the basic system shown in figure 4-4 and assume there is a uniform compression

ratio throughout the text segment. We consider a simple unpipelined model which can

be improved when pipelining is introduced

Let,

C=Compression ratio of the text segment

M=Cycles taken to fetch a word from memory

E=Cycles taken to decrypt a word of encoded text

39

R=Cycles taken to decompress a word of encoded text

N=Total number of instruction words fetched during execution

Then,

Total cycles taken to fetch the code for an unencrypted and uncompressed binary

would be

Tn = N.M (4–1)

Total cycles taken to fetch and decrypt the code for a binary that is only encrypted

would be

Te = N.(M + E) (4–2)

Total cycles taken to fetch, decrypt and decompress the code that is encrypted as

well as compressed

Ter = C .N.(M + E + R) (4–3)

Note that Tn,Te and Ter do not constitute the cycles taken by the processor to

execute the code, but only those used in fetching the code to the processor. Now

Equation 4–4 gives the ratio of non-executing cycles between encrypted-compressed

text and regular text and Equation 4–5 gives that ratio for encrypted-compressed text

and only encrypted text.

CN =
Ter
Tn

CN =
C .(M + E + R)

M

CN = C

(
1 +
E + R

M

)
(4–4)

CE =
Ter
Te

CE =
C .(M + E + R)

M + E

40

CE = C

(
1 +

R

M + E

)
(4–5)

CE gives the effect of compression alone on the performance of an executed binary

while CN gives the absolute effect on performance that encrypting and compressing a

binary would have. The goal is to make CN and CE as low as possible. The obvious way

to do it is to have a lower compression ratio C (better compression efficiency) and a low

decompression latency R. We usually have to make tradeoffs when considering these

two potentially conflicting requirements. For example, Huffman and arithmetic encoding

give the best compression ratio but its decompression proves to be very slow. Dictionary

based compression and selective bit-masking give a decent compression ratio with fast

decompression.

Here we have assumed that the compression is uniform throughout the text

segment. In a real scenario, uniformity or irregularity in compression would also affect

CN and CE . There will be some parts of the code that may be more tightly compressed

than others and different parts of the code are fetched at different frequencies. If the

parts that are fetched the most number of times are compressed more tightly the

performance will improve further.

Similarly, encryption algorithm should be chosen in relation to C , M, and R so

as to keep CN small. However, lesser the computational complexity of the encryption

algorithm the less secure it would be. So the designer has to make a choice between

security and speed. For example, AES will have a larger decryption latency than DES.

Hence CN would be smaller for DES and CE would be smaller for AES, i.e., execution

of an encrypted and compressed code will be slower for AES compared to DES but the

effect of compression would be more significant for AES.

For both Equations 4–4 and 4–5, M gives the cache miss latency, and as Equations

4–4 and 4–5 suggest, a large M would reduce the effect of the other latencies. That

means, if M is much larger than both E and R the decompression and decryption

latencies would be negligible.

41

4.2.3 Placement of Cache

Till now we have discussed a generic system involving only a processor, decoder

and memory. A more realistic system would also involve caches. This gives us the

opportunity to explore the different configurations that the system caches can have and

their relative advantages and disadvantages.

First of all, decryptor should always be placed before the cache. Placing it after the

cache would mean that each instruction fetch invokes the decryptor, which would make

the system extremely slow. Placing it before the cache will cause its invocation only on

cache miss. As decompression could be fast, the placement of the decompressor is

more flexible.

Figure 4-5 shows a configuration where the decoder is put between the cache and

the main memory. Here the job of the decoder is to both decrypt and decompress a

block of code from the memory and provide the cache with a block of regular code.

PROCESSOR DECODER MEMORYCACHE

Figure 4-5. Processor-Cache-Decoder (PCD) architecture

The decoded instructions are sent back to the cache. In this scheme the granularity

of decompression is changed from one instruction to an instruction block of the cache.

The larger the cache block size, more the number of instructions that are sent back to

the cache per fetch. Also, more the number of compressed instructions fetched for a

single round of decompression, better the performance improvement. A larger block size

would not necessarily mean a reduction in the total number of fetches from the cache.

That would depend on the actual binary and the size of the basic blocks in the code.

The PCD architecture is similar to the simplistic model in figure Figure 4-6 except

that the granularity has changed, instead of individual words, processing is done on

cache blocks. A larger cache size would mean more hits and a lower frequency of

42

fetches. As that frequency drops with a larger cache size, so does the effect of the

decoder unit, i.e., total number of fetches to the memory and the total number of blocks

decoded will drop. So the difference between the number of fetches in compressed

code and uncompressed code is smaller. In other words a large cache reduces the

significance of a reduced code size. However as the unencrypted code sits in the cache,

the total number of times blocks are decrypted would reduce with a large cache. That

means a lower decryption overhead. So when compared with the performance of a

regular program (unencrypted and uncompressed), with the same cache size, there

should be little difference in the performance ratio.

Figure 4-6 shows a processor-decompressor-cache-decryptor (PDCD) architecture.

In this scheme the encrypted text is fetched as blocks from the memory by the

decryptor, which are then decrypted and sent back to the cache.

PROCESSOR CACHE

MEMORY

DECOMPRESSOR

DECRYPTOR

Figure 4-6. Processor-Decompressor-Cache-Decryptor (PDCD) architecture

The decompressor fetches the compressed text from the cache and sends back

instruction words to the processor. The decryptor and the decompressor cannot

be placed together between the processor and the cache as it would give a large

decryption overhead for each fetch from the processor. In the PCD architecture, the

uncompressed instructions are kept in the cache from where the processor fetches

them. Cache size and the cache replacement method determines miss rate of the cache

system.

43

The advantage of PDCD over PCD is that as the compressed text is kept in the

cache, more instructions are effectively placed in the cache, i.e., the effective cache

size increases which reduces the miss ratio which in turn reduces the number of fetches

to the main memory. However as the processor fetches instructions directly from the

decompressor, there is a decompression latency for each instruction fetch, and it would

be essential for the decompressor to be extremely fast.

4.3 Experiments

4.3.1 Experimental Setup
Our experiments were performed using SimpleScalar performance simulator for

MIPS uniprocessor architecture. A selection of benchmarks from MediaBench and

MiBench compiled for Alpha ISA is used to perform our experiments. The benchmark

programs used were epic, cjpeg and djpeg image compression utility, adpcm-encode

and decode voice compression programs.

I added the decompressor and decryptor modules in SimpleScalar’s sim-outorder.

I kept a single instruction direct cache with a line size fixed at 16 bytes, and fetching a

cache line from the main memory takes 64 cycles.

I have used three compression techniques: bitmaks-based compression, dictionary-based

compression and dual compression described in Chapter 3. Dictionary and bitmask

based compression use a single-cycle decompressor. Block ciphers DES and AES

are used for encryption using ECB encryption mode. DES uses a block size of 64 bits

where as AES uses that of 128 bits and have a decryption latency of 32 and 128 cycles,

respectively.

As bitmask- and dictionary-based compression algorithms have a single cycle

decompression rate, we have used the PDCD architecture to integrate them with

AES and DES. For dual compression we have also used PDCD, however, SFC and

decryption are done at the same stage.

44

Table 4-1. Average ratio of the number of cycles for a combination of the used
encryption and compression methods

AES DES
Uncompressed 4.35 2.29
Bitmask 2.79 1.69
Dictionary 3.47 1.77
Dual 2.50 1.36

4.3.2 Results
Figure 4-7 shows the compression ratios for dual, bit-mask and dictionary based

compression schemes. Bit-masking and dual compression have similar compression

ratios, and are better than the dictionary based compression scheme.

Figure 4-7. Compression ratio for the various benchmarks

The benchmarks show an average increase in performance when comparing

binaries that are only encrypted and those that are encrypted as well as compressed.

Improvement is large when the cache size is small as the number of as a greater

number of cache misses is reduced. Table 4-1 shows the average ratio of cycles when

compared to regular execution with the various combinations of AES and DES with

Dual, Bitmask and Dictionary based compression schemes as well as when they are

uncompressed.

45

Programs that are only encrypted take the most number of cycles, followed by

those that are compressed using dictionary based compression scheme, bitmask based

scheme and dual compression respectively. This result complies with our hypothesis

as bitmasking gives a better compression ratio than dictionary based compression.

Also, cache utilization is the best in dual compression as the most frequently fetched

instructions are most tightly compressed. Programs encrypted with AES take more

number of cycles compared to DES as it has a higher decryption latency.

Figure 4-9 and Figure 4-8 show the effect of caches on execution performance of

only encrypted and encrypted and compressed code for DES and AES respectively. As

the size of the cache increases, the ratio of performance of regular code and encrypted

code decreases for both encrypted as well as encrypted and compressed code. This

is because larger cache sizes means a lower miss ratio. A lower miss ratio means less

number of fetches to the main memory and less number of blocks to decode.

Figure 4-8. Performance ratios for DES for various cache sizes

Figure 4-10 shows the reduction in the number of cycles for various combinations

of compression and encryption methods compared to the corresponding encryption

method. Performance improvement is most noticeable for small caches. Small cache

46

Figure 4-9. Performance ratios for AES for various cache sizes

means more number of fetches, hence the effect of compression would be more

prominent.

Figure 4-10. Ratio of execution cycles between compressed and uncompressed binaries

47

CHAPTER 5
CONCLUSION

Existing embedded systems are used everywhere; starting from day-to-day

appliances to complex biomedical, military and other scientific equipment. Such systems

need to be efficient (in terms of area, power and performance) as well as secure. This

thesis described a novel dual code compression scheme. Code compression techniques

can be used in embedded systems to either improve code size or performance. Through

my proposed scheme of dual compression, we can simultaneously optimize code

size and performance. Dual compression is split into two parts. Dynamic Frequency

based Compression (DFC) improves performance by compressing the most frequently

executing basic blocks. Static Frequency based Compression (SFC) exploits the most

frequent static instructions and uses bit-mask based compression to reduce the code

size. DFC compresses the original binary and provides a valid input for SFC as the

word boundaries are maintained. DFC may cause a minor size reduction. The dynamic

decompression for DFC is done between the cache and processor and that for SFC

is done between cache and main memory. This way decompression is distributed and

cache and memory space is efficiently utilized. SFC itself causes a minor speedup as

fetching compressed code from the main memory would comparatively take less number

of cycles. Experimental results demonstrate that dual compression reduces cache

misses significantly for small caches and produces an average speed up of 50%, and

achieved compression ratios from 60-65%.

The second part of this thesis presented a synergistic scheme of combining

encryption and code compression. While the former provides security to application

programs from reverse engineering and malicious manipulation, the latter is used

to minimize the code size and thus reduce the memory requirements. This thesis

analyzed the sequence in which compression and encryption should be done and

showed that it is useful to first compress the code and then encrypt it, as then it will

48

have reduced code for encryption and decryption. The thesis also analyzed the effect

of various parameters on the performance of such a system and the effect of cache.

A complex encryption algorithm makes the effect of compression more prominent and

the performance increase is proportional to the compression ratio. Large memory

access latencies diminish the latencies of decryption and decompression and a

smaller access latency, as is the case with embedded systems, makes their effect

more visible. With the introduction of caches, it is always more profitable to place the

decryptor before the cache as that would reduce its invocation rate. A large cache

translates in to a lower miss ratio which means less number of accesses to the main

memory and less number of invocations of decryptor, thus, decryption latency would

be less prominent. Finally, a Processor-Decompressor-Cache-Decryptor (PDCD)

architecture would give better results compared to a Processor-Cache-Decoder (PCD)

architecture for a fast decompressor as in that case the cache would hold compressed

instructions, thus, effectively increasing its size. Experimental results demonstrated that

the execution time required is indeed less if encryption is combined with compression

rather than if encryption had been done alone. Compression algorithms which give a

better compression ratio, like bitmask-based over dictionary-based compression, gave

better performance results. For example, bitmask-based compression gave a 17%

reduction whereas that for dictionary based compression was 13% when combined with

DES . Furthermore dual compression makes the best utilization of both the memory

as well as cache and therefore gave the best performance result of 40% reduction in

execution cycles with DES. The performance improvement due to compression was

more apparent for small caches as more cache misses invoked the decryptor more

frequently.

49

REFERENCES

[1] D. A. Huffman, “A method for the construction of minimum-redundancy codes,” Pro-
ceedings of the Institute of Radio Engineers (IRE), vol. 40, no. 9, pp. 1098–1101,
September 1952.

[2] Welch, T.A., “Piparazzi: A test program generator for micro-architecture flow
verification,” Computer, vol. 17, no. 6, pp. 8–19, June 1984.

[3] A. Wolfe and A. Chanin, “Executing compressed programs on an embedded RISC
architecture,” in Proceedings of International Symposium on Microarchitecture
(MICRO), 1992, pp. 81–91.

[4] H. Lekatsas and W. Wolf, “SAMC: A code compression algorithm for embedded
processors,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 18, no. 12, pp. 1689–1701, December 1999.

[5] S. Nam, I. Park and C. Kyung, “Improving dictionary-based code compression
in VLIW architectures,” IEICE Trans. Fundamentals, vol. E82-A, no. 11, pp.
2318–2324, November 1999.

[6] S. Larin and T. Conte, “Compiler-driven cached code compression schemes
for embedded ilp processors,” in Proceedings of International Symposium on
Microarchitecture (MICRO), 1999, pp. 82–91.

[7] Y. Xie, W. Wolf and H. Lekatsas, “Code compression for VLIW processors using
variable-to-fixed coding,” in Proceedings of International Symposium on System
Synthesis (ISSS), 2002, pp. 138–143.

[8] C. Lin, Y. Xie and W. Wolf, “LZW-based code compression for VLIW embedded
systems,” in Proceedings of Design Automation and Test in Europe (DATE), 2004,
pp. 76–81.

[9] D. Das and R. Kumar and P.P. Chakrabarti, “Dictionary based code compression
for variable length instruction encodings,” in Proceedings of VLSI Design, 2005, pp.
545–550.

[10] S. Seong and P. Mishra, “Bitmask-based code compression for embedded
systems,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 27(4), pp. 673–685, April 2008.

[11] L. Benini, D. Bruni, A. Macii and E. Macii, “Hardware-assisted data compression
for energy minimization in systems with embedded processors,” in Proceedings of
Design Automation and Test in Europe (DATE), 2002, pp. 449–453.

[12] H. Lekatsas and J. Henkel and V. Jakkula, “Design of an one-cycle decompression
hardware for performance increase in embedded systems,” in Proceedings of
Design Automation Conference (DAC), 2002, pp. 34–39.

50

[13] E. Wanderley Netto, R. Azevedo, P. Centoducatte, G. Araujo, “Multi-profile based
code compression,” in 41st Design Automation Conference, 2004, pp. 244–249.

[14] M. Johnson, “On compressing encrypted data,” IEEE Transactions on Signal
Processing, vol. 52, pp. 2992–3006, 2004.

[15] X. Ruan, “Using improved shannon-fano-elias codes for data encryption,” Informa-
tion Theory, 2006 IEEE International Symposium on, pp. 1249–1252, 2006.

[16] A. Orpaz and S. Weiss, “A study of codepack: optimizing embedded code
space,” in CODES ’02: Proceedings of the tenth international symposium on
Hardware/software codesign. New York, NY, USA: ACM, 2002, pp. 103–108.

[17] C. Shaw, D. Chatterji, P. Maji S. Sen, B. Roy, P. P. Chaudhuri, “A pipeline
architecture for encompression (encryption + compression) technology.” in Pro-
ceedings of International Conference on VLSI Design, 2003, p. 277.

[18] H. Lekatsas, J. Henkel, S. T. Chakradhar, and V. Jakkula, “Cypress: compression
and encryption of data and code for embedded multimedia systems,” IEEE Design
& Test of Computers, vol. 21, no. 5, pp. 406–415, Sep–Oct 2004.

51

BIOGRAPHICAL SKETCH

Kartik Shrivastava received his Bachelor of Technology in information technology

from Malviya National Institute of Technology, India in 2008. He completed his Master

of Science in computer engineering from University of Florida in 2010. Since summer of

2009, he has been working on code compression techniques for embedded systems at

Embedded Systems Laboratory, University of Florida.

52

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1 INTRODUCTION
	1.1 Code Compression
	1.2 Integration of Code Compression and Encryption
	1.3 Thesis Contributions and Organization

	2 RELATED WORK
	2.1 Code Compression
	2.2 Encryption
	2.3 Combination of Code Compression and Encryption

	3 DUAL CODE COMPRESSION
	3.1 Overview
	3.1.1 Offline Dual Compression
	3.1.2 Decompression Architecture

	3.2 Dynamic Frequency based Compression
	3.2.1 Profile creation
	3.2.2 Compression Mechanism
	3.2.3 Runtime Decompression

	3.3 Static Frequency based Compression
	3.4 Experiments
	3.4.1 Experimental Setup
	3.4.2 Code Size Reduction
	3.4.3 Performance Increase

	4 INTEGRATION OF CODE COMPRESSION AND ENCRYPTION
	4.1 Combining Compression and Encryption
	4.1.1 Encryption followed by compression
	4.1.2 Compression followed by encryption

	4.2 Dynamic Code Encryption and Compression
	4.2.1 Compressed Binary Creation
	4.2.2 Performance Analysis
	4.2.3 Placement of Cache

	4.3 Experiments
	4.3.1 Experimental Setup
	4.3.2 Results

	5 CONCLUSION
	REFERENCES
	BIOGRAPHICAL SKETCH

