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Memory is one of the most restricted resource in the embedded system design.

Code compression techniques have been proposed to address this issue by reducing

the code size of application programs. Dictionary-based code compression techniques

are popular as they offer both good compression ratio and fast decompression scheme.

Recently proposed techniques improve standard dictionary-based compression by con-

sidering mismatches. We propose a bit-mask based code compression technique to

aggressively minimize mismatches and improve compression efficiency. This thesis

makes three important contributions: i) it proposes a compression-aware bit-mask

selection procedure for creating more matching patterns, ii) it develops a dictionary

selection technique to minimize the code size based on the selected bit-masks, and

iii) it presents an efficient code compression algorithm using the mask selection and

the dictionary selection procedures to improve compression ratio without introduc-

ing any decompression penalty. To demonstrate the usefulness of this approach, we

used applications from various domains and compiled for a variety of architectures.

Our technique outperforms the existing dictionary-based compression methods by an

average of 15%, giving a compression ratio of 55% - 65%.
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CHAPTER 1
INTRODUCTION

1.1 Overview and Motivation

Embedded systems are everywhere from household appliances to biomedical, mil-

itary, geological and space equipments. The complexity of such systems is increasing

at an exponential rate due to both advancements in technology and demands for

sophisticated applications, in the areas of communication, multimedia, networking

and entertainment. Memory is one of the key driving factors in embedded system

design since a larger memory indicates an increased chip area and a higher cost. As

a result, memory imposes constraints on the size of the application programs. Code

compression techniques address the problem by reducing the program size.

Figure 1–1 shows the traditional code compression and decompression flow where

the compression is done off-line (prior to execution) and the compressed program is

loaded into the memory. The decompression is done during the program execution

(online).

Mechanism
Decompression

Algorithm
Compression

(binary)
Program

Application

Code
Compressed

MemoryProcessor

Execute
Fetch and

Figure 1–1: Traditional Code Compression Methodology
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Embedded systems with caches can employ the decompression scheme in different

ways. For example, the decompression hardware can be used between the main

memory and the instruction cache. As a result, the main memory will contain the

compressed program whereas the instruction cache will have the original program.

Alternatively, the decompression engine can be used between instruction cache and

the processor, which increases cache hits and achieves potential performance gain.

Compression ratio, widely accepted as a primary metric for measuring the effi-

ciency of code compression, is defined as:

Compression Ratio =
Compressed Program Size

Original Program Size
(1.1)

Therefore, the smaller the compression ratio is, the better the compression tech-

nique. Dictionary-based code compression techniques are popular because it provides

both good compression ratio and fast decompression mechanism. The basic idea is

to exploit repeating instruction sequences by using a dictionary. The remainder of

this chapter is organized as follows. Section 1.2 describes various code compression

and decompression mechanisms available in the literature. Section 1.3 provides an

overview of the problems that will be addressed in the rest of the thesis and outlines

a brief summary of the thesis contributions.

1.2 Related Works

The first code compression technique for embedded processors was proposed by

Wolfe and Chanin [13]. Their technique uses Huffman coding and the compressed

program is stored in the main memory. The decompression unit is placed between

main memory and the instruction cache. They used a Line Address Table (LAT)

to map original code addresses to compressed block addresses. The idea of using

dictionary to store the frequently occurring instruction sequences has been explored
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by various researchers [4, 7]. Lekatsas and Wolf [6] proposed a statistical method for

code compression using arithmetic coding and Markov model.

The techniques discussed so far target RISC processors. There has been a sig-

nificant amount of research in the area of code compression for VLIW and EPIC

processors. The technique proposed by Ishiura and Yamaguchi. [2] splits a VLIW

instruction into multiple fields and each field is compressed using a dictionary based

scheme. Nam et al. [9] also uses dictionary based scheme to compress fixed format

VLIW instructions. Various researchers have developed code compression techniques

for VLIW architectures with flexible instruction formats [3, 14]. Larin and Conte

[3] applied Huffman coding for code compression. Xie et al. [14] used Tunstall cod-

ing to perform variable-to-fixed compression. Lin et al. [8] proposed a LZW-based

code compression for VLIW processors using a variable-sized-block method. Ros and

Sutton [12] have used a post-compilation register reassignment technique to generate

compression friendly code. Das et al. [1] applied code compression on variable length

instruction set processors.

Several techniques [10, 11] have been proposed to improve the standard dictio-

nary based code compression by considering mismatches. However, the efficiency of

these techniques are limited by the number of bit changes (hamming distance) used

during compression. The cost of storing the information for more bit positions cancels

out the advantage gained by generating more repeating instruction sequences. Stud-

ies [11] have shown that it is not profitable to consider more than three bit changes

when 32-bit vectors are used for compression. Prakash et al.[10] have considered

mismatch in only one bit position.

1.3 Contributions of Thesis

In the thesis, I propose an efficient code compression technique to improve the

compression ratio further by creating more matching sequences using bit-mask pat-

terns. Our technique introduces many challenges to make it viable in practice. First,
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how to select a set of mask-patterns that will maximize the matching sequences while

minimize the cost of using bit-masks? Second, how to perform efficient dictionary

selection using the profitable bit-masks. This thesis develops a compression-aware

bit-mask selection and dictionary section algorithms to improve the compression ef-

ficiency without introducing any decompression penalty.

I have collected applications from various domains including MediaBench and

MiBench, and compiled for a wide variety of architectures including TI TMS320C6x,

MIPS, and SPARC. The experimental results demonstrate that our approach out-

performs the existing dictionary based compression techniques by an average of 15%

without introducing any additional decompression penalty. The techniques devel-

oped in this thesis can also be applied in other domains where dictionary-based code

compression is used such as test compression for manufacturing testing [?].

The rest of the thesis is organized as follows. Chapter 2 analyzes existing

dictionary-based code compression techniques, and describes a cost-benefit analysis

framework to motivate the need and usefulness of using bit-masks for code com-

pression. Chapter 3 presents our overall code compression algorithm including a

detailed description of the mask selection procedure, dictionary selection technique,

and decompression framework. Chapter 4 presents the experimental results. Finally,

Chapter 5 contains a summary of the thesis and a discussion of future research di-

rections.



CHAPTER 2
DICTIONARY-BASED CODE COMPRESSION

This chapter describes existing dictionary-based approaches and analyzes their

limitations. First, a standard dictionary-based approach is discussed. Next, we de-

scribe recently proposed techniques that improves the standard approach by consid-

ering mismatches (hamming distance). Finally, we present a detailed cost-benefit

analysis of the recent approaches in terms of how much repeating patterns they can

generate from the mismatches. This analysis forms the basis of my thesis work to

maximize the repeating patterns using bit-masks.

2.1 Dictionary-based Approach

Dictionary-based code compression techniques provide compression efficiency as

well as fast decompression mechanism. The basic idea is to take the advantage

of commonly occurring instruction sequences by using a dictionary. The repeating

occurrences are replaced by a codeword that points to the index of the dictionary

that contains the pattern. The compressed program consists of both codewords and

uncompressed instructions. Figure 2–1 shows an example of dictionary based code

compression using a simple program binary. The binary consists of ten 8-bit patterns

i.e., total 80 bits. The dictionary has two 8-bit entries. The compressed program

requires 62 bits and the dictionary requires 16 bits. In this case, the compression ratio

is 97.5% (using Equation (1.1)). This example shows a variable length encoding. As

a result, there are many factors that also need to be included in the computation of

the compression ratio including the size of the Line Address Table (LAT) [13] as well

as byte alignment for branch targets.

5
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Figure 2–1: Dictionary-based Code Compression: An Example

2.2 Improved Dictionary-based Approach

Recently proposed techniques [10, 11] improve the dictionary based compression

technique by considering mismatches. The basic idea is to determine the instruction

sequences that are different in few bit positions (hamming distance) and store that

information in the compressed program and update the dictionary (if necessary).

The compression ratio will depend on how many bit changes are considered during

compression. Figure 2–2 shows the encoding format used by these techniques for

32-bit program code.

Decision
(32 bits)

Uncompressed Data

(1−bit)
Decision

changes/toggles
Number of bit

(5 bits)

Location

(5 bits)

Location
Dictionary Index

Extra bits for considering mismatches

Format for Compressed Code

(1−bit)

.....

Format for Uncompressed Code

Figure 2–2: Encoding Scheme for Incorporating Mismatches

It is obvious that if more bit changes are allowed, more matching sequences will

be generated. However, the size of the compressed program will increase depending

on the number of bit positions. Section 2.3 describes this topic in detail. Prakash et
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al [10] considered only one-bit change for 16-bit patterns (vectors). Ros et al. [11]

considered a general scheme of up to 7 bit changes for 32-bit patterns and concluded

that a 3-bit change provides best compression ratio.

011

110

1 − no action
0 − resolve mismatch

00000000 1

1

1

0

1
0

0

0

0

0
0 0

mismatch position
DictionaryOriginal Program Compressed Program

1

1

1

1

0
11000000
1
00001100
1
01001110
1

0
10000010

0

1

0

01000010

00000000

ContentIndex

1 − uncompressed
0 − compressed

00000000
11000000

00001100
01000010

10000010

01000010

01010010
01001110

00000010

Figure 2–3: Improved Dictionary-Based Code Compression

Figure 2–3 shows the improved dictionary based scheme using the same example

(shown in Figure 2–1). This example considers only 1-bit change. An extra field is

necessary to indicate whether mismatches are considered or not. In case a mismatch

is considered, another field is necessary to indicate the bit position that is different

from an entry in the dictionary. For example, the third pattern (from top) in the

original program is different from the first dictionary entry (index 0) on the sixth bit

position (from left). The compression ratio for this example is 95%.

2.3 Cost-Benefit Analysis for Considering Mismatches

We can create more repeating patterns if we consider changes in more bit po-

sitions. For example, if we consider 2-bit changes in Figure 2–3, all mismatched

patterns can be compressed. However, increasing more repeating patterns by consid-

ering multiple mismatches does not always improve the compression ratio. This is

due to the fact that the compressed program has to store multiple bit positions. If
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we consider 2-bit changes for the example in Figure 2–3, the compression ratio will

be worse (102.5%).

I have done a detailed study on how to match more bit positions without adding

significant information in the compressed code. I have considered 32-bit code vectors

for compression. The hamming distance between any two 32-bit vectors is between

0 and 32. The compression adds extra 5 bits to remember each bit position in a 32-

bit pattern. Moreover, extra bits are necessary to decide how many bit changes are

there in the compressed code. For example, if the code allows up to 32 bit changes,

it requires extra 5 bits to indicate the number of changes. As a result, this process

requires a total of 165 extra bits (32×5+5) when all 32 bits are different. Clearly, it is

not profitable to compress a 32-bit vector using 165 extra bits along with a codeword

(dictionary index information) and other details.

I have explored the use of bit-masks for creating repeating patterns. For example,

a 32-bit mask pattern is sufficient to match any two 32-bit vectors. Of course, it is

not profitable to store extra 32 bits to compress a 32-bit vector but definitely better

than 165 extra bits. I considered mask patterns of different sizes (2-bit to 32-bit).

When a mask pattern is smaller than 32 bits, we need to store information related to

starting bit position where the mask needs to be applied. For example, if we use a

8-bit mask pattern, and want to consider all 32-bit mismatches, it requires four 8-bit

masks, and extra two bits (to identify one of the 4 bytes) for each mask pattern to

indicate where it will be applied. In this particular case, extra 42 bits are required

In general the dictionary contains 1024 or more entries. As a result, a code

pattern will have fewer than 32 bit changes. If a code pattern is different from a

dictionary entry in 8 bit positions, it requires only one 8-bit mask and its position

i.e., it requires 13 (8+5) extra bits. This can be improved further if we consider bit

changes only in byte boundaries. This leads to a trade-off. It requires fewer bits

(8+2) but may miss few mismatches that spread across two bytes.
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Table 2–1: Cost of Various Matching Schemes

Bit Changes Size of the Mask Pattern
1-bit 2-bit 4-bit 8-bit 16-bit 32-bit

32 bits 165 100 59 42 35 32
16 bits 84 51 30 21 17
8 bits 43 26 15 10
4 bits 22 13 7
2 bits 11 6
1 bit 5

An entry is left blank when that combination is not possible.

Table 2–1 shows the summary of the study. Each row represents the number of

changes allowed. Each column represents the size of the mask pattern. A one-bit

mask is essentially same as remembering the bit position. Each entry in the table

(with row r and column c) indicates how many extra bits are necessary to compress

a 32-bit vector when the number of bit changes allowed is r and c is the size of the

mask pattern. For example, we require 14 extra bits to allow 8-bit (row with value

8) changes using 4-bit (column with value 4) mask patterns. Clearly, the entries in

the table with more than 15 extra bits are not profitable to consider during mask

selection.

Dictionary

Index Content

00000000

01000010

0

1

00000010

01001110
01010010

01000010

10000010

01000010
00001100

11000000
00000000

0 − compressed
1 − uncompressed

0
0
0
0
0
0
0
0
0
0

0
1

0

1
0

0
1

00
100000000

0 − resolve mismatch (use bitmask)
1 − no action

0 11 1
0

0
1
1
1
0
1
0
0

10

01
11

11

11

01
10

00

bitmask value

0 10 11

bitmask position
Original Program Compressed Program

Figure 2–4: Code Compression Using Bit-Mask Approach
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Section 3.1 describes our technique for selecting efficient mask patterns. Chap-

ter 3 presents our code compression algorithm using the selected masks that signif-

icantly improves the compression ratio. Consider the same example shown in Fig-

ure 2–3. A 2-bit mask (only on quarter byte boundaries) is sufficient to create 100%

matching patterns and thereby improves the compression ratio (87.5%) as shown in

Figure 2–4. Experiments using real programs demonstrate that the compression ratio

using our approach varies between 55-65%.



CHAPTER 3
CODE COMPRESSION USING BIT-MASKS

The motivation of the thesis is based on the analysis presented in Section 2.3.

The proposed approach tries to incorporate maximum bit changes using mask pat-

terns without adding significant cost (extra bits) such that the compression ratio is

improved. Our compression technique also ensures that the decompression efficiency

is improved or remains the same compared to the existing techniques.

Format for Uncompressed Code

(1−bit)
Decision

(32 bits)
Uncompressed Data

Decision
(1−bit)

Number of
mask patterns

..... Dictionary Index

Format for Compressed Code

Extra bits for considering mismatches

Location
Mask
patterntype

Mask
Location

Mask
patterntype

Mask

Figure 3–1: Encoding Format for Our Compression Technique

Figure 3–1 shows the generic encoding scheme used by the our compression

technique. This scheme is similar to the 32-bit format shown in Figure 2–2 where

individual bit changes are recorded. However, as described in Section 2.3, storing

individual bit changes limits the number of matches. Our encoding format (Figure 3–

1) can store information regarding multiple mask patterns. For each pattern, it stores

the mask type, the location where mask needs to be applied, and the mask pattern.

The generic encoding scheme can be optimized once the types and sizes of the bit-

mask combinations are determined.

Code compression using bit-masks is a promising approach. However, it intro-

duces two major challenges. First, how to select a set of mask-patterns that will

11
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maximize the matching sequences while minimize the cost of using bit-masks? Sec-

ond, how to perform efficient dictionary selection using the selected bit-masks. We

have developed efficient mask selection and dictionary selection technique to improve

compression ratio with introducing any decompression penalty. This chapter is or-

ganized as follows. Section 3.1 describes our mask selection procedure. Section 3.2

outlines our dictionary selection technique. Section 3.3 presents our code compression

algorithm using the mask selection and the dictionary selection procedures. Finally,

Section 3.4 describes the decompression framework to support our bit-mask based

code compression technique.

3.1 Mask Selection

A major challenge in bit-mask based code compression technique is how to choose

a set of profitable mask patterns. Table 3–1 shows the mask-patterns that would cre-

ate more matching patterns at an acceptable cost (based on the cost-benefit analysis

in Section 2.3). A “fixed” bit-mask pattern implies that the pattern can be applied

(starting position) only on fixed locations. For example, an 8-bit fixed mask (re-

ferred as 8f) is applicable on 4 fixed locations (byte boundaries) in a 32-bit vector.

A “sliding” bit-mask pattern can be applied anywhere. For example, an 8-bit sliding

mask (referred as 8s) can be applied in all locations on a 32-bit vector. There is no

difference between fixed and sliding for a 1-bit mask. In this thesis, we will use 1-bit

sliding mask (referred as 1s) for uniformity.

The number of bits needed to indicate a location will depend on the mask size

and the type of the mask. A fixed mask of size s can be applied on (32÷ s) number

of places. For example, a 8-bit fixed mask can be applied only on four places (byte

boundaries) and requires 2 bits. Similarly, a 4-bit fixed mask can be applied on eight

places (byte and half-byte boundaries) and requires 3 bits for its position. A sliding

pattern will require 5 bits to locate the position regardless of its size. For instance, a

4-bit sliding mask requires 5 bits for location and 4 bits for the mask itself.
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Table 3–1: Various Bit-Mask Patterns

Bit-Mask Fixed Sliding
1 bit X
2 bits X X
3 bits X
4 bits X X
5 bits X
6 bit X
7 bit X
8 bit X X

Our goal in this section is to find a set of mask patterns that will deliver best

code compression for a given application(s). This leads to answering two questions:

i) which patterns are profitable and ii) how many patterns do we need? The answer

to the second question is trivial: up to two mask patters are profitable. The reason

is obvious based on cost consideration. A set of n mask patterns can generate up to

n × 1 + n × 2 + · · · + n × n (n2(n − 1)/2) combinations. For example, if we choose

two distinct mask patterns 2-bit fixed (2f and 4-bit sliding (4s), it can generate six

combinations: (2f), (4f), (2f, 4f), (4f, 2f), (2f, 2f), (4f, 4f). Similarly, three distinct

mask patterns can create up to 18 combinations that requires 5 bits to store the mask

combination along with the cost of storing up to three masks and their positions in

each compressed vector. Clearly, use of three or more mask patterns are not profitable

since they require more than 10 extra bits. The answer to the first question in non-

trivial. The remainder of this section tries to answer the first question.

It is evident that applying larger bit-masks will generate more matching patterns.

However, doing so may not result in a superior overall compression. The reason for

this is simple: a longer bit-mask pattern is associated with a larger cost. Similarly,

using a sliding mask where a fixed one is sufficient is wasteful since fixed mask will

require less number of bits (compared to its sliding counterpart) to store the position

information. For example, applying a 4-bit fixed mask requires 3 bits to indicate its
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position (8 possible locations in a 32-bit vector) and 4 bits to indicate the pattern

(total 7 bits) while an 8-bit fixed mask requires 2 bits for the position and 8 bits for

the pattern (total 10 bits). Therefore, it would be more costly to use two 4-bit masks

if one 8-bit mask can capture the mismatches. Moreover if 4-bit sliding mask (cost

of 9 bits) is used where 4-bit fixed (cost of 7 bits) is sufficient, two additional bits are

wasted.

We also observed that the mask patterns that are factors of 32 (e.g., masks 1, 2, 4

and 8 from Table 3–1) produces a better compression ratio compared to non-factors

(e.g., masks 3, 5, 6, and 7). This is due to the fact that we accept the program

of 32-bit vectors, non-factor sized bit-masks were only usable as a sliding pattern.

While sliding patterns are more flexible, they are more costly than fixed patterns.

This finding allowed us to reduce the 11 mask patterns in Table 3–1 down to 7 mask

patterns shown in Table 3–2.

Table 3–2: Profitable Bit-Mask Patterns

Bit-Mask Fixed Sliding
1 bit X
2 bits X X
4 bits X X
8 bit X X

We studied carefully the combinations of up to two bit-masks using various

applications compiled on a wide variety of architectures. We analyzed the result of

compression ratios on various mask combinations and observed that 8f and 8s are not

helpful. We also observed that 4s does not perform better than 4f. The final set of

bit-mask patterns are shown in Table 3–3.

Table 3–3: Final Bit-Mask Sets

Bit-Mask Fixed Sliding
1 bit X
2 bits X X
4 bits X
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The goal of the mask selection algorithm is to find two mask patterns from

the Table 3–3 that are most profitable for the given application(s). Algorithm 1

shows our mask selection procedure. It accepts the application program(s) as input

and produces a pair of mask-patterns that are most profitable for compressing the

application(s). We observed that use of two masks always do better compression

compared to using only one mask. There are sixteen different ways of choosing

two patterns from four bit-masks. Therefore, Algorithm 1 needs to compress the

application(s) sixteen times to obtain the profitable mask combination.

Algorithm 1: Mask Selection

Input: Application(s) appl.

Outputs: Two mask patterns < mask1,mask2 >.

Begin

mask1 = 1s; mask2 = 1s

compressionRatio = 100

for each mask pattern mi in (1s, 2s, 2f, 4f)

for each mask pattern mj in (1s, 2s, 2f, 4f)

ratio = Compress appl using < mi,mj >.

if (ratio is less than compressionRatio)

compressionRatio = ratio

mask1 = mi; mask2 = mj

endif

endfor

endfor

return < mask1,mask2 >

End
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3.2 Dictionary Selection

Dictionary selection is a major challenge in code compression. Optimal dictio-

nary selection is an NP hard problem [?]. Therefore, the techniques in the litera-

ture tries to use various heuristics based on application characteristics. Figure 3–2

classifies the dictionary selections methods used in code compression for embedded

systems. Dictionary can be generated either dynamically during compression or stati-

cally prior to compression. While dynamic approaches such as LZW[8] accelerates the

compression time, seldom it matches the compression ratio of the static approaches.

Moreover, it may introduce extra penalty during decompression and thereby reduces

the overall performance. In the static approach, the dictionary can be selected based

on the distribution of vectors’ frequency or spanning [11].

Dictionary Entry Selection

Frequency−basedBitSaving−based Spanning−based

StaticDynamic

Figure 3–2: Dictionary Selection Methods

In the traditional dictionary-based compression approach, the dictionary entry

selection process is simplified since it is evidently clear that the frequency-based se-

lection will give good compression ratio. However, when compressing with bit-masks,

the problem is complex and the frequency-based selection will not always yield the

best compression ratio. Figure 3–3 demonstrates this fact. When only one dictionary

entry is allowed, the pure frequency-based selection will choose “0000000”, yielding

the compression ratio of 97.5% (Compressed Program 1). However, if “01000010”

was chosen, we can achieve the compression ratio of 87.5% (Compressed Program
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2). Ros and Sutton [11] made similar observations in their hamming distance based

code compression framework using frequency-based as well as spanning-based meth-

ods, and reported that a mixture of two achieves better results than considering one

independently.
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Figure 3–3: Compression with Different Dictionary Selection Methods

We have observed that neither frequency-based nor spanning-based methods can

not efficiently exploit the power of bit-mask based compression to deliver good com-

pression ratio. We developed a novel dictionary selection technique that considers bit

savings as a metric to select a dictionary entry. Algorithm 2 shows out bit-savings

based dictionary selection technique. The algorithm takes application(s) consisting of

32-bit vectors as input and produces the dictionary as output that will deliver good

compression ratio. It first creates a graph where the nodes are the unique 32-bit vec-

tors. An edge is created between two nodes if they can be matched using a bit-mask

pattern. It is possible to have multiple edges between two nodes since they can be

matched by various mask patterns. However, we consider only one edge between two

nodes corresponding to the cheapest mask (maximum savings). Also note that, this

algorithm considers only the masks returned by the mask selection algorithm (Al-

gorithm 1) and a threshold value to enable deletion of nodes from the graph during
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dictionary entry selection. Once the bit-savings are assigned to all nodes and edges,

the algorithm computes the overall savings for each node. The overall savings is

obtained by adding the savings in each edge (mask savings) connected to that node

along with the node savings (based on frequency value). Next, the node with maxi-

mum overall savings is selected as an entry for the dictionary. The selected node is

deleted from the graph. we also need to delete the nodes that are connected to the

selected node. However, we have observed that it is not always profitable to delete

all the connected nodes, instead it is a good idea to delete nodes that has overall

savings less than a particular threshold. Typically a node with frequency value less

than 10 serves as a good threshold. This varies from application to application but

based on our experiences a threshold value between 3 and 10 seems to work best.

The algorithm terminates when either dictionary is full or the graph becomes empty.
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Algorithm 2: Bit-Savings based Dictionary Selection

Inputs: 1. Application(s) consisting of 32-bit instruction vectors

2. Mask patterns generated by Algorithm 1

3. A threshold value to enable deletion of nodes.

Output: Optimized dictionary

Begin

Step 1: Create a graph representation, G=(V,E).

Each node (V) is a unique 32-bit vector.

An edge (E) indicates a bit-mask can match the nodes.

Step 2: Allocate bit-savings to the nodes and edges.

Frequency determines the bit-savings of the node.

Mask used determines the bit-savings by that edge.

Step 3: Calculate the bit-savings distribution of all nodes.

Step 3: Select the most profitable node N .

Step 4: Remove N from G and insert into dictionary

Step 5: For each node Ni in G that is connected to N

If the node profit of Ni is less than certain threshold

Remove Ni from G.

Step 6: Repeat Steps 3 - 5 until dictionary is full or G is empty.

return dictionary

End

Figure 3–4 illustrates the technique. The vertex “A” has the total saving of 15

(10+5), “B” and “C” have 22, “D” has 5, “E” has 10, “F” has 27, and “G” has 24.

Therefore, “F” is chosen as the best candidate and gets inserted into the dictionary.

Once “F” is inserted to the dictionary, it gets removed from the graph. “C” and

“E” are also removed since they can be matched with “F” in the dictionary and

bit-mask(s).



20

Figure 3–4: Bit Saving Dictionary Selection Method

The algorithm repeats by recalculating the savings of the vertex in the new

graph and terminates when the dictionary becomes full. Our experimental Our bit-

savings based dictionary selection method provides the best compression ratio and

outperformed the frequency and spanning based approach.

3.3 Compression Algorithm

Algorithm 3 shows the basic steps of our compression technique using bit-masks.

The algorithm accepts the original code consisting of 32-bit vectors. The first step is

to determine which mask set to use for compression using Algorithm 1.

Algorithm 3: Code Compression using Bit-Masks

Input: Original code (binary) divided into 32-bit vectors.

Outputs: Compressed code and dictionary.

Begin

Step 1: Select the profitable mask patterns.

Step 2: Select the optimized dictionary.

Step 3: Compress each 32-bit vector using cost constraints.

Step 4: Adjust and handle the branch targets.

return Compressed code and the dictionary

End
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The second step is to select the optimized dictionary using Algorithm 2. In case

the frequency-based dictionary selection is used, it is useful to consider larger dic-

tionary sizes when the current dictionary size cannot accommodate all the vectors

with frequency value above certain threshold. (e.g., above 5 is profitable). However,

there are certain disadvantages of increasing the dictionary size. The cost of using

larger dictionary is more since the dictionary index becomes bigger. The cost increase

is balanced only if most of the dictionary is full with high frequency vectors. Most

importantly, a bigger dictionary increases access time and thereby reduces decom-

pression efficiency.

The third and final step of the algorithm converts each 32-bit vector into com-

pressed code (when possible) using the format shown in Figure 3–1. The compressed

code along with any uncompressed ones are composed serially to generate the final

compressed program code.

3.4 Decompression Mechanism

Like other variable length encoding schemes, our scheme has one disadvantage:

it produces variable length compressed code for each vector. As a result, finding a

branch target during decompression becomes difficult.

To avoid this problem, several approaches have been proposed. Wolfe and Chanin

[13] proposed LAT (Line Address Table), which includes the mapping between branch

target addresses in the original code and compressed code. Lefurgy [4] proposed back-

patching the compressed addresses to redirect the branch targets to the new locations.

Extra bits are added at the end of the code that precedes the branch target to assign

the branch targets on a byte boundary.

The decompression scheme for our compression technique is similar to the ex-

isting dictionary based code compression techniques. Figure 3–5 shows one possible

implementation of the decompression unit in hardware when up to two ask patterns
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are considered. The compressed code is accessed serially and checked if it is com-

pressed or not. If compressed, the corresponding dictionary entry is retrieved and

XOR-ed with a 32-bit mask pattern. The 32-bit mask pattern is generated based on

the mask patterns and their location information in the compressed code.

The decompression unit also needs to access the Line Address Table (LAT) when

the address requested by the processor is not the next address (to find the branch

targets).

Dictionary

Mask 2

Mask 1

Mask 1 location

Mask 2 location

XOR

XOR

Compressed
Code

Uncompressed Code (decision bit 1)

Uncompressed
Code

entryindex

32−bit mask

Figure 3–5: Implementation of a Decompression Unit

Since the compression technique uses a variable length encoding, the decompres-

sion needs to be done serially. However, this creates problem for VLIW architectures

such as TI TMS320C6x which uses a fetch packet of up to eight 32-bit vectors. To

resolve this, we can employ a stream encoding similar to the one proposed by Ros

et el. [11] where a fetch packet needs to be divided into 32-bit streams during com-

pression, and decompression can be applied to the individual streams instead of the

whole program. This will require separate decompression unit as well as individual

tables for each stream.



CHAPTER 4
EXPERIMENTS

4.1 Experimental Setup

We performed code compression experiments by varying both application do-

mains and target architectures. The following section present experimental results

using twelve embedded applications for three target architectures. The benchmarks

are collected from TI and MediaBench & MiBench benchmark suites: adpcm en, ad-

pcm de, block ms, cjpeg, djpeg, gsm to, gsm un, mpeg2enc, mpeg2dec, modem, pegwit,

and verbiti.

The benchmarks were compiled for three target architectures:TI TMS320C6x,

MIPS, and SPARC. We used TI Code Composer Studio to generate binary for TI

TMS320C6x and used gcc to generate binary for MIPS and SPARC. The compres-

sion ratio was computed using the Equation (1.1). The computation of compressed

program size includes the size of the compressed code as well as that of the dictionary

(and LAT where applicable).

4.2 Results

Figure 3–1 shows the general encoding format using bit-masks. We explored

various customized version of the encoding format to figure out which encoding for-

mat works better across all target architectures. Clearly, 32-bit mask pattern is not

profitable. The 16-bit mask is also not useful unless there are too any mismatches

which a 4-bit or 8-bit (or combined 12 bit) mask cannot capture. In Section 3.1, we

studied the trade off between various mack combinations and identified the set of four

or five mask patterns that we would like to consider.

23
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We explored all possible encoding scenarios using 4-bit and 8-bit masks and

observed that three customized encoding formats shown in Figure 4–1 works very

well across applications and target architectures. The first encoding (Encoding 1)

uses a 8-bit mask, the second encoding (Encoding 2) uses up to two 4-bit masks, and

the third encoding (Encoding 3) uses up to two masks where first mask can be 4-bit

or 8-bit whereas the second mask is always 4-bit.

Dictionary Index

Decision
(1−bit)

Mask Combo
(2−bit)

Location
(3−bit)

Mask Pattern
(4−bit)

Location
(3−bit)

Mask Pattern
(4−bit) Dictionary Index

Decision
(1−bit) (1−bit)

Dictionary IndexMask Pattern
(8−bit)

LocationMask Combo
(2−bit)

Encoding 1

Encoding 3

Encoding 2

Decision
(1−bit)

Mask Combo
(3−bit)

Location
(2, 3 bits) (4, 8 bit)

Mask Pattern
(3−bit)

Location
(4−bit)

Mask Pattern

Figure 4–1: Three Customized Encoding Formats

Figure 4–2 shows the performance of each of these encoding formats using ad-

pcm en benchmark for three target architectures. We used dictionary with 2048

entries for these experiments. Clearly, the second encoding format performs the best

- generate compression ratio of 55-65%. Our experience with other benchmarks also

suggests the same trend. The remainder of the section uses the second encoding

format (Encoding 2) for all the results presented.

Figure 4–2: Compression Ratio for adpcm en Benchmark
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The code compression with bit-masks performs well for different dictionary sizes.

Figure 4–3 shows the efficiency of the proposed compression technique for all the nine

benchmarks compiled for SPARC processor using dictionary sizes of 4K and 8K. As

expected, we can observe three scenarios. The small benchmarks such as adpcm en

and adpcm de performs better with small dictionary since a majority of the repeating

patterns fits in the 4K dictionary (in fact it fits in the 2K dictionary as shown in

Figure 4–2). On the other hand, the large benchmarks such as cjpeg, djpeg, and

mpeg2enc benefit most from the larger dictionary. The medium sized benchmarks

such as mpeg2dec and pegwit does not benefit much from the bigger dictionary size.

On an average, our technique generate 59% compression ratio.

Figure 4–3: Compression Ratio for Different Benchmarks

Figure 4–4 compares compression ratios achieved by the various dictionary selec-

tion methods described in Section 3.2. We restricted the dictionary size to increase

the distinction amongst four methods: frequency, spanning, and our bit-savings based

approach. As shown in the figure, considering spanning alone does poorly compared

to other dictionary selection methods. Our bit-savings based approach outperforms

all the existing methods. This reconfirms the importance and the challenge of iden-

tifying dictionary entries to optimize the compression ratio.



26

Figure 4–4: Dictionary Selection Method Comparison

Table 4–1 compares the proposed approach with existing code compression tech-

niques. As mentioned earlier, the proposed technique improves the code compression

efficiency by 15% compared to the existing dictionary based techniques [10, 11] with-

out introducing any additional decompression penalty.

Table 4–1: Cost of Various Matching Schemes

Compression Target Compression Hardware
Method Architecture Ratio Overhead

Wolfe and Chanin [1] MIPS 73% Under 1 mm2

V2F: Xie et al.[12] TMS320C6x 70-82% 6-48K table
MCSSC: Lin et al.[3] TMS320C6x 75% 30k table

Prakash et al.[5] TMS320C6x 76-80% Not available
Ros and Sutton [6] Itanium 72-80% 8-16K

TMS320C6x
Our Approach MIPS, SPARC 55-65% 8-16K

TMS320C6x
Smaller compression ratio implies better compression technique (see Equation 1).



CHAPTER 5
CONCLUSIONS AND FUTURE DIRECTIONS

5.1 Conclusions

Embedded systems are constrained by the memory size. Code compression tech-

niques address this problem by reducing the code size of the application programs.

Dictionary-based code compression techniques are very popular since they generate

good compression by exploiting repeating patterns. Recent techniques uses bit tog-

gle information to create matching patterns and thereby improve compression ratio.

However, due to lack of an efficiency in matching scheme, the existing techniques can

match up to three bit differences.

In the thesis, I presented an efficient code compression scheme using bit-masks

that can significantly increase the number of matching patterns. This approach can

handle multiple bit mismatches without incurring any compression or decompression

penalty. Moreover, I examined and presented the approaches for the two challenges

that were introduced by the proposed technique: the choice of the mask combination

and the dictionary entry selection.

I applied the technique using applications from various domains and compiled

them for different architectures to demonstrate the usefulness of the approach. The

experimental results show that the proposed technique reduces the original program

size up to 45%. This technique outperforms all the existing dictionary based tech-

niques by an average of 15%, giving compression ratios of 55%-65%. It also enables

parallel decompression that is suitable for VLIW processors.

27
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5.2 Future Work Directions

Code compression for embedded systems is a major problem. This thesis in-

vestigated the use of bit-masks in improving the compression efficiency. The work

presented in this thesis can be extended in the following directions:

❐ Currently, our technique generates up to 90-95% matching sequences without

losing any compression ratio. Further studies are necessary to create remaining

5-10% mismatches. One possible direction is to introduce the compiler opti-

mizations that use hamming distance as the cost measure for generating code.

❐ Code compression delivers savings for area, power, and performance. This the-

sis primarily concentrated on area (code size) improvement without sacrificing

performance. Further studies can be done to estimate power savings and area

reduction by the proposed technique.

❐ We have investigated the use of bit-masks for architectures that uses fixed-length

instruction-set. Future research needs to extend our compression technique on

variable length instruction architectures.

❐ This thesis considered use of bit-masks for code compression. Our compression

technique can be also be applied in other domains where memory is also a

bottleneck such as test compression during manufacturing testing of complex

and heterogeneous embedded systems.
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