
Shrinking time to market, coupled
with short product lifetimes, has created
a need to drastically shorten the design
time for microprocessors. Verification
and design analysis are major compo-
nents of this cycle time. Thus, any effort
that improves verification effectiveness
and design quality is crucial for meeting
customer deadlines and requirements.

Design validation techniques fall into
two broad categories: simulation-based
approaches and formal techniques.
Because of the complexity of
modern designs, valida-
tion using only tradi-
tional scalar
simulation
cannot
b e

e x h a u s t i v e .
Formal techniques
exhaustively analyze parts of the design
but, because of the state space explo-
sion, are not suitable for the complete
design. (Formal techniques traverse the
finite state machine (FSM) of a design
during verification and perform neces-
sary analysis and computations using
algorithms. Each iteration of an algo-
rithm creates new states (typically an
exponential increase). As a result—even
before completion, the number of states
soon becomes intractable for the com-
plete design (containing millions of
gates). This phenomenon is known as
state space explosion.)

Equivalence checking is a formal
technique that is popular in industry
today. Typically, this technique involves
comparing the implementation to a set
of Boolean equations or comparing an
optimized circuit to the original circuit.
Symbolic simulation is an efficient tech-
nique that bridges the gap between tra-
ditional simulation and full-fledged for-
mal verification. This article presents a
top-down methodology for validating
microprocessors using a combination of
symbolic simulation and equivalence
checking.

Traditional processor
validation flow

Figure 1 shows a traditional architec-
ture validation flow. The architect pre-
pares an informal specification of the
microprocessor in a written document.
Logic designers implement the mod-
ules at the register-transfer level (RTL).
The verification team validates the
design implementation using a combi-
nation of simulation techniques and

formal methods.

Simulation, the most popular
form of microprocessor validation,
involves running millions of cycles
using random or pseudo-random tests.
The validation team applies model
checking to a high-level description of
the design abstracted from the RTL
implementation.

Formal verification uses a formal lan-
guage to describe the system. The spec-
ification for the formal verification
comes from the architecture description;
the implementation can come from
either the architecture specification or
the abstracted design. The validated
RTL design serves as a golden reference
model for future design modifications.
After applying design transformations,
including synthesis, to the RTL design,
the validation team uses equivalence
checking to validate the modified
design against the RTL design.

Existing validation techniques use
reverse engineering to derive processor
functionality from its RTL implementa-
tion. This article presents a top-down
validation methodology that comple-
ments existing bottom-up verification
techniques.

Top!down validation
Figure 2 shows a top-down valida-

tion methodology. Validation engineers
specify the processor’s structure and
behavior using an architecture descrip-
tion language (ADL) such as EXPRES-
SION ADL. The ADL description then
needs to be validated to ensure that it
specifies a well-formed architecture. To
verify that the RTL design implementa-
tion satisfies certain properties (e.g.,
correct register read/write), the top-
down validation framework generates
behaviors for the intended properties. A
symbolic simulator such as Versys2 can
be used to perform property checking.
The framework also generates the

processor’s complete description
to enable equivalence

checking using
tools such as
F o r m a l i t y
<http://www.syn-
o p s y s . c o m > .
When a failure

occurs, validation
engineers use the feedback (the error
generated by the tool) to modify the
RTL design. If there is an ambiguity in
the original description that led to the
mismatch, the architecture specification
must be updated. This methodology has
three important steps:

1. capturing the architecture using an
ADL specification;

2. generating the reference model
from the architecture specification; and

3. performing design validation
using a combination of symbolic simu-
lation and equivalence checking

ADL specification
ADL-driven frameworks are tradi-

tionally used to enable rapid design
space exploration of programmable
embedded systems. The framework
captures the processor, coprocessor,
and memory architectures. From the
ADL specification, it then generates a
software toolkit including a compiler
and a simulator. The application pro-
grams are compiled and simulated. The
feedback (information about perfor-
mance and code size) is used for modi-
fying the ADL specification of the archi-
tecture.

FEBRUARY/MARCH 2005 29

Processor validation:
a top-down approach

Prabhat Mishra

©EYEWIRE COMPOSITE: MKC

The goal is to find the best
possible architecture for the
given set of application programs
under various design constraints
such as area, power and perfor-
mance. ADLs traditionally fall into
two categories, depending on
whether they primarily capture
the processor behavior (instruction set)
or its structure. Several recently pro-
posed ADLs, such as EXPRESSION and
LISA, capture both the structure and the
behavior.

EXPRESSION captures all the archi-
tectural components and their connec-
tivity as a netlist. It considers two types
of components: units (for example,
arithmetic logic units) and storage loca-
tions (for example, register files). It also

captures two types of connections in
the netlist: pipeline and data transfer
edges. Pipeline edges specify instruc-
tion transfer between units through
pipeline latches; data transfer edges
specify data transfer between compo-
nents, typically between units and stor-
age locations or between two storage
locations.

For example, in Fig. 3, the oval
(unit) and rectangular (storage) boxes
represent components. The solid

(pipeline) and dotted (data transfer)
lines represent edges. The behavior is
organized into operation groups. Each
group has a set of operations with
some common characteristics. Each
operation is then described in terms of
its opcode, operands, behavior and
instruction format. Each operand is clas-
sified either as a source or as a destina-
tion. Furthermore, each operand is
associated with a type that describes

the type and size of the data it contains.
The instruction format describes the
operation fields in binary and assembly
codes. For example, the description of
an ADD operation is shown in Box A.

Reference model generation
This framework uses functional

abstraction to generate the reference
model [VHSIC Hardware Description
Language (VHDL) description] from the
ADL specification. The notion of func-

tional abstrac-
tion comes
from a simple
ob s e r v a t i o n :
different archi-
tectures can use
the same func-
tional unit

(such as a fetch unit) with different
parameters; use the same functionality
(for example, operand read) in different
functional units; or have new architec-
tural features.

Defining generic functions with
appropriate parameters can eliminate
the first difference. The second one is
eliminated by defining generic sub-
functions that different architectures can
use at different times (for example, dur-
ing fetch or decode). The last difference
is difficult to eliminate because it is
new. Unless, the new functionality can
be composed using existing sub-func-
tions; e.g., by combining MUL and ADD
operations to create a multiply-accumu-
late (MAC) operation. The goal is to
define a set of necessary abstraction
primitives using generic functions and
sub-functions. The framework generates
a reference model from the ADL specifi-
cation of the architecture by composing
the functions and sub-functions.

The framework generates a complete
description of the architecture as well
as specific properties. The complete
description is used to check for equiva-
lence with the given implementation.
However, having the specific properties
would enable property checking. For
example, for an n-input adder, the
framework generates the following
property:

output = ∑n
i =1 inputi

The adder design should satisfy this
property regardless of the adder imple-
mentation— whether it is ripple-carry
or carry look-ahead, for example.

The major advantage of property
checking is that it reduces the verifica-
tion complexity. However, this raises an
important question: how to choose the
set of properties? There are two ways.
One way is for designers to decide
which properties are important to verify
based on their design knowledge and
experience. Designers can then choose
the properties to uncover those other-
wise difficult-to-find bugs. Alternatively,
designers can choose a set of behaviors
and evaluate their effectiveness. For
example, verifying a memory controller
in a microprocessor requires generation

30 IEEE POTENTIALS

Implementation

Specification

V
erification

F
orm

al
Architecture Specification

(English Document)

Abstraction

Model Checking

Simulation

Equivalence

Checking

Design Transformations

Manual Derivation

Validation Techniques

Abstracted Design

Modified Design
(RTL / Gate)Transform

RTL Design
(Implementation)

Fig. 1 Traditional bottom-up
validation flow

Box A

(OPCODE add
(OPERANDS (src1 reg) (src2 reg/imm16) (dest reg))
(BEHAVIOR dest = src1 + src2)
(FORMAT cond (31-30) 0101 dest (25-21) src1 (20-16) src2 (15-0))

)

of properties to validate each of the
controller’s outputs. To measure these
properties’ effectiveness, designers can
use certain coverage measures during
property checking.

The top-down methodology uses
two validation techniques: property
checking using symbolic simulation and
equivalence checking.

Property checking
Property checking can be performed

using symbolic simulation, which com-
bines traditional simulation with formal
symbolic manipulation. Each symbolic
value represents a signal value for dif-
ferent operating conditions, parameter-
ized in terms of a set of symbolic
Boolean variables. With this encoding,
a single symbolic simulation run can
cover many conditions that would
require multiple runs on a traditional
simulator.

Figure 4a shows a simple n-input
AND gate. Exhaustive simulation of the
AND gate requires 2n binary test vec-
tors. However, the ternary simulation,
which uses 0, 1 and X (where X is
“don’t care”), requires (n+1) test vectors
for the AND gate. Figure 4b shows the
vectors: n vectors with one input set to
0 and the remaining set to X, and one
vector with all inputs set to 1. Finally,
symbolic simulation requires only one
vector using n symbols (S1, S2, …, Sn),
as Fig. 4c shows.

Researchers at IBM first introduced
symbolic simulation to reason about
properties of circuits described at the
RTL. With the advent of binary decision
diagrams (BDDs), the technique
became far more practical. Providing a
canonical representation for Boolean
functions, BDDs enable the implemen-
tation of an efficient event-driven logic
simulator operating over a symbolic
domain. By encoding a model’s finite
domain with Boolean encoding, it is
possible to symbolically simulate the
model using BDDs. Seger and Bryant’s
work on symbolic trajectory evaluation
(STE) helped to renew further interest
in symbolic execution.

STE differs from symbolic simulation
in that it provides a mathematically rig-
orous method for establishing that
properties (assertions) of the form
antecedent A ➨ consequent C hold. For
the test vector shown in Fig. 4c, the
antecedent is (I1 is s1, I2 is s2, …, In is sn)
from time 0 to 1, and the consequent is
(out is s1 & s2 & …sn) from time 1 to 2.

Symbolic values specified by the

antecedent are used to initialize the cir-
cuit’s state holders. A symbolic simula-
tor then simulates the model, typically
for one or two clock cycles, while dri-
ving the inputs with symbolic values.
The simulator compares the resulting
values—which appear on selected inter-
nal nodes and primary outputs—with
the expected values expressed in the
consequent.

In general, the values could be func-
tions over a finite set of variables. A tra-
jectory is a sequence of states such that
each state has at least as much informa-
tion as the next-state function applied
to the previous one. Intuitively, a trajec-
tory is a state sequence constrained by
the system’s next-state function. A suc-
cessful simulation of the assertion A➨ C

establishes that any sequence of value
assignments to circuit nodes that is both
consistent with the circuit behavior and
consistent with antecedent A is also
consistent with consequent C.

STE can verify that an implementa-
tion satisfies its specification (reference

model). The assertion generator extracts
necessary assertions from the reference
model. If the implementation is correct,
these assertions should hold during
symbolic simulation of the RTL design.
Assertion A ➨ C holds if the weakest
antecedent trajectory that the imple-
mentation goes through during simula-
tion (using A) is at least as strong as the
weakest sequence satisfying consequent
C. Informally, the outputs produced
during simulation (using A) should be
at least as strong as the expected out-
puts (given in C).

Consider a property-checking sce-
nario for a memory management unit
(MMU) of a typical microprocessor. A
typical MMU consists of blocks such as
segment registers, translation look-aside

buffers (TLBs) and block address trans-
lation (BAT) arrays. Each block in turn
consists of many subblocks. Each sub-
block is implemented using Static
Random Access Memory (SRAM).
Typical operations in SRAM are read and
write. Therefore, it is natural to verify the

FEBRUARY/MARCH 2005 31

RTL Design
(Implementation)

ADL Specification

Validation

HDL Generator

Symbolic
Simulator

Equivalence
Checker

Generic
HDL Models

Reference Model
(Complete Description)

Reference Model
(Properties)

Automatic
Manual
Feedback

Architecture Specification
(English Document)

Successful Equivalent

DifferentFailure

Fig. 2 Top-down validation flow

Box B
always @ (wrClk or wrEn or dIn or wrAddr)
begin

assign out = (rdClk & rdEn) ? ram[rdAddr] : 32’b0 if (wrClk & wrEn) ram[wrAddr] <= dIn;
end

Read Property Write Property

read and write properties of each sub-
block (SRAM). The generated reference
model to verify each SRAM cell’s read
and write properties contains the Verilog
code segment shown in Box B.

To verify that the MMU implementa-
tion satisfies these properties, the
Versys2 symbolic simulator can be used
to perform property checking. Versys2
accepts two inputs: MMU implementa-
tion and properties (the reference
model). The simulator requires manual
specification of the state mappings
between the reference model and the
implementation. This involves map-
ping both latches and bit cells by
specifying their names. The assertion
generator in Versys2 automatically
generates the assertions from the ref-
erence model.

Versys2 symbolically simulates the
MMU implementation by using the
generated assertions to ensure that
the design satisfies the reference
model. Versys2 generates a coun-
terexample if an assertion fails in the
RTL design. This counterexample is
used to modify the RTL design.

Equivalence checking
This branch of static verification

uses formal techniques to prove
whether two versions of a design are
functionally equivalent. The equiva-
lence checking flow has four stages:
reading, matching, verification and
debugging. Matching and verification
are the two stages that design trans-
formations affect the most.

During the reading stage, the
equivalence-checking tool reads both
design versions, and then segments
them into manageable sections called
logic cones. Logic cones are groups
of logic bordered by registers, ports or
black boxes. Figure 5a shows the cones
for a typical design block. A logic
cone’s output border is the compare
point. For example, in Fig. 5a, OUT1 is
the compare point of Cone1.

In the matching phase, the tool tries
to match, or map, compare points from
the reference (golden) design to their
corresponding compare points within
the implementation design. Two types
of matching techniques are used: name
based (non-function) and function (sig-
nature analysis) based. Figure 5b shows
compare point matching for a typical
reference design and implementation.

For better performance, name-based
methods, which are more efficient,
should complete most of the matching.

Design transformations can result in the
matching of fewer cones using the
name-based techniques, which slows
down performance. (It cannot preserve
all the names since parts of the design
are getting added/deleted/merged dur-
ing design transformations.) Creating
compare rules can assist name-based
techniques, but determining and creat-
ing the rules can be time-consuming.

If the implementation differs drasti-
cally from the reference design, it is not
possible to write the design rules. In
such a scenario, the compare points can

be matched manually for better perfor-
mance or by using costly function-
based techniques. Either way, this
approach is impractical for designs with
many unmatched points.

The verification stage proves
whether each matched compare point is
either functionally equivalent or not.
Design transformations can affect a
logic cone’s structure in the implemen-
tation design. When logic cones are
very dissimilar, performance suffers. In
some cases, such as during retiming,
logic cones can change so significantly
that additional setup is necessary to
successfully verify the designs. The
debugging phase begins when the tool
has returned a nonequivalent result.
Unaccounted design transformations

can cause a false-negative result, lead-
ing to a loss of valuable time spent
debugging designs that are actually
equivalent. The solution is to perform
additional setup to guide the tool for
the given designs.

Consider an equivalence-checking
scenario for the DLX processor. The
processor can be specified using ADL.
The reference model (the synthesizable
RTL description) of the DLX architec-
ture can be generated from the ADL
specification. The generated reference
model can be used to verify a DLX

implementation such as the synthesiz-
able 32-bit RISC DLX implementation
from <http://www.eda.org/rassp/vhdl/
models/processor.html>.

An equivalence checker, such as
Synopsys Formality, can be used to ver-
ify whether two designs are equivalent.
The tool reads both the reference
design and the implementation. It then
tries to match the compare points
between them. The unmatched com-
pare points must be mapped manually.
The tool next tries to establish equiva-
lence for each matched compare point.
When a failure occurs, the validation
team needs to analyze the failing com-
pare points to verify whether they are
actual failures. The team can use the
feedback to perform additional setup

32 IEEE POTENTIALS

Register File

Pipeline Edge
Data-Transfer Edge

Functional Unit
Storage

Fetch

FADD2

FADD3

FADD4

WriteBack

MEM

MUL2

MUL1 FADD1

PC Memory

Decode

IALU

MUL7

DIV

Fig. 3 Structure of
the DLX architecture

(in case of a false negative) or to modi-
fy the RTL design implementation.

Conclusions
There is no argument that validation

is one of the most important problems
in today's processor design methodolo-
gy. A significant bottleneck in the vali-
dation of such systems is the lack of a
golden reference model. As a result,
many existing approaches employ a
bottom-up validation approach by using

a combination of simulation techniques
and formal methods. This article pre-
sented a top-down validation methodol-
ogy that complements the existing bot-
tom-up techniques.

Specification-driven hardware gener-
ation and validation of design imple-
mentation using equivalence checking
has one limitation: the structure of the
generated hardware (reference) model
needs to be similar to that of the imple-
mentation. This requirement is primarily
due to the limitation of the equivalence
checkers available today. Equivalence
checking is not possible using these
tools if the reference and implementa-
tion designs are large and drastically
different.

In reality, the implementation goes

through several changes due to various
requirements, such as area, cost, power
and performance. As a result, the final
implementation’s structure might not be
similar to that intended in the original
specification. An improved methodolo-
gy is needed that would enable refer-
ence model generation and design vali-
dation without any knowledge of the
implementation details.

Read more about it
• P. Mishra, N. Dutt, N.

Krishnamurthy, and M. Abadir, “A Top-
Down Methodology for Microprocessor
Validation,” IEEE Design and Test of
Computers , volume 21, number 2,
pages 122-131, March-April, 2004.

• A. Halambi et al., “EXPRESSION: A
Language for Architecture Exploration
through Compiler/Simulator Retarget-
ability,” Design Automation and Test in
Europe (DATE), 1999, pages 485-490.

• N. Krishnamurthy et al., “Design
and Development Paradigm for
Industrial Formal Verification Tools,”
IEEE Design & Test, vol. 18, no. 4, July-
Aug. 2001, pages 26-35.

• P. Mishra, N. Dutt, and A. Nicolau,
“Functional Abstraction Driven Design
Space Exploration of Heterogeneous
Programmable Architectures,” Int’l

Symposium on System Synthesis (ISSS),
2001, pages 256-261.

• C. Seger and R. Bryant, “Formal
Verification by Symbolic Evaluation of
Partially-Ordered Trajectories,” Formal
Methods in System Design, vol. 6, no. 2,
March 1995, pages 147-189.

• L. Wang, M. Abadir, and N.
Krishnamurthy, “Automatic Generation
of Assertions for Formal Verification of
PowerPC Microprocessor Arrays Using
Symbolic Trajectory Evaluation,” Design
Automation Conference (DAC), 1998,
pages 534-537.

• J. Marques-Silva and T. Glass,
“Combinational Equivalence Checking
Using Satisfiability and Recursive
Learning,” Design Automation and Test
in Europe (DATE), 1999, pages 145-149.

• P. Mishra, A. Kejariwal and N.
Dutt, “Synthesis-driven Exploration of
Pipelined Embedded Processors,”
International Conference on VLSI
Design, 2004, pages 921-926.

About the author
Prabhat Mishra is an assistant profes-

sor in the Department of
Computer and Information Science
and Engineering at the University
of Florida. His research interests
include design and verification of
embedded systems, VLSI CAD, and
computer architecture. Mishra
received his B.E. from Jadavpur
University, India, M.Tech. from the
Indian Institute of Technology,
Kharagpur, and Ph.D. from
University of California, Irvine – all
in Computer Science. He is a
member of the IEEE and ACM.

Adapted from P. Mishra, N. Dutt, N.
Krishnamurthy, and M. Abadir, “A Top-
Down Methodology for Microprocessor
Validation,” IEEE Design and Test of
Computers , volume 21, number 2,
pages 122-131, March-April, 2004

FEBRUARY/MARCH 2005 33

•
•
•

•
•
•
•

•

In2

In1

In3
In4
In5

Inm

Out1

Out2

Outn

Implementation DesignReference Design

Cone1

Cone2

Conen

User Specified
Matched Cones

Automatically
Matched Cones

Unmatched
Cones

(b) Compare Point Matching(a) Logic Cones in a Design Block

(a) n-Input AND Gate

•
•
•

In

I3

I1
I2

AND Out

(b) Ternary Simulation

• • • • • • • • •

Vector n+1: 1 1 1 • • • 1

Vector n: x x x • • • 1

Vector 3: x x 1 • • • x

Vector 2: x 1 x • • • x

Vector 1: 1 x x • • • x

Inputs I1 I2 I3 • • • In

Fig. 4 Test vectors
for validation of an
AND gate

Fig. 5 Matching of compare points between reference design and implementation design

Find the solutions
to shape your future
visit IEEE online at:

www.ieee.org/gold

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

