
1

Reliability Improvement in Multicore Architectures Through
Computing in Embedded Memory

Hadi Hajimiri, Somnath Paul, Student Member, IEEE, Anandaroop Ghosh, Student Member, IEEE, Swarup Bhunia, Senior
Member, IEEE, and Prabhat Mishra, Senior Member, IEEE

Abstract—Nanoscale devices provide the capability of gigascale inte-
gration in modern electronic systems. However, such systems suffer from
high defect rates and large parametric variations that can adversely affect
system reliability. Hardware duplication is an obvious direction but it incurs
significant area overhead that is unacceptable in many scenarios. Memory-
based computing (MBC) is a promising alternative to improve overall system
reliability when few functional units are defective or unreliable under
process-induced or thermal variations. Existing works demonstrated the
utility of MBC in single-core based designs. In this paper, we explore the
effectiveness of MBC in multicore architectures where each core uses a
small private cache while a set of cores share a large second-level cache. The
private as well as shared caches are used to perform computation on demand
using a lookup table. When a functional unit fails, temporarily due to
temperature induced variations or permanently, the associated computation
is transfered to caches. Experimental results demonstrate that on-demand
memory based computing can significantly improve reliability with minor
loss in performance.

I. INTRODUCTION

Design and fabrication technologies are successful in scaling down
the transistor dimensions to integrate more and more transistors in
a single System-on-Chip (SoC). Technology scaling also introduces
major challenges such as high defect rate and device parameter varia-
tions [1]. Increasing process-induced variations and high defect rate in
nanometer regime leads to reduced yield [2]. These variations change
the propagation delay in CMOS circuits, which may lead to delay
failures. In Static Random Access Memory (SRAM) these variations
may cause data retention or read/write failures [12]. Higher power
density in modern high-performance microprocessors (100W/cm2

for 50-nm technology [3]) leads to an overall increase of the processor
temperature due to the limited cooling capacity of the package.
Moreover, the power density varies across the chip surface resulting
in localized hotspots [6]. Existing approaches address reliability
concerns, caused by device parameter variations, during design time
or by post-silicon correction and compensation solutions. Reliable
computation with unreliable components has been actively studied
for a long time. A wide variety of solutions have been proposed over
the years with the goal of dynamic detection and correction of defects
and variation-induced failures [2-4, 8]. These techniques typically
incur large performance overhead [4] or do not address manufacturing
defects [8].

In this paper, we propose an architecture-level solution for im-
proving reliability for multicore architectures in the presence of both
manufacturing defects and parameter variation induced reliability
issues. Each core in a typical multicore architecture uses a small
private (e.g., L1) cache whereas a set of cores share a large next level
cache (e.g., L2). Our proposed scheme allows on-demand transfer
of computation from functional units such as integer Arithmetic
Logic Unit (ALU) to the private and shared caches. Here we assume
that under a fixed delay target, one or more logic units are non-
functional while any hard defect or variation induced parametric
failure in memory has been addressed using suitable redundancy
[13] or re-mapping [2] techniques. In such a scenario, the memory
can compensate for hard manufacturing defects as well as parametric
failures (such as delay failures) in logic units. Moreover, the method

can be used to address reliability problems to thermal variations,
by dynamically transferring activities of a functional unit (FU) to
memory when the FU experiences high temperature. The basic idea
is that part of a cache (or separate embedded memory) can be used
to implement the functionality of different execution units, such as
adder or multiplier by storing the results of Boolean functions in
lookup table (LUT) format. As a result, reconfigured caches can be
used as a private or shared reconfigurable computing resource for on-
demand computing. Note that the proposed computing model does
not adversely affect the memory integration density. Moreover, it also
remains transparent to the software execution flow.

The rest of the paper is organized as follows. Section II provides
an overview of memory based computation. Section III describes the
proposed methodology for on-demand transfer of computation to the
on-chip cache. Section IV presents the experimental results for a set
of benchmark applications. Finally, Section V concludes the paper.

II. MEMORY BASED COMPUTATION: AN OVERVIEW

This section presents an overview of memory-based computation.
Lookup table based implementation is common in case of Field
Programmable Gate Array (FPGA), where small logic functions can
be implemented using LUTs [9]. The memory based computing
framework developed in [19] has made several important contribu-
tions: a) it focuses on realizing activities of common execution units
in a processor (such as addition, multiplication etc.) and not specific
iterative tasks, thus extending the applicability of the approach to
general-purpose computations; b) it addresses improvement in yield
and reliability under manufacturing defects and parameter variations;
and c) it preserves the advantage of high device integration density of
conventional SRAM based embedded memory design. The remainder
of this section answers two important questions. First, it describes
the circumstances when MBC is beneficial. Next, it describes how to
perform computation in memory using illustrative examples.

A. Applicability and Limitations

MBC is suitable for arithmetic (such as add, subtract, compare) as
well as logical (such as “and”, “xor”) operations which can be repre-
sented in terms of LUT. [19] uses a time-multiplexed reconfigurable
computing model [10], where large arithmetic/logical functions are
bit-sliced and the slices are represented as multi-input multi-output
LUTs. These slices are evaluated in topological order over multiple
cycles. The on-chip cache provides easy dynamic reconfigurability,
by loading the lookup table for different operations on demand.
The LUTs for different operations can be stored in the physical
memory and fetched on-demand to the on-chip cache. A memory
array provides a regular structure which is very scalable. For example,
to achieve higher memory bandwidth the memory can be organized
into multiple banks. For bit-sliced operation, these banks can be
accessed in parallel to improve performance.

The functions which have relatively small number of inputs and
outputs or the ones which can be bit-sliced are suitable for memory
based computations. Arithmetic operations, such as additions and

2

multiplications, often involve operands of large sizes (e.g., two 32
or 64-bit operands). However, we note that such operations can be
easily bit-sliced and hence efficiently represented in terms of LUTs.
Complex functions including trigonometric, logarithmic, exponent,
square root or other transcendental functions are also shown to be
very amenable to memory based implementation. These functions
can be either bit-sliced [17] or spatially decomposed for evaluation
using multiple LUTs [18]. Implementing such functions would how-
ever require small adaptation in the glue logic [19] (an additional
hardware unit used to interface the processor pipeline with the MBC
framework).

Specific Instuction: ADD X,Y

Application
Program

No Yes

Perform
Computation in
Functional Units

M
e

m
o

ry
-B

a
se

d
 C

o
m

p
u

tin
g

Send operands to glue logic; Form
effective physical address

Result in
L1 Cache?

Return ADD
result

Hit Miss

Result in
L2 Cache

Write data in
L1; Return
ADD result

From physical
address; Access
main memory

Write data in
L2, L1; Return

ADD result

Unit Defective or
Temperature > Th?

Hit

Miss

Conventional
Computing

Fig. 1. An overview of memory-based computation

Dynamic transfer of computation to on-chip memory can be
effective in salvaging chips under various failure scenarios. Here, we
outline three common failure cases where MBC can be beneficial.
First, when one or more of the functional units, such as integer or
floating point adder/multiplier, are not-functional due to manufactur-
ing defects, MBC can ensure that chips with failing functional units
are not discarded. Next, MBC can address parameter variations. In
scaled technologies, process induced device parameter variations can
affect circuit parameters such as critical path delay. Such variations
can lead to localized within-die delay variations among the functional
units, which increases with technology scaling. Similar to logic,
memory is also subject to within-die variations. However, memory
cell failures due to within-die variations can be tolerated using
circuit/architecture level techniques such as dynamic resizing of the
cache to avoid the faulty cells [2]. Finally, MBC can also address
temperature variations. Highly active portions of the die such as the
issue stage, or the execution unit and the integer register file can
have twenty times the power density of less active blocks such as
the on-chip cache block [5]. The most commonly used technique
to maintain on-die thermal integrity include Dynamic Voltage and
Frequency Scaling (DVFS) technique [4]. The scheme is useful for
handling thermal emergency and prevents the processor from over-
heating. However, DVFS limits the performance of the processor
by causing a global slowdown of all the units until the transistors
in the hotspots have an acceptable junction temperature. The on-
chip memory of a processor typically possesses a cooler temperature
profile [6]. Hence, it can be used to share a part of the workload of the
execution units when necessary. This reduces the switching activity
and hence decreases the power density of the execution units, thereby

reducing its temperature.
Fig. 1 shows an overview of the memory based computing scheme

as proposed in [19]. If one or more functional units are defective, the
operands for the faulty functional unit is used to form the effective
physical address for accessing the LUTs corresponding to the mapped
function. If these LUTs already reside in on-chip cache, outputs for
the mapped function are easily retrieved. In case of a cache miss,
these values are retrieved from the main memory.

Fig. 2. In SPECInt2000 benchmarks, 40% of the integer instructions have
bitwidth less than 8-bits.

It is possible that MBC can introduce performance degradation.
However, the performance loss due to the memory based computa-
tion remains within tolerable limits primarily for two reasons. The
operands for a specific instruction (e.g., add/multiply) experience
high locality of reference across different clock cycles thus requiring
loading only part of the LUTs in the private L1 cache whereas the
rest can be in shared L2 cache or in main memory. Also, most of the
operations in the functional units do not use the full-width operands
[14] as shown in Fig. 2. In such cases, the operation latency of
computing in caches can be comparable to the latency of computing
directly in the cores. Fig. 2 shows that for integer operations in
SPECInt2000 benchmark applications over 40% operations have bit-
width of 8 or less. Memory based computation can be effective
for these operations since smaller operand width translates to fewer
memory accesses and improved performance.

B. Memory-based Addition: An Example

Carry-select addition of two 32-bit operands using memory based
computation is shown in the Fig. 3. If one of the operands is zero,
the addition is completed in one cycle. If not, the 32-bit operands
are bit-sliced into 8-bit operands. For each set of 8-bit operands, the
addition result for both input carry zero and one is looked up from the
cache. The input carry is then used to select one of the two results.
The same operation is repeated for all the 8-bit operands. Thus the
entire addition procedure is completed in two steps, a memory lookup
and subsequent carry-select addition using the 8-bit operand addition
results. Note that due to the commutative property of “add” (a + b =
b + a), total memory required to store all the “add” results is halved
and comes to 64KB. Considering the result for all the sub-operands
(Xi, Yi) are present in the on-chip memory, the worst-case evaluation
time for two 32-bit operands is 4 cycles. Although this evaluation
time is more than that of respective functional units, due to the fact
that most of the operations (almost half of the integer operations)
are narrow width [14], the average penalty in performance is not
significant. The exact latency of operation depends on number of
memory accesses as well as the number of cycles required to access
the memory. The later is determined by the location of relevant LUT
in the memory hierarchy.

3

Fig. 3. Implementation of memory based addition using carry-select addition.

III. DYNAMIC TRANSFER OF COMPUTATION TO CACHES

In this section, we explore the effectiveness of memory based
computing (MBC) in multicore architectures. We have applied MBC
to realize the functionality of the integer execution unit (adder and
multiplier) in each core. Fig. 4 shows a broad overview of MBC in
a multicore framework. This architecture has n cores each having
it’s own private L1 data and instruction caches. All the cores share
a L2 combined (instruction+data) cache which is connected to main
memory. To support MBC, each core also has a L1-level MBC cache
that store most frequently accessed entries of the LUTs. Unless addi-
tional embedded memory can be used for L1 MBC cache, the existing
private L1 data cache can be partitioned into two parts: one part
dedicated for MBC cache to store mostly frequently used LUTs, and
the other part will be used for conventional data accesses. Similarly, to
implement L2-level MBC cache either additional embedded memory
can be used or existing shared L2 cache can be partitioned to make
space for MBC LUTs.

Under normal circumstances, issue logic sends the instruction to
the respective functional units. However, if the functional unit is not
available (due to defect or temperature stress), issue logic bypasses
the original functional unit for memory based computation, as shown
by dashed lines in Fig. 4. In both normal and defective (MBC)
scenarios, the L1 (instruction as well as data) and L2 caches performs
in conventional manner i.e., stores frequently used data (instruction)
for performance improvement. Once a need for bypassing the normal
execution unit has been detected the processor will issue an indication
for the Operating System (OS) to load the result tables for that
particular operation in a section of the main memory. Note that the
OS is responsible for mapping the virtual memory address space into
the physical memory address space. The formation of virtual and
physical addresses are same as described in [19]. After calculation
of the effective address, this address is used to access a location of
the MBC cache memory where the result of the operation is stored.
Depending on the operand width, multiple memory accesses may
be required to complete an operation. The result bits obtained from
evaluation of multiple bit-slices are accumulated inside the glue logic.

Note that loading of the ADD/MULT results table would follow
the same steps as loading of instruction/data into the main memory
and from the main memory into the processor cache. When MBC is
invoked for the first time, virtual to physical address mapping will
encounter a page fault. The exception handling routine of the OS
would load the corresponding pages into the main memory and load
the virtual to physical translation into the page table. Subsequent

access to the same virtual address would bring the mapping and the
data into the MBC mapping table and the on-chip cache, respectively.
The proposed activity transfer scheme requires additional hardware
that generates the virtual and the physical addresses for accessing
the cache and the main memory, respectively. In order to exploit the
commutativity property of the addition and multiplication operation,
we use a 32-bit comparator for comparing the operands and aligning
the larger operand to form the most significant bits. The same com-
parator can also be used for the multiplication procedure. Additional
hardware required for multiplication includes i) a 32-bit shifter to
obtain partial products of appropriate weight before they are added
and ii) 32-bit priority encoder in order to minimize the number of
memory accesses for the generation and addition of partial products
in case of narrow width operands.

Task 1

Fetch

Issue

Execute

Core 1

Inst.

Cache

Data

Cache

MBC

Cache

Task n

Fetch

Issue

Execute

Core n

Inst.

Cache

Data

Cache

MBC

Cache

L2 I+D

Cache

L2 MBC

Cache

Main Memory

Fig. 4. Memory-based Computation in Multicore Architectures

IV. EXPERIMENTS

A. Experimental Setup

To check the effectiveness of the proposed scheme, we implement-
ed the computation transfer mechanism in a widely used multicore
simulator, M5 [15]. We enhanced M5 to make the required modifica-
tions in processor cores as well as in memory hierarchy. We modified
memory hierarchy to support cache partitioning, to introduce L1
private MBC caches and shared L2 MBC cache. We configured the
simulated system with a two-core and four-core processor each of
which runs at 500MHz. The DerivO3CPU model [15] in M5 is used
which represents a detailed model of an out-of-order SMT-capable
CPU which stalls during cache accesses and memory response
handling. The effectiveness of the proposed framework was validated
for two different scenarios: 1) improving the reliability of operation
under temperature variation and 2) improving manufacturing yield of
a processor when some functional units become inoperative due to
manufacturing defects. For the first case, the temperature threshold for
the integer execution unit was set at 100◦C. We have used reference
inputs for the benchmarks in the SPEC2000 benchmark suite [7].
“Hotspot 2.0” tool [16] was used for estimating the temperature
profile of the integer ALU units. In order to estimate the die thermal
profile from Hotspot, power dissipation values of the individual
functional units were obtained from Wattch 1.0 [11] at regular time
intervals.

4

B. Results

Fig. 5 shows the performance loss in case of different Spec2000
benchmarks due to MBC. We formed different task sets to be
executed together in multi-core environment (one task per core). For
example, in the 2-core framework, the tasks are organized as: (applu,
art), (apsi, bzip), (eon, gcc), (gzip, lucas), and (mgrid, perlbmk).
Similarly, for 4-core scenario they are organized as: (applu, art,
apsi, bzip), (eon, gcc, gzip, lucas), and (mgrid, perlbmk, bzip2, gcc).
Average increase in CPI of 1.32%, 1.20%, and 0.80% was observed
using MBC for temperature management in the integer ALU for
single-core, 2-core, and 4-core framework respectively. The impact on
performance due to MBC is mainly two-fold: 1) increased operational
latency compared to execution in the functional units, and 2) higher
capacity misses in the cache due to reduction in cache size.

Fig. 5. Impact on processor performance (CPI) for adaptation to thermal
stress using memory based computation

From Fig. 5 it can be observed that the performance penalty
decreases as the number of cores increases. This is due to the fact that
tasks on different cores compete for the shared resources (memory
access or shared L2 cache) and as the number of cores increases,
the overall performance decreases. This performance degradation
hides some portion of the performance overhead introduced by MBC.
Moreover, our study suggests that increasing cores can be beneficial
in certain MBC scenarios when multiple cores share the same LUT in
L2 cache. Thus in a system with large number of cores and/or tasks,
performance degradation caused by using MBC is less noticeable.

In order to investigate the effect of using MBC for tolerating
manufacturing defects we have considered a two-core processor1

with the following task sets: Set 1 (qsort, vpr), Set 2 (basicmath,
stringsearch), Set 3 (swim, untoast), Set 4 (parser, toast) and Set
5 (applu, sixtrack). We considered the scenario of 4 adders and
1 multiplier being defective in each core. Fig. 6 compares the
performance of a processor core with and without MBC when
multiple FUs are considered inoperative and an extra on-chip memory
hierarchy is present to support MBC operations. In the proposed
scheme, activities of these defective functional units are dynamically
transferred to the memory. As observed from Fig. 6, if we do not
employ memory based computation, the performance overhead for a
faulty processor core is 5.5%. However, when the proposed activity
transfer scheme is incorporated in the processor architecture, the loss
in performance is considerably less (1.6%).

V. CONCLUSION

We presented a novel memory based computing framework for
multicore architectures that enables dynamic transfer of computation
to embedded memory for improving yield and reliability. The basic
idea is to use both private and shared caches as reconfigurable
computing resources. Various functions are implemented in caches

1The baseline configuration has 6 adders and 2 multipliers in each core

Fig. 6. Performance results for 4-adder/1-multiplier defective scenario.

using a lookup table. Our approach can be effectively used to
tolerate permanent manufacturing defects in a processor core or
in a functional unit of a core, thus improving functional yield of
multicore architectures. It can improve parametric yield under within-
die variations when specific functional unit becomes unusable while
memory remains functional. It can also be applied to temporarily
bypass the activity in functional units under time-dependent local
variations, thus providing dynamic thermal management by activity
migration. Our experimental results using a set of applications on
M5 multiprocessor simulator demonstrate that our proposed activity
transfer method provides considerable benefit in yield and reliability
at the expense of small loss in performance and low hardware
overhead. Future work will investigate the use of memory-based
computing for hardware acceleration of compute-intensive tasks.

REFERENCES

[1] S. Borkar, “Designing reliable systems from unreliable components: the
challenges of transistor variability and degradation”, IEEE Micro, 2005.

[2] A. Agarwal et al, “A Process-Tolerant Cache Architecture for Improved
Yield in Nanoscale Technologies”, IEEE Trans. on VLSI, 13,27-38, 2005.

[3] C. Minsik, “TACO: temperature aware clock-tree optimization”, Inter-
national Conference on Computer Aided Design, 2005.

[4] R. Mcgowen et al, “Power and temperature control on a 90-nm Itanium
family processor”, IEEE Journal of Solid State Circuits, 2005.

[5] K. Asanovic et al, “Reducing power density through activity migra-
tion”, International Symp. on Low Power Electronics and Design, 2003.

[6] K. Skadron et al, “Temperature-aware microarchitecture”, International
Symposium on Computer Architecture, 2003.

[7] Spec 2000 benchmarks [Online], http://www.spec.org/cpu/.
[8] D. Ernst et al, “Razor: A Low-power Pipeline Based on Circuit-Level

Timing Speculation”, IEEE Micro, 2003.
[9] P. Chow, “The Design of an SRAM-Based Field Programmable Gate

Array, Part II: Circuit Design and Layout”, TVLSI, 1999.
[10] D. Jones and D.M. Lewis, “A time-multiplexed FPGA architecture for

logic evaluation”, Custom Integrated Circuits Conference, 1995.
[11] D. Brooks et al, “Wattch: A framework for architectural-level power

analysis and optimizations”, ISCA, 2000.
[12] S. Mukhopadhyay et al., “Modeling of Failure Probability and Statis-

tical Design of SRAM Array for Yield Enhancement in Nanoscaled
CMOS”, TCAD, 2005.

[13] C.T. Huang et al, “Built-in redundancy analysis for memory yield im-
provement”, IEEE Transactions on Reliability,Vol.52, pp.386-399, 2003.

[14] D. Brooks and M. Martonosi, “Dynamically Exploiting Narrow Width
Operands to Improve Processor Power and Performance”, International
Symposium on High Performance Computer Architecture, 1999.

[15] N. Binkert et al., The M5 simulator: Modeling networked systems, IEEE
Micro, vol. 26, no. 4, pp. 52 60, 2006.

[16] Hotspot 2.0: http://lava.cs.virginia.edu/HotSpot/documentation.htm
[17] C. Rebeiro, D. Selvakumar and A.S.L. Devi, “Bitslice Implementation

of AES”, Lecture Notes in Computer Science, Vol. 4301, 2006.
[18] T. Sasao, S. Nagayama, J.T. Butler, “Numerical Function Generators

Using LUT Cascades”, IEEE Trans. on Computers, Vol. 56, No. 6, 2007.
[19] S. Paul and S. Bhunia, “Dynamic Transfer of Computation to Processor

Cache for Yield and Reliability Improvement”, IEEE TVLSI, 2011.

