
DECODING-AWARE COMPRESSION TECHNIQUES FOR RECONFIGURABLE
SYSTEMS

By

CHETAN MURTHY

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2008

1

c© 2008 Chetan Murthy

2

To my father Murthy M.C., mother Shashikala R. and my brother Mohan M. for their

constant care, love and encouragement

3

ACKNOWLEDGMENTS

First, I would like to thank my thesis supervisor Dr. Prabhat Mishra for providing

me an opportunity to solve many interesting and complex problems, assisting me learn

new technologies and recognizing the potential in me to positively contribute in ongoing

research in Embedded Systems Lab. My sincere thanks to Dr. Ye Xia and Dr. Alireza

Entezari for being my thesis committee members, providing me valuable feedback and

constructive comments on my thesis. I would also like to thank all computer science

department faculty for offering advanced courses to augment my knowledge and inspired

me to apply those concepts to solve numerous complex issues.

I would like to extend my profound gratitude to research members in Embedded

System Lab who were there at all times providing me a joyous environment, listening to

all my problems and for assisting me in solving them with great ease.

Last but by no means the least, I would like to convey my heartfelt thanks to my

family who, at all times during this course of effort have been a great source of positive

spirit, inspiration, encouraging me to take bold decisions and accomplish them successfully

and make them proud with this achievement

4

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS . 4

LIST OF TABLES . 7

LIST OF FIGURES . 8

ABSTRACT . 10

CHAPTER

1 INTRODUCTION . 12

1.1 Introduction . 12
1.2 Thesis Contributions . 13
1.3 Thesis Organization . 14

2 BACKGROUND . 16

2.1 Introduction to FPGA . 16
2.1.1 FPGA Architecture . 16
2.1.2 Configurable Logical Block . 16
2.1.3 FPGA Reconfiguration . 17
2.1.4 Placement of Decompressor Engine 18

2.2 Related Work . 20
2.3 Cost Benefit Analysis of Dictionary Based Compression Algorithms 21

2.3.1 Dictionary Based Compression . 21
2.3.2 Bitmask Based Dictionary Compression 23
2.3.3 Decoding Engine of Bitmask Encoded Bitstreams 25

3 DECODING AWARE CONFIGURATION BITSTREAM COMPRESSION . . . 27

3.1 Decoding-Aware Bitstream Compression 27
3.1.1 Parameter Selection for Dictionary Based Compression 27
3.1.2 Decoding-Aware Parameter Selection for Bitmask Based Compression 29
3.1.3 Efficient Dictionary Selection . 30
3.1.4 Run Length Encoding of Compressed Words 33

3.2 Efficient Bitstream Decompression . 34
3.2.1 Decode Friendly Rearrangements of Bits 36
3.2.2 Decoding-Aware Placement of Compressed Bitstreams 37
3.2.3 Decompression Engine . 39

3.3 Experiments . 40
3.3.1 Decoding-Aware Parameters for Benchmarks 40
3.3.2 Compression Efficiency . 41

3.3.2.1 Decoding aware vs. bitmask based compression 41
3.3.2.2 Decoding-aware vs. bitstream compression techniques . . . 43

5

3.3.3 Decompression Efficiency . 46

4 NISC CONTROL WORD COMPRESSION . 49

4.1 NISC Architecture . 49
4.2 Control Word Compression . 50

4.2.1 Bitmask Based Multi Dictionary Compression 51
4.2.2 Bitmask Aware Don’t Care Resolution 53
4.2.3 Smart Encoding of Least Frequently Changing Bits 54

4.3 Decompression of Control Words . 57
4.3.1 Decompression Engine . 57
4.3.2 Branch Target Look Up Table . 58

4.4 Experiments . 59

5 OPTIMAL REPRESENTATION OF BITMASKS 61

5.1 Optimal Encoding of n Bits . 61
5.1.1 The Proof for n-1 Bit Representation 62

5.2 Experimental Results . 63

6 CONCLUSION AND FUTURE WORK . 64

6.1 Conclusion . 64
6.2 Future Research Directions . 65

REFERENCES . 66

BIOGRAPHICAL SKETCH . 68

6

LIST OF TABLES

Table page

3-1 Operating speed and look up table usage of decoders 46

3-2 Decompression cycles for fixed length decoder 47

3-3 Decompression time in milliseconds for FFT benchmark 48

7

LIST OF FIGURES

Figure page

1-1 Traditional FPGA reconfiguration with compression 12

2-1 FPGA architecture . 16

2-2 Configurable logic block and a simple function implementation 17

2-3 Reconfiguration architecture of Virtex family . 18

2-4 Decompression hardware placement . 19

2-5 Compressed word formats of dictionary and bitmask based compression techniques 21

2-6 Dictionary based compression. 22

2-7 Decompression engine for bitmask encoded bitstream 26

3-1 Effect of word length, dictionary size and number of bitmasks on compression
ratio . 29

3-2 An example illustrating dictionary selection . 33

3-3 An example illustrating run length encoding with bitmask based compression . . 33

3-4 Decoding aware placement of encoded bits . 36

3-5 Decompression engine . 39

3-6 Parameter values for best compression ratio achieved 40

3-7 Comparison of compression ratio with bit mask based code compression technique 42

3-8 Comparison of compression ratio with LZSS-8 on Dirk et al. benchmarks. 44

3-9 Comparison of compression ratio with LZSS-8 on Pan et al. benchmarks. 44

3-10 Comparison of compression ratio with difference vector compression technique
on Pan et all benchmarks . 45

3-11 Comparison of decompression time for FFT benchmark 48

4-1 NISC architecture and decoder placement . 50

4-2 Comparison of compression ratio with different programs 54

4-3 An example illustrating removal of constant and least frequent bits in control
words . 55

4-4 NISC compressed control word flow . 57

8

4-5 A multi-dictionary based decompression engine 58

4-6 Branch target look up table for compressed control words 59

4-7 Comparison of compression ratio with dictionary based compression technique
on MiBench benchmark . 60

5-1 A n-1 encoding of n bit bitmask . 61

5-2 Comparison of compression ratio with and without using n-1 bit encoding scheme 63

9

Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the

Requirements for the Degree of Master of Science

DECODING-AWARE COMPRESSION TECHNIQUES FOR RECONFIGURABLE
SYSTEMS

By

Chetan Murthy

December 2008

Chair: Prabhat Kumar Mishra
Major: Computer Engineering

In recent years FPGA are widely used in reconfigurable systems. FPGA are

configured using bitstreams often loaded from memory. Configuration data is reaching

megabytes because of multiple versions of an IP core are configured on a single FPGA and

sometimes because of the multiple IP cores. Limited configuration memory restricts the

number of IP core bitstreams that can be stored. Moreover slower memory and limited

communication bandwidth limit how frequently IP cores can be reconfigured. One of the

promising direction is to compress these bitstreams. Most of the compression techniques

exploit redundancies to compress multiple bitstreams but are not suitable for realtime

decompression. Other techniques focus on accelerating decompression but compromises

compression efficiency [1]. It is a major challenge to design a compression technique which

efficiently reduces bitstream size, meanwhile keeping decompression overhead minimal.

This thesis proposes a novel bitstream compression technique efficiently combining

bitmask and run length encoding for better compression ratio and smart rearrangement of

compressed bits for fast decoding. The main contributions of this thesis are; i) decoding

aware bitmask based dictionary selection to increase dictionary coverage, ii) run length

encoding of repetitive patterns to reduce compressed size, iii) efficient encoding scheme

for storing least frequently changing bits and, iv) smart rearrangement of compressed

bits into fixed length words that can significantly decrease the decompression overhead.

Hard to compress benchmarks are chosen which are widely used IP cores from image

10

processing and encryption domain [2] [3] [4] to illustrate the usefulness of this technique.

The proposed technique outperforms the compression ratio of existing techniques by

5-15% and decompression hardware is capable of operating at 200MHZ, the best known

operating speed for FPGA based decompressor. This thesis also analyzes the application

of an enhanced version of proposed bitstream compression technique to compress NISC

control words. Results illustrate an improvement in compression ratio by over 15-20%

without adding any decompression overhead.

11

CHAPTER 1
INTRODUCTION

1.1 Introduction

Field Programmable Gated Arrays (FPGA) store configuration bitstream on

memories which are usually limited in capacity and bandwidth. As FPGA are commonly

used in reconfigurable systems and application specific integrated circuits (ASIC),

configuration memory becomes a key factor in determining the number of IP cores that

a system can be configured and the delay in reconfiguration. The bitstream compression

algorithms solve memory constraint issue by reducing the size of the bitstreams and

decompression accelerators increases the decoding speed by simple decoding logic.

But there are very few algorithms that offers both efficient compression ratio and

fast decompression. Figure 1-1 shows the typical flow of compressed FPGA bitstream

reconfiguration. Bitstreams generated by vendor specific bit generation programs are

compressed and stored on a persistent memory. The decompression hardware decodes

and transfers the compressed bits from memory to configuration hardware which is then

transferred to configurable logic blocks (CLB) memory.

IP Core

CLB
Configuration

hardware

Decompression

Hardware

(Bitstream)

Compressed
Bitstream

Memory

Compression

Algorithm

Figure 1-1. Traditional FPGA reconfiguration with compression

Compression ratio (η) is the metric commonly used to measure effectiveness of a

compression technique, defined as in Equation 1–1.

CompressionRatio(η) =
CompressedSize

UncompresssedSize
(1–1)

12

.

We can classify the existing bitstream compression techniques into two categories:

those having good compression ratio but unacceptable decompression overhead and

complexity , [4], [5], [6], [7], and others which accelerate decompression but compromises

compression ratio [1]. The main idea of these algorithms is to store frequently occurring

sequence of bits using a static [8] or sliding [1] dictionary or to use FPGA specific

features (partial reconfiguration or readback [9]) to obtain repetitive patterns. One of

the promising compression technique is bitmask based code compression because of its

good compression ratio and simple decompression logic. The direct application of this

algorithm is not flexible in choosing word length or number, size and type of bitmasks

or dictionary size. It is obvious that unlimited use of these will result in better matches

but will result in multiple variable length encodings. However using them is not profitable

as they will result in slower and complex decompression hardware. Hence it is a major

challenge to develop an efficient compression technique which significantly reduces the

bitstream size without sacrificing decompression performance.

1.2 Thesis Contributions

This thesis makes these major contributions; i) efficiently combining decode aware

bitmask compression and run length encoding of repetitive patterns ii) novel encoding of

least frequently changing bits iii) optimal representation of n bit changes by only using

n − 1 bits and iv) smart rearrangement of compressed bits to obtain fixed length encoded

words.

This thesis proposes an efficient decoding aware compression technique for compressing

FPGA configuration bitstreams to improve compression ratio and decrease decompression

overhead. This is accomplished by efficiently choosing decoding aware parameters (word

length, dictionary size and number and type of bitmasks) combined with smart run

length encoding of repetitive words. The decompression overhead is reduced by efficiently

reorganizing compressed bits to form fixed length words. We have chosen very hard to

13

compress and commonly used IP cores from Opencore repository [3] and benchmarks used

in Koch et al. [2] to demonstrate the effectiveness of our technique. Our experimental

results illustrate that our approach improves compression ratio by 5-15% over existing

bitstream compression techniques and decompression hardware is capable of running

at 200MHZ. The decompression time to configure FPGA is decreased by 15-20% over

decompression accelerator designed by Koch et al. [1] .

This thesis also analyzes the application of the above decoding aware compression

algorithm to compress No Instruction Set Computer (NISC) control words. The

direct application is found to result in no significant reduction in code size. Whereas

using multiple dictionaries results in acceptable reduction in code size comparable to

compression technique proposed by Gorjiara et al. [10]. A novel technique is proposed

in which least changing and constant bits are smartly encoded to significantly reduce

the code size with no extra decompression overhead. Results illustrate an improvement

of 15-20% in compression ratio with minimal decompression overhead. The dictionaries

stored on BRAM are fixed and limited to maximum of 1 or 2. Finally, the thesis proposes

an optimal encoding scheme to represent n bit changes in an input stream by just using

only n− 1 bits.

1.3 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 discusses the architecture

and working of FPGA. It illustrates the existing bitstream compression techniques to

compress FPGA reconfiguration bitstreams. A cost benefit analysis of dictionary based

compression techniques for compressing reconfiguration bitstreams is also discussed in this

chapter. The chapter also evaluates the decompression limitations imposed by variable

length compressed words on decompression time.

Chapter 3 describes the proposed decode aware compression technique and smart

rearrangement of compressed bits to achieve fast decompression. This chapter also

describes an efficient technique to combine bitmask with run length encoding of repetitive

14

words in a bitstream. Chapter 4 illustrates the application of an enhanced version of

proposed technique to compress NISC control words. Chapter 5 describes an optimal

representation of n bit changes using only n − 1 bits. Finally, Chapter 6 concludes the

thesis exploring possible future research directions.

15

CHAPTER 2
BACKGROUND

2.1 Introduction to FPGA

This section illustrates the architecture and working of FPGA configurable logic

block, the process of reconfiguring FPGA with configuration bitstream and the effect of

decoder placement on reconfiguration time.

CLBIOB IOB

IOB

IOB

B
-R
A
M

B
-R
A
M

Figure 2-1. FPGA architecture

2.1.1 FPGA Architecture

The Xilinx Virtex FPGA comprises of two types of configurable elements; configurable

logic blocks (CLB) and input/output blocks (IOB). CLB provides the basic functional and

logical elements for IP implementation and IOB provides the interface to connect CLB

and package pins as shown in Figure 2-1. Each CLB contains multiple logic cells (LC)

which implements 4 input function generator and equipped with carry forward logic

(switching fabric). Each LC contains a look up table (LUT) stored on static RAM

(SRAM) cells which holds the function generator implementation. Each LC also contains

storage elements which can be configured as flip flops or latches. Surrounding each CLB

are large blocks of vertically arranged block select RAM (BRAM) which can be used as

memory storage elements.

2.1.2 Configurable Logical Block

The Configurable logic block (CLB) forms the basic reconfigurable fabric element

which can be programmed to function as a hardware. Depending on vendor each CLB

16

(a) Logic Cell inside a CLB

a3

a2

a1

a4
LUT
4 X 1

p0

Routing

 0 0 0 0
 0 0 0 1
 0 0 1 0
 0 0 1 1
 0 1 0 0
 0 1 0 1
 0 1 1 0
 0 1 1 1
 1 0 0 0
 1 0 0 1
 1 0 1 0
 1 0 1 1
 1 1 0 0
 1 1 0 1
 1 1 1 0
 1 1 1 1

a1 a2 a3 a4
 0
p0

 0
 0
 1
 0
 0
 0
 1
 0
 0
 0
 1
 1
 1
 1
 1

SRAM

(b) Function generator for function p0

p0 = (a1 AND a2) OR (a3 AND a4)

Figure 2-2. Configurable logic block and a simple function implementation

consists of multiple logic cells (LC). Each LC consists of four input LUT based function

implementor as shown in Figure 2-2 (a). The function output values (16 values) are stored

on volatile SRAM cells. The output of this function is then routed to subsequent LC

via switching fabric. The output is also saved in a latch next to LUT module. A simple

function p0 implemented is shown in Figure 2-2 (b). It must be noted that configuration

bitstreams contains both CLB’s function implementation (SRAM) content and the routing

content.

2.1.3 FPGA Reconfiguration

These are the steps followed to program or configure an IP core on Xilinx Virtex
FPGA [11].

1. Design entry: the logic of the IP core is written in any hardware description language
(HDL) is converted to a net list representation.

2. Implementation: the net list representation is then converted to bitstreams or
other supported formats by a vendor specific bit generator program. The size of he
bitstream is determined on the type of FPGA family and vendor on which the IP
core will be loaded.

3. Configuration or programming: In this step the configuration bitstream is stored
directly on to FPGA memory (SRAM) or on an external flash based EEPROM. The

17

configuration bitstream stored on external memory is transferred to SRAM using
CPLD or using an onboard microprocessor.

Figure 2-3 illustrates the process of configuring FPGA using EEPROM and

configuration hardware which controls the process of loading bitstream from memory

to FPGA. The bitstream generated from vendor specific tool is transferred onto EEPROM

through a serial or JTAG interface. The saved bitstream is then loaded on FPGA’s

SRAM to function as a hardware. In most of Xilinx Virtex family FPGA have a 8 bit

communication bus from configuration hardware to FPGA. This is potentially a bottleneck

while transferring large designs from EEPROM to FPGA. A promising approach is to

transmit compressed bitstreams to alleviate this bottleneck.

INTERRUPT

FINISH

DATA [7:0]DATA [7:0]

ADDR [18:0]

FPGAEEPROM
Hardware

Configuration

Figure 2-3. Reconfiguration architecture of Virtex family

2.1.4 Placement of Decompressor Engine

The placement of decompression engine plays a crucial role in determining the

decompression speed and time required to reconfigure FPGA. Placing decompression

engine near reconfiguration hardware is the most promising. This placement may increase

the communication bandwidth and bridge the operational speed difference between FPGA

and external memory. Figure 2-4 describes four possible ways of placing the decompressor

in a FPGA system. These are described as follows:

a. Custom hardware decompressor: placement in which decompressor is a part
of configuration hardware. This is highly efficient placement but also the costliest
implementation. This placement requires ASIC design and replacement of existing
hardware.

18

b. FPGA based decompressor: This placement requires decompressor to have
direct access to SRAM memory in order to reconfigure FPGA. Such functionality is
provided as Frame Data Input Register (FDRI) in Xilinx Virtex family.

c. FPGA master-slave mode : In this placement the decompressor resides
on a master FPGA. The compressed bitstream is first transferred to master,
decompressed and transmitted onto slave FPGA for configuration. [9]

d. Processor based decompressor: This placement is feasible on some of the FPGA
that has onboard processor. The processor runs the software implementation
of the decompressor and transmits decompressed data to configure FPGA.
The disadvantage of such an implementation is that it does not address the
communication bottleneck and can potentially slow down the reconfiguration
process.

Decompressor

hardware

Configuration
Memory

Decompressor

FPGA

(b) FPGA based decompressor

Memory

(a) FPGA Master Slave Decompressor
(a) processor based decompressor

Memory

Configuration

hardware

FPGA

(a) custom hardware decompressor

Decompressor

Decompressor

FPGA

FPGA

master

slave

Memory
FPGAProcessor

Figure 2-4. Decompression hardware placement

From the above possible placements we find decompression engine placed within

FPGA is the most feasible and cost effective placement. This placement reduces the

communication bottleneck by transferring compressed bitstream to FPGA first and then

decompressing just before reconfiguration. Another advantage of this placement is that the

decoder can run at FPGA operating speed.

19

2.2 Related Work

There are numerous compression algorithms that can be used to compress configuration

bitstreams. These techniques can be classified into two categories based on how the

redundancies are exploited: format specific compression and generic bitstream compression.

The compression techniques in the first category exploit the local redundancies in a single

or multiple bitstreams by reading back the configured data and storing the differences

by performing exclusive-OR (XOR) operation. These algorithms requires FPGA to

support partial reconfiguration and frame readback functionality. Pan et al. [4] uses frame

reordering in the absence of readback facility on FPGA. In this technique frames are

reordered such that the similarity between subsequent frames configured is maximum.

The difference between consecutive frames (difference vector) is then encoded using

either Huffman based run length encoding or LZSS based compression. Another method

proposed in the same article organizes and read back the configured frames. The frames

are organized such that compressed bitstream contains minimal number of difference

vectors and maximal readback of configured frames thus reducing the compressed frames

significantly. Such complex encoding schemes tend to produce excellent compression ratio.

However, decompression is a major bottleneck and is not addressed by Pan et al. [4].

The generic bitstream compression techniques uses complete bitstream to extract

the redundancies within small window (usually 32 bytes) and encode the information.

An advantage of these techniques is that no special FPGA support is required for

decompression. Parameterized LZSS [1] chooses efficient parameters suitable for bitstream

compression and decompression. The compression focuses on the most repeating lengths

in the matched strings to encode partial set of those lengths using less number of bits and

the rest is encoded using canonical representation. The decompression hardware is fairly

simple and is able to decode at acceptable speed. LZ77 algorithm proposed in [9] also

works in the same manner by matching the redundant symbols in a small window.

20

In sum, the compression technique in [4] achieves significant compression but incurs

drastic decompression overhead. On the other hand the approaches in second category

[1] [9] try to maintain decompression overhead in an acceptable range but compromises

on compression efficiency. Our technique tries to consider decompression bottleneck and

overhead during the compression of bitstreams. The compression parameters are chosen

such that compressed bitstreams are decode friendly while maintaining a good compression

ratio.

2.3 Cost Benefit Analysis of Dictionary Based Compression Algorithms

In this section, we briefly describe two dictionary based compression technique to

evaluate their suitability in compressing configuration bitstreams. These techniques are

very promising for their simple and fast decompression but have never been used for

configuration bitstream compression. This analysis forms the basis of our approach.

bitmask compressed

isCompressed

isBitmaskedisCompressed

uncompressed

(a) Dictionary compressed word format (b) Bitmask compressed word format

uncompressed

index indexindexbitmask

index

compressed

compressed

Figure 2-5. Compressed word formats of dictionary and bitmask based compression
techniques

2.3.1 Dictionary Based Compression

In a traditional fixed dictionary based compression algorithm, the input data with

length N bits is divided into n words of each length w bits. A list of all unique words are

then sorted in descending order of their occurrences. All these words are then encoded

using indices to words stored in a dictionary or a part of input words stored in restricted

21

dictionary. The uncompressed words are indicated by compressed flag (1 bit) as shown in

Figure 2-5. The efficiency of this algorithm depends on selected parameters, word length

(w) and the number of dictionary entries (d). A wider word length (w) results in lesser

matches resulting in larger dictionary size and a large compressed code. An advantage

is that there are less number of words (n) to compress. A smaller word length results in

smaller dictionary size with many words to compress. An advantage is that the probability

of obtaining redundant words is much higher in this case.

(b) Compression ratio histogram

1
1
1
0
0

00000100
00000101

0000 0001
0000 0000

00000000
00000000

00000001
00000100
00000101 0

0
1

0000 0000
0000 0001
0000 0100
0000 0101

00
00
01
10
11

OR

Dictionary
Partial

All in Dictionary

Input

Dict

Dict

(a) Dictionary based compression

Figure 2-6. Dictionary based compression.

Figure 2-6 (a) illustrates a simple dictionary based compression with all words

in dictionary and partial set of words in a limited dictionary. To obtain optimum

compression ratio an intuitive approach would be to evaluate all possible values of word

length (w) and dictionary size (d). Such an algorithm will take non polynomial time to

reach efficient parameter combination. Figure 2-6 (b) shows the compression ratio of a

sample benchmark with varying word lengths (w) and variable dictionary size (d). The

spikes in the graph represent a large dictionary size with wide index bits resulting in

degraded compression ratio.

ηcomplete =
w ∗ dall + n ∗ dlog2(dall)e

n ∗ w
(2–1)

ηpartial =
(w ∗ d) + (1 + dlog2(d)e) ∗ nm + (1 + w) ∗ (n− nm)

n ∗ w
(2–2)

22

Section 3.1.1 discusses a linear time algorithm to select efficient parameters which

yields better compression ratio. The compression ratio achieved when all the words are

in dictionary (dall) is given by Equation 2–1. In a generic case when part of input words

are stored in dictionary the compression ratio is given by Equation 2–2. Here n ∗ w is

the input size, w ∗ d is the dictionary size used, dlog2(d)e is the compressed dictionary

index bits, nm is the number of entries matched with dictionary and n − nm is the

number of uncompressed words. The algorithm reaches worst case compression ratio

when number of matched words (nm) is equal to dictionary size (d) i.e. each dictionary

entry is used exactly once. An efficient algorithm should choose one of these option with

appropriate parameter values for word length (w) and dictionary size (d) to obtain the

best compression ratio.

2.3.2 Bitmask Based Dictionary Compression

The bitmask based dictionary compression proposed in Seong et al. [12] is a

promising technique that illustrates better compression ratio over dictionary based

compression technique. This technique uses extra bits to record the differences in

unmatched words from the dictionary entries and encode them as usual dictionary indices.

This technique uses limited dictionary to match many words with small bit changes. The

different compressed word format is depicted in Figure 2-5(b). This technique uses b

bitmasks, B = {B1, B2, .., Bb}. Each bitmask Bi is defined as < si, ti, oi > where i) si is

size of the bitmask, ii) ti is the type of bitmask (FIXED : for fixed location encoding or

SLIDING : for sliding bitmask) which can encode differences occurring at fixed or any

location within the word and, iii) oi bits to encode offset within the word (dlog2(w)e bits

for sliding bitmask and dlog2(w)/sie bits for fixed location bitmask).

ηlower =
dictsize + matchsize + bitmaskedsize

n ∗ w
(2–3)

23

During compression, each word is either compressed with full match encoded as [′0′,

′1′, dlog2(d)e] or compressed using b bitmasks encoded as [′0′, ′0′, dlog2(b− 1)e, [
b∑

i=0

(oi,

si)], log2(d)] or uncompressed word encoded as [′1′, w]. Clearly the best compression

ratio (lower bound) that we can obtain is with minimum dictionary entries (dmin) we

can match all the words using direct matches (nm words) or using one bitmask (n − nm

words). Then compression ratio nlower is given by Equation 2–3. Here i) dictsize is the

total dictionary size (dmin ∗ w), ii) matchsize is the total fully matched compressed

words size (2 + dlog2(dmin)e)*nm, iii) and bitmaksedsize is total bitmasked words size

((2 + s0 + l0) ∗ (n − nm)). An important point to note is that dmin for bitmask based

technique will be much smaller than generic dictionary based compression. The worst

compression ratio (upper bound) possible is when there are no matches with dictionary

and none of the words can be bitmasked with any of the dictionary entry then the

compression ratio is given by Equation 2–4. Here, i) d ∗ w is the dictionary size, ii)

(2 + dlog2(d)e) ∗ d is the size of entries matched with dictionary and, iii) (1 + w) ∗ (n − d)

is the size of uncompressed size.

ηupper =
d ∗ w + (2 + dlog2(d)e) ∗ d + (1 + w) ∗ (n− d)

n ∗ w
(2–4)

On an average if there are nm entries matched with dictionary, nb entries matched

with one or more bitmasks and nu entries uncompressed then the compression ratio is

given by Equation 2–5. where

1. dictsize is the total dictionary size (d ∗ w)

2. Matchsize is the total size of fully matched words (2 + log2(d)) ∗ nm,

3. bitmaskedsize is the total size of bitmasked words (2 + log2(b) +
∑

(si + log2(w))) ∗ nb

and

4. Uncompressedsize is the total uncompressed code (1 + w) ∗ nu

η =
dictsize + matchsize + bitmaskedsize + Uncompressedsize

n ∗ w
(2–5)

24

The efficiency of a compression algorithm which is determined by choosing appropriate

word length (w) and dictionary size (d) is also dependent on the number and type of

bitmask selected. A large number of bitmasks results in smaller dictionary size but at the

same time need more bits to encode bitmasks. Less number of bitmasks, results in large

dictionary size but at the same time need less bits to encode bitmask compressed words.

In order to obtain best compression ratio close to ηlower. It is challenging to design an

efficient technique which determines the optimum parameter combination (w, d, b and B)

for compression.

2.3.3 Decoding Engine of Bitmask Encoded Bitstreams

The compressed bitstreams generated by dictionary based techniques are usually not

aligned to byte boundary and generally do not have fixed length distance between any two

compressed words. For example Figure 2-7 (a) shows the compressed words and Figure 2-7

(b) shows the compressed words arranged in byte boundary. The parameters used for this

example are word length w = 16, dictionary size d = 16, number of bitmask b = 1 and

type of bitmask used is B1 =< 2, SLIDING, 4 >. The decoder in order to decompress the

compressed code needs to check each bit before reading in the next required data.

The decompression engine shown in Figure 2-7 (c) illustrates a decoder with control

unit reading variable length of data from input buffer and based on compressed flag

retrieves the subsequent variable length data (uncompressed/ dictionary matched/ bitmask

compressed). It is evident that this approach will result in slower and serial decompressor

leading to unacceptable decompression overhead. Hence it is a major challenge to find

a compression algorithm that produces compressed output which can be aligned in byte

boundaries to decompress at a faster rate while keeping the compression efficiency close to

optimal compression ratio (ηlower).

25

Variable Len Shift Register

XOR

1

1

1

E1

0

0
0

0 1

1
1

0
E2

E3
E4

E5
E6

E7

16 8

1 E1[15−9]
E1[8−1]

E1 0 1
0

0E2[3:0]
E3[9:3]

E3[2:0] 1 E4[15:12]
E4[11:4]

E4[3:0]

Bitmask Dictionary
Assembly Access

Control Unit

In
pu

t B
uf

fe
r

D
ec

om
pr

es
se

d
B

its

C
om

pr
es

se
d

B
its

 fr
om

 M
em

or
y

(a) Compressed words (b) Compressed words in memory

U
ncom

pressed
data

Bitmask Decoder

Output Buffer

(c) Bitmask decoder

Figure 2-7. Decompression engine for bitmask encoded bitstream

26

CHAPTER 3
DECODING AWARE CONFIGURATION BITSTREAM COMPRESSION

3.1 Decoding-Aware Bitstream Compression

We first begin with a technique to choose efficient parameters for generic dictionary

based compression. Next we propose a decoding-aware bitmask based compression

to select efficient parameters. An efficient parameter based dictionary selection is

illustrated to obtain better dictionary coverage. Later we propose a run length encoding

scheme to intelligently encode repetitive compressed words to improve compression and

decompression performance. Finally we illustrate how compressed bits are transformed to

fixed length encoded bytes for faster decompression.

Algorithm 1: Dictionary Based Parameter Selection

Input: Input Bitstream I

Output: parameters P

P = φ;

forall w in {8, 16, 24, 32, ..8 ∗ k} do

calc frequencies(I, w);

forall d in {1, 2, 4, .., 2w−1} do

calculate η using equation 2–2

if η is minimum then

P = {w, d}
end

end

return P ;

3.1.1 Parameter Selection for Dictionary Based Compression

To improve compression ratio using partial or full dictionary we need to choose

suitable parameters (P): word length (w) and number of dictionary entries (d). Algorithm

1 illustrates parameters selection that will yield efficient compression ratio. Since memory

and communication bus are designed in multiple of byte size (8 bits), storing dictionaries

27

or transmitting data other than multiple of byte size will result in under utilization of

memory and communication bus lines. This limits the search space for word length (w)

within multiples of 8 up to k iterations. Now with this selected word length, we can easily

evaluate the dictionary sizes which yields the best compression ratio. Dictionary size

dictates the size of the index bits. For the word to be compressed, it is evident that these

index bits have to be at least one bit less than the word length (w) itself. Thus we can

find the efficient dictionary size for a given word length (w) by incrementally changing the

index bits from 1 to (w − 1). In other words dictionary size ranges from from 1, 2, 4 up to

2w−1. With these parameters the algorithm now calculates the compression ratio by using

the Equation 2–2. The number of matched words (nm) can be determined by sorting the

unique words in descending order of their occurrences. The cumulative sum till ith word

provides the number of matched words till 1 to i entries in the dictionary.

Algorithm 2: Decode Aware Parameter Selection

Input: Input Bitstream I

Output: parameters P

P = φ; forall w in {8, 16, 24, 32, .., 8 ∗ k} do

W = calc frequencies(I, w)

forall d in {1, 2, 4, .., 2w−1} do

B = get possible bitmasks(w, d)

forall binB do

generate dictionary(W, {w, d, b, B})
calculate ηi using equation 2–5

end

end

P = min{ηi}
end

return P ;

28

3.1.2 Decoding-Aware Parameter Selection for Bitmask Based Compression

In bitmask based compression method, efficiency is not only determined by word

length (w) and dictionary size (d), but also by the number of bitmasks (b) and type of

each bitmask ti used. From Equation 2–5 it is evident that more the number of bitmasks

used smaller dictionary size is sufficient. This requires less bits to index the dictionary

but to store these bitmasks we need large offset and difference bits. The entries in the

dictionary selected determines the effectiveness of matching uncompressed words with less

differences based on proximity of the bit differences that an entry in the dictionary can

match. The application specific bitmask compression method proposed in [12] suggests

feasible bitmasks and type of bitmask and graph based dictionary selection algorithm for

better compression ratio. The direct application of this algorithm will result in compressed

code which is complex and variable length as illustrated in Figure 2-7 (b). Section 3.2.2

discusses the type of bitmasks that can be used such that compressed code can be smartly

converted to fixed code compressed words without sacrificing the compression efficiency.

50

60

70

80

90

100

110

120

2 8

1
6

1
6

8 16 24 32 40

Compression Ratio Histogram

Figure 3-1. Effect of word length, dictionary size and number of bitmasks on compression
ratio

Algorithm 2 describes the decode aware parameter (word length w, dictionary size

d, number of bitmasks b, size and type of each bitmask {si, ti}) selection. The range of

word length (w) and dictionary size (d) remains the same as in Algorithm 1. A list of

bitmask combination is proposed based on its feasibility to align in a fixed byte boundary

29

is discussed in Section 3.2.2. An optimized dictionary selection proposed in Section 3.1.3

is used to select dictionary which covers most of the words using minimal bitmasks. The

compression ratio is calculated using formula 2–5. The parameter combination which

results in minimal compression ratio is used during compression.

Figure 3-1 shows the compression ratio obtained by applying the above algorithm

on RSAXCV100 benchmark. The compression ratio obtained is dependent on the input

data’s entropy. A high entropy input requires large dictionary and wider bitmasks to

obtain better compression efficiency. It can be noted that as word length increases the

compression ratio reaches 100% (higher the value lesser the bitstream is compressed).

This is because wider words results in less redundancy and dictionary chosen covers less

number of words. The effect of increasing dictionary size also improves the compression

ratio only to a certain point. Any increase in dictionary size after this points will worsen

the compression ratio because of the larger index bits used to access the dictionary. An

increase in the number and type of bitmask for a given word length and dictionary size

improves with lesser number of bitmasks depending on word length selected (one bitmask

16 bit words, two bitmasks for 32 bit words). To obtain the range of parameters for a

new benchmark we need to run the proposed algorithm will all possible values (with word

length ranging up to 64 bits).

3.1.3 Efficient Dictionary Selection

Our dictionary selection approach is motivated by application specific bitmask based

code compression proposed in [12]. The dictionary is selected for given parameters (P):

word length (w), dictionary size (d), number of bitmasks (b) and size and type of each

bitmask (B). Algorithm 3 describes how dictionary is selected based on the savings made

by each uniquely occurring word. The dictionary selection is majorally governed by a

words capability to match other words using minimal number of bit masks and covers

as most of the input words. The input is divided into unique words with each word

associated with frequency (fi). A graph (G) is created in which each vertex represents

30

word with frequencies as its weight. Two vertices are connected via an edge if the two

words represented by them can be bitmasked with using at most all the bitmasks in B.

Each edge (u, v) will have the number of bitmasks used to match vertex u and vertex v

as its weight. The savings made for each vertex is calculated based on the sum of savings

made by itself in the dictionary and savings made by bitmask matching with other vertices

indicated by the incident edges on it.

Algorithm 3: Optimal Dictionary Selection

Input: input words W = {wi, fi} where wi:i
th word with frequency fi

Parameters P = {w, d, b, B} as defined in Section 2.3

Output: Optimal Dictionary D

D = φ;

Construct a graph G = {V, E}
such that V = fi,

E(u, v) = word u can be bitmasked with v using at most all Bitmasks

C(E) = cost of edge is number of bitmask used

while (|D| is d or |G| is φ) do

find vmax of all vsavings in V such that

vsavings = {fu ∗ saving made[0]+ ((fv) ∗ saving bitmask[C(u, v)])− w}
remove vmax from G and edges incident upon it.

D ← vmax

forall (u,w) adjacent nodes of vmax do

if num bitmask(vmax, u) eq num bitmask(vmax, w) && is geq

num bitmask(u,w) then

remove edges among neighbors (u,w) of vmax also

end

end

return D;

31

Equation 3–1 is used to calculate the savings made (savings made) by each vertex

u using i bitmasks. The savings made is an array which holds the savings for different

number of bitmasks (from 0, 1, 2,to b). This array is then used to calculate the total

savings of vertex u. The final savings of a vertex is simply the product of all the

frequencies of incident vertices including itself, with savings made array calculated

using Equation 3–1 indexed by weight on each edge. Note that savings made[0] indicates

using no bitmask or direct indexing. A winner vertex with maximal savings is selected and

inserted in the dictionary. All incident edges are removed from the graph (G). To avoid

savings conflict among multiple vertices, edges between the adjacent vertices of winner

vertex are also removed if the current saving with winner is more beneficial than the

edge between them. The following example dictionary selection illustrates the optimized

dictionary selection.

Figure 3-2 demonstrates an iteration of dictionary selection. Let f1, f2, f3 and f4

be the frequencies of the four most frequently occurring elements and B1 (Bitmask 1) and

B2 (Bitmask 2) be the number of bitmasks used for matching. The total savings made

by each vertex (u) is calculated by the product of frequency and savings made by each

edge (fu ∗ savings madeu). Then a winner with highest savings is selected. Suppose f4

is the winner then all the incident edges are removed from the graph. Note that once the

winner f4 is selected the incident edge between vertex f1 and f2 is also removed because

f1 is already covered by f4 using B1 bits. This ensures that savings are not claimed by

multiple vertices which are already in the dictionary. Thus maximizing the total savings

made by the selected dictionary.

savings made[i] = (1 + w)− dlog2(d)e −
i∑

j=0

(sj + lj) (3–1)

The dictionary selection technique proposed in Seong et al. [12] heuristically removes

adjacent vertices that have arbitrary threshold incident edges on it along with the winner

vertex. This idea behind this is to reduce the dictionary size selected (thus index bits).

32

f3 f4

f1 f2
B1

B2

B
1

B
1

B
1

f3 f4

f1 f2
B1

B2

B
1

B
1

B
1

Figure 3-2. An example illustrating dictionary selection

Our proposed algorithm eliminates this heuristics by providing a fixed dictionary size.

The dictionary selected covers maximum words directly or using minimal bitmasks thus

ensuring better dictionary coverage.

Dictionary

0000 0000

0000 0000

0000 0000

0000 1111

0000 0000

0000 0000

0000 0000

0 1 0

0 1 0

0 1 0

0 1 1

0 1 0

0 1 0

0 1 0

0000 0000

0000 1111

0 1 1 101 00 0

0 1 0

0 1 1

0000 0000

0000 1111

Without RLE With RLE

Figure 3-3. An example illustrating run length encoding with bitmask based compression

3.1.4 Run Length Encoding of Compressed Words

Careful analysis of the bitstream pattern revealed that the input bitstream contained

consecutive repeating patterns of words. The algorithm proposed in previous section will

encode such patterns using same repeated compressed words. Instead we use a method in

which repetition of such words are run length encoded (RLE). Such repetition encoding

33

will result in an improvement in compression performance by around 10-15% on Koch

et al. [2] benchmarks. To represent such encoding no extra bits are needed; another

interesting observation leads to the conclusion that bitmask 0 is never used, because this

value means that it was an exact match and would have encoded using zero bitmasks.

Using this as a special marker, these repetitions can be encoded. This smart encoding will

reduce the extra bit that is required to indicate on all the compressed words otherwise.

Another advantage of such run length encoding is that it alleviates the decompression

overhead by providing the decompressed word instantaneously to the decoder to send

it to the configuration hardware in the same cycle. This ensures the full utilization of

the configuration hardware bandwidth and reduces the bottleneck on communication

channel between memory and decoder. Figure 3-3 illustrates the RLE bitmask in use. The

compressed words are run length encoded only if the savings made by RLE word encoding

is greater than the actual encoding. That is if there are r repetition of compressed words

and cost of representing each word is x bits and the number of bits required to encode run

length is y bits then RLE is used only if x ∗ r < y bits.

3.2 Efficient Bitstream Decompression

Our work in this direction is motivated by previous bitstream compression framework

for high speed FPGA [1] and [13]. Generally, when variable length coding approaches

are used to improve the compression ratio, they also set two obstacles for the design of

high speed decompression engines. For example, Figure 3-4 (a) gives a sample output

of the bitstream compression algorithm. Figure 3-4 (b) is its placement in a 8 bit-width

memory using a naive placement method. It can be easily seen that: i) the start position

of the next compressed entry usually cannot be determined unless we decode the previous

entry; ii) the input buffer within the decompression engine must be shifted for a variable

length within each cycle. Both of them have a negative impact on the length of the critical

path within the decompression engine, and therefore limit the maximum operational

speed. The LZSS decompress technique in Koch et al. [1] uses one interesting way to

34

attack this problem: place the encoded bits in a way that they can be treated as fixed

length encoding. In other words, the encoded bits should have two properties: i) the start

position of each compressed entry should be easily identifiable. ii) the number of possible

shift length of input buffer should be as small as possible. These lead to our approach

for high speed decompression of variable length coding. The following subsections gives

a detailed description on parameters selection which leads to smart rearrangement and

how such variable length compressed words are transformed to fixed length compressed

bitstreams.

Algorithm 4: Decode Aware Bitmask Selection

Input: w - word length, d - number of dictionary entries

Output: Bitmasks B

B = φ;, indexBits = dlog2(d)e
if indexBits OR indexBits + 1 OR indexBits + 2 is not power of 2 then

return φ;

forall type in {SLIDING,FIXED} do

forall bitmask in {1, 2, 3, 4} do

if type==0 then

offsetBits = dlog2(w)e
else

offsetBits = dlog2(w/b)e
forall offset in offsetBits do

if offset + bitmask OR offset + bitmask + 1 OR offset + bitmask + 2

is power of 2 then

B = B + {bitmask, offset, type};
end

end

end

return B;

35

1 E[1]

0 1 E[2]

0 0 E[3] 1 1

 E[4]

0 E[5]

0 1 E[6]

 (c)

1 E1

0 1 E2

0 0 E3

1 E4

0 1 E5

0 1 E6

 (a)

16

1 0 0 0 0 x x x

E[1]<15-8>

E[1]<7-0>

1 0 1 x x x x x

E[2] E[3]<9-6>

E[3]<5-0> 1 1

E[4]<15-8>

E[4]<7-0>

E[5] E[6]

 (d)

8

1 E1<15-9>

E1<8-1>

1 0 1 E2 0

0 E3<9-3>

E3<2-0> 1 E4<15-11>

E4<10-3>

 ½

 ½

 ½

(b)

8

16

Figure 3-4. Decoding aware placement of encoded bits

3.2.1 Decode Friendly Rearrangements of Bits

The three different types of compressed words (uncompressed, compressed with exact

match and compressed with bitmask) can be converted to fixed length encoded words by

following these steps. i) The compressed and bitmasked flags are stripped from compressed

words. ii) These flags are then arranged together to form byte aligned word. iii) The

remaining content of the compressed words are arranged only if they satisfy the following

conditions. Each of the uncompressed words needs to be multiple of 8 as described in

Section 3.1.1. The dictionary index of compressed words or the sum with either of the

flags should be equal to power of 2. This condition ensures that the dictionary index bits

36

can be aligned to byte boundary. The bitmask information (offset and bit changes) of a

bitmask compressed word is also subjected to similar condition.

Algorithm 4 describes a bitmask suggestion technique before compressing the

bitstream such that they meet the above constraints. The bitmasks and type of bitmask

explored are limited by the study described in Seong et al. [12] (1, 2, 3, 4 bits). Both

SLIDING and FIXED bitmask types are suggested for these possible bitmask sizes.

Figure 3-4 illustrates a bitstream compressed with parameters word length w = 16,

dictionary size d = 16, number of bitmask b = 1 and bitmask used B = {s0 = 2, t0 =

SLIDING, l0 = 4}. Here two dictionary indices (4 + 4 bits) are combined to encode as a

single byte. The two dictionary indices can belong to a fully matched compressed word or

to a bitmask compressed word. The offset and mask (4 + 2) of bitmask compressed word

are then encoded with next words compressed flag (1 bit) and bitmask flag (1 bit) making

the total number of bits aligned to a byte boundary. These extra bits serves two purposes;

i) one padding the holes caused by misaligned offset bits and, ii) refills the flag bits that

were used to decode this bitmask compressed word. Note that adding these extra flag bits

will refill the used flag bits but will never overflow the flag register. A detailed strategic

placement algorithm is discussed in the next subsection.

3.2.2 Decoding-Aware Placement of Compressed Bitstreams

The placement algorithm merges all compressed entries into a single bitstream

for storage. Given any input entry list with format described in previous section, our

algorithm passes through the entire list three times to generate the final bitstream. In the

first pass, we will try to attach two bits to each entry which is compressed with bitmask

or RLE, so that the length of all entries (neglect flag bits) are either 4, 12 or 16. In the

second pass, we simply extract the flags of each 8 successive entries out, then store them

as a separate “flag entry” in front of these 8 entries. Finally, we rearrange all the entries so

that all of them fit into 8 bit slots. The entire algorithm is given as Algorithm 5. Figure

3-4(c) and (d) illustrates our bitstream merge procedure using Figure 3-4 (a) as input. In

37

the first pass, the compression flag of entry E4 and matching flag of E5 are attached to the

end of E3 (Figure 3-4(c)). Each entry now has a length of 4, 8 or 12. Then the remaining

compression flags and matching flags are extracted as flag entries (line 1 and 4 in Figure

3-4(d)) in the second pass. After that, we can easily rearrange all the bits and make them

fit into the 8 bit-wide memory, as shown in Figure 3-4(d).

Algorithm 5: Placement of Encoded Bits

Input: Compressed Entry List L of size s

Output: Output Bitstream B

forall entry e of L do

if e is compressed using BM or RLE then

Remove compression flag of e1 and matching flag of e2 and append to e;

end

Create all flag entries;

forall entry e of L do

if e is a flag entry then

Put e in B[df(e)e];
if e is not compressed then

Put e in B[df(e)e] and B[df(e)e] + 1;

if e is fully matched then

Put e in the lower or higher half of B[bf(e)c] depending on f(e);

else

if f(e) is integer then

Put the high 4 bits of e in the higher half of B[f(e)];

Put the rest of e in of B[f(e)] + 1;

else

Put the high 4 bits of e in the lower half of B[bf(e)c];
Put the rest of e in of B[bf(e)c] + 1;

end

Here CFlag(e) is the compression flag of entry e,

38

MFlag(e) is the matching flag of entry e, and

f(e) = 2nu + 0.5nm + 1.5nb, where nu, nm and nb are the number of not compressed,

fully matched and other entries before e respectively.

C
om

pr
es

se
d

B
its

tr
ea

m
 f

ro
m

 M
em

or
y

Output Buffer

Assemble
Buffer

Bitmask
Decoder

ByPass

Matching Flag
Register(MR)

D
ec

om
pr

es
se

d
B

its
tr

ea
m

RLE
Decoder

Input Data
Buffer

Compression Flag
Register(CR)

Figure 3-5. Decompression engine

3.2.3 Decompression Engine

The structure of our decompression engine is given in Figure 3-5. The compression

flags and the matching flags are stored in corresponding shift registers CR and MR.

CR[0] and MR[0] indicate the flags for next compressed entry. In each cycle, the new

incoming data is first classified using their flags, assembled into a complete compressed

entry, then decoded by BM , RLE or output directly. Our implementation of the BM and

RLE decoder is based on the proposed design in Seong et al. [12] and Koch et al. [1]. If

current entry is compressed with Bitmask or RLE, the last two bits of this entry is directly

sent to CR[0] and MR[0] (these two bits are indeed the flags of next compressed entry,

which are rearranged to their current position by our placement algorithm). Otherwise,

CR and MR are shifted. When CR or MR is empty, they are reloaded immediately using

next incoming data, which exactly corresponds to the flags of next 8 compressed entries

(this is guaranteed by our placement algorithm). Since all encoded bits are carefully

placed, we avoid the shift operation of the input buffer completely. Besides, the boundary

39

between different compressed entries can be easily identified. Therefore, the maximum

operational speed of the corresponding hardware is not hampered by our variable length

coding technique. The detailed experimental results can be found in Section 3.3.3

3.3 Experiments

We use two sets of hard to compress IP core bitstreams chosen from image processing

and encryption domain derived from [2] and [4] to compare our compression and

decompression efficiencies. All the benchmarks are in readable binary format (.rbt)

each word length of 32 bit binary ASCII representation, or binary (.bin) format later

converted to rbt format. All rbt files are then converted to specified word lengths listed in

Section 3.1.2. We use Xilinx Virtex-II family IP core benchmarks to analyze the results in

this article, the same results were found applicable to other families and vendors too.

word len table size number of
Bit Mask

Bitmask 1 (s - sliding) Bitmask 2 (s -sliding)

16 1,2,4,8,16,32, 64, 128, 256, 512 1, 2 1s, 2s, 3s, 4s, 1f, 2f, 3f, 4f 1s, 2s, 3s, 4s, 1f, 2f, 3f, 4f

16 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 1, 2 1s, 2s, 3s, 4s, 1f, 2f, 3f, 4f 1s, 2s, 3s, 4s, 1f, 2f, 3f, 4f

32 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 1, 2 1s, 2s, 3s, 4s, 1f, 2f, 3f, 4f 1s, 2s, 3s, 4s, 1f, 2f, 3f, 4f

32 1,2,3,4,8,16, 32, 64, 128, 256, 512 1, 2 1s, 2s, 3s, 4s, 1f, 2f, 3f, 4f 1s, 2s, 3s, 4s, 1f, 2f, 3f, 4f

64 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 1, 2 1s, 2s, 3s, 4s, 1f, 2f, 3f, 4f 1s, 2s, 3s, 4s, 1f, 2f, 3f, 4f

64 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 1, 2 1s, 2s, 3s, 4s, 1f, 2f, 3f, 4f 1s, 2s, 3s, 4s, 1f, 2f, 3f, 4f

Figure 3-6. Parameter values for best compression ratio achieved

3.3.1 Decoding-Aware Parameters for Benchmarks

Figure 3-6 summarizes the different parameter values used by the Algorithm 2 as

described in Section 4, to evaluate the best possible compression ratio. Each column value

is permutated with every other column. The parameters with best compression ratio is

chosen for the final compression. The values highlighted are the final selected values for

Koch et al. [2] and Pan et al. [4] compression techniques. The benchmark in Koch et

al. [2] can be efficiently compressed using 16 bit words, with 16 entry dictionary and a 2

40

bit sliding mask for storing bitmask differences. The benchmark in Pan et al. [4] can be

efficiently compressed with 32 bit words, 512 entry dictionary entries and two bitmasks

with a 2 bit and 3 bit sliding bitmasks. Note that if two bitmasks are used in order to

reorganize the compressed bits. The bits indicating the number of bitmasks are stripped

to form another 8 bit vector similar to compress and bitmask flags described in Section

3.2.1. This facilitates other fields to be arranged on a byte boundary.

3.3.2 Compression Efficiency

We will analyze the compression efficiency of our proposed approach compared

to bitmask based compression technique proposed in Seong et al. [12] with respect

to improved dictionary selection, decoding aware parameter selection and run length

encoding of repetitive pattern techniques proposed in this thesis. The optimized dictionary

selection is found to select dictionary entries improving the bitmask coverage by at least

5% for benchmarks which requires big dictionary. It is observed that in benchmarks that

have high consecutive redundancy run length encoding out performs other techniques

by at least 10-15%. The compression ratio is also evaluated with existing compression

techniques proposed by Koch et al. [1] and Pan et al. [4]. Our proposed technique is found

to outperform Koch et al. [1] by around 5% on [2] benchmarks and around 15% on [4]

benchmarks. The proposed decode aware compression technique is able to compress 5-10%

closer to Pan et al. [4] compression technique.

3.3.2.1 Decoding aware vs. bitmask based compression

Bitmask based compression technique proposed in [12] is compared with enabling

all three main techniques proposed in this thesis. Figure 3-7 shows the compression

ratio for all the benchmarks. These are the four different type of compression techniques

that are compared; i) BMC - bit mask compression technique proposed in Seong et al.

[12], ii) BMC DC - bit mask compression along with new dictionary selection technique,

iii) pBMC DC - our proposed decode aware bit mask compression described in Section

3.1. and iv) pBMC+RLE - our proposed decode aware bitmask compression combined

41

0

10

20

30

40

50

60

70

80

90

BMC

BMC_DC

pBMC_DC

pBMC+RLE

Figure 3-7. Comparison of compression ratio with bit mask based code compression
technique

with run length encoding. The following are the observations and results for each of the

techniques proposed.

1) Optimized dictionary selection - This compares the dictionary selection

algorithm over the technique proposed in [12]. From the Figure 3-7 we can notice that

for smaller benchmark, dictionary selection algorithm has little effect on improving

compression ratio, the reason being that, dictionary size is very small to reflect the

optimization made for arbitrary threshold vertices removal once a dictionary entry is

selected. This optimization becomes significant as the dictionary sizes increase. This can

be noted from the compression ratio of benchmarks in Pan et al. [4]. These benchmark

requires large dictionaries for better compression ratio (size up to 1K entries). The main

advantages of our approach is that for any generic benchmark we don’t have to find

threshold value manually. Another advantage is that the optimization adds no additional

decoding overhead or degrades the compression ratio. The optimized dictionary selection

generates dictionary which improves the compression ratio by around 4-5% on benchmarks

that uses large dictionaries.

42

2) Decode aware parameter selection - This compares the decode aware bitmask

based compression with optimized dictionary selection against bitmask based compression.

Figure 3-7 column pBMC illustrates the behavior of decode aware parameter selection

over the Seong et al. method [4]. Since decode aware compression technique explores more

word lengths and dictionary size the proposed technique is found to choose parameters

which gives best compression ratio and at the same time produces decode friendly

compressed bitstreams. It is found the proposed technique improves the compression

ratio by at least 7-9% over bitmask based compression (BMC).

3) Run length encoding - This compares the run length encoding improvement

along with other techniques to illustrate the improvement of our proposed technique. The

column pBMC+RLE in Figure 3-7 shows an improvement on all the benchmarks. This

technique has the most improvement of all the techniques we proposed on improving the

compression ratio. Most of the repetitive pattern will be smartly encoded without adding

any overhead in compression or during decoding the compressed bits. On an average we

found 5-7% improvement over bitmask based compression for Pan et al. [4] benchmarks

and 15% improvement on Koch et al. [1] benchmarks.

3.3.2.2 Decoding-aware vs. bitstream compression techniques

Now we will compare the compression efficiency with existing bitstream compression

techniques: LZSS technique proposed by Koch et al. [1] and distant vector based

compression technique proposed by Pan et al. [4]. The distant vector compression

technique uses format specific features to exploit redundancy thus benchmarks used in

Koch et al. can not be used.

1) LZSS - Figure 3-8 shows the comparison of compression ratio obtained by

applying LZSS and two variants of decoding aware bitmask compression; a) pBMC:

decode aware bitmask compression with optimized dictionary selection, and b)pBMC

+ RLE: pBMC combined with run length encoding. From the figure it is clear that

pBMC + RLE technique achieves best compression ratio over all the other compression

43

Figure 3-8. Comparison of compression ratio with LZSS-8 on Dirk et al. benchmarks.

Figure 3-9. Comparison of compression ratio with LZSS-8 on Pan et al. benchmarks.

techniques. The pBMC + RLE technique compresses on an average 12% better than LZSS

technique for these benchmarks in Koch et al. [2]. The approach proposed in Seong et

al. [12] will fail to compress any of the benchmark below 50%. This is partly because

the parameters selected does not yield better compression ratio and also because these

benchmarks have a substantial amount of words repeating consecutively. The bitmask

based compression proposed by Seong et al. [12] fails to capitalize this observation. Our

decode friendly compression technique chooses efficient parameters to compresses the

bitstreams combining with smart run length encoding of such repetitive words.

Figure 3-9 shows the compression ratio for Pan et al. [4] benchmarks. Our approach

compresses these benchmarks with better compression ratio (20% better) than LZSS

technique. The LZSS compression technique fails to compress these benchmarks

44

substantially because these benchmarks are much larger and harder to compress than

previous benchmarks. The LZSS technique uses smaller window size and smaller word

length that inhibits exploiting matching patterns. This results in an overall unacceptable

compression ratio. Another observation is that run length encoding improves the

compression ratio by only around 3-4% unlike the huge improvement over Koch et al.

[1] benchmarks. This is because these benchmark do not have considerable repetitive

patterns to have significant improvement in compression ratio.

Figure 3-10. Comparison of compression ratio with difference vector compression technique
on Pan et all benchmarks

2) Difference vector - Figure 3-10 lists the compression ratio of our compression

techniques compared to that of difference vector applied to single IP cores. The difference

vectors are encoded using Huffman based RLE with readback (DV RLE RB) and without

readback (DV RLE noRB), and different vector encoded with LZSS with readback (DV

LZS RB) and without readback (DV LZSS noRB). The compression technique proposed

by Pan et al. [4] uses format specific characteristics of Virtex FPGA family. The technique

parses all the CLB frames and rearranges the frames such that the difference between

the frames are minimal. To get the best compression ratio these difference vector are

45

Table 3-1. Operating speed and look up table usage of decoders

Type Speed (MHZ) LUT Usage
Variable length bitmask decoder 130 445
Decode aware bitmask decoder 195 241
LZSS-8 198 83
LZSS-16 200 120

then encoded using variable length Huffman based run length encoding. From our

implementation and the study conducted in [1], such complex encoding needs humongous

amount of hardware to handle variable length Huffman codes and operates at very low

speed. Our compression technique achieves around 5-10% closer to compression ratio

achieved by best difference vector algorithm. By considering the decompression overhead

imposed by Huffman based decoder. The compression ratio efficiency can be easily

downsized by faster decompression time.

3.3.3 Decompression Efficiency

The decompression efficiency can be defined as the total number of cycles idle on the

decoder output ports to the total number of cycles needed to decompress an uncompressed

code. Lesser the number of idle cycles higher the performance because with less data

being transferred a constant output is produced at a sustainable rate. The final efficiency

is defined by the product of idle cycle time and the frequency at which the decoder can

operate. We synthesized variable length bitmask based decoder, decode aware bitmask

based decoder and LZSS (8 bit symbols and 16 bit symbols) based decoder on Xilinx

Virtex II family XC2v40 device FG356 package using ISE 9.2.04i.

1) Fixed length vs. variable length bitmask decoder - both fixed length

bitmask based and LZSS decoder can operate at a much higher frequencies. Converting

variable length encoded words to fixed length has multiple advantages; i) has better

operational speed and, ii) scope of parallelizing the decoding process based on the current

knowledge of at least 8 compressed words. Table 3-1 lists all the operating speeds of the

46

Table 3-2. Decompression cycles for fixed length decoder

Benchmark Decompression Cycles Raw Cycles
des 255628 511256
RC5 331752 663504
fft 255628 511256
simpleFIR 255631 511262
ReCoLink 255632 511264
crossbar 255630 511260
ReCoNode 331752 663504

three decoders. Our approach achieves almost the same operational speed as that of LZSS

based accelerator. Considering the results from the previous section since the data is

better compressed in our approach the decoder will have less data to fetch and more data

to output. Table 3-2 lists the number of cycles which are required to decode with and

without compression. From the table we can see that it takes roughly half the number of

cycles to that of uncompressed cycles. An important thing to note is that uncompressed

reconfiguration process requires the configuration hardware to run at memory’s slower

operational speed. Further run length encoding of the compressed streams will allow the

decoder to accumulate the input bits for future decoding, while transmitting the data

instantaneously for reconfiguration.

2) Look up table usage - now we will illustrate the overhead with which decode

aware compression achieves better compression and better decompression efficiency. We

use number of look up table (LUT) on FPGA to measure the amount of resources utilized

by each technique. Table 3-1 lists all the decoders and column 3 lists the number of LUTs

used. Our fixed length decoder takes lesser LUT than variable length bitmask decoder

and LZSS based decoder takes much lesser LUT. Our decompression engine can be further

improved using optimized one bit adders proposed in [14] by another 10% to 20%.

3) Decompression Time - lastly we will analyze the actual decompression time

required to decode a FFT benchmark for Spartan III. A cycle accurate simulator which

simulates the decompression is used to estimate the decompression time. We have

47

0

1

2

3

4

5

6

1:2 1:3 1:4

Un Compressed LZSS BMC

Figure 3-11. Comparison of decompression time for FFT benchmark

Table 3-3. Decompression time in milliseconds for FFT benchmark

(Memory : FPGA) cycles
1 : 2 1 : 3 1 : 4

FIFO Size LZSS BMC LZSS BMC LZSS BMC
1 1.78 1.36 2.3 1.9 2.84 2.45
4 1.76 1.34 2.27 1.89 2.82 2.44
8 1.74 1.34 2.25 1.88 2.8 2.43
16 1.72 1.33 2.23 1.88 2.78 2.43
32 1.7 1.33 2.22 1.88 2.78 2.43
64 1.69 1.33 2.2 1.87 2.77 2.42

Optimal 1.15 1.11 1.72 1.67 2.30 2.22
No Compression 2.62 2.62 3.93 3.93 5.24 5.24

simulated memory operating at different speed (2, 3 and 4 times slower) than FPGA

operating speed. FPGA is simulated to operate at 100MHZ. For an uncompressed word

FPGA should operate at memory speed thus increasing the reconfiguration time. In an

optimal scenario the decompression time should be the product of compression ratio

and uncompressed reconfiguration time. Table 3-3 lists the required decompression time

with different input buffer sizes. We noticed that the buffer size does not affect the

configuration time significantly. Figure 3-11 illustrates the improvement in decompression

time over LZSS [1] technique by at least 15-20%. Our technique produces better

compression ratio demonstrating better decompression efficiency closer to optimal

decompression time.

48

CHAPTER 4
NISC CONTROL WORD COMPRESSION

In this chapter we apply the proposed decoding aware bitmask compression technique

to compress no instruction set architecture (NISC) [15] control words and analyze its

performance. NISC is a reconfigurable processor architecture, which promises application a

faster execution performance by selecting custom data path [16]. The application written

in a high level language (currently supports programs written in C) is directly converted

to control words bypassing the abstraction of instruction. This facilitates application to

select custom datapath thus improving the system performance. The downside of this

architecture is that the control words stored takes 4-5 times more space than regular

instructions. In this chapter we analyze the application of the proposed decoding aware

compression technique to compress these control words. Two new enhancements are

proposed to improve efficiency of compression, decompression overhead and resources

usage. This chapter proposes a novel technique to smartly encode least frequently

changing bits and to use multiple dictionaries to improve the compression efficiency

by 15-20% over the best compression technique proposed by Gorjiara et al. [10].

4.1 NISC Architecture

No Instruction Set Architecture (NISC) promises applications faster performance

guarantees by analyzing datapath behavior and eliminating abstraction of instruction set

to choose a custom datapath. By controlling selection of the optimal datapath NISC is

capable of meeting application performance requirements. The datapath represented as

control words forms input to the NISC processor. These control words tend to be at least

4-5 times wider than the regular instructions thus bloating the code size of the application.

One of the promising approach is to reduce these control words by compressing them.

Figure 4-1 shows compressed control word execution on a generic NISC architecture. The

compressed control word is read from control memory (CMem) and decoded to obtain

the original control word and transmitted to the controller for execution. The branch and

49

jump instructions are handled using target look up table (LUT). These LUT stores the

offsets within the compressed code to resume decompression after a jump instruction. We

will now propose the enhanced version of the bitmask based compression technique.

Address

Functional
Units

Data Path

Data
Memory

C
on

tr
ol

 W
or

dDecoderCW MemPC

ge
ne

ra
to

r
A

dd
re

ss Offset

Figure 4-1. NISC architecture and decoder placement

4.2 Control Word Compression

NISC control words are usually 3-4 times wider than normal instructions. This is

partly because the number of functional units and the data path usually runs closer to

100 or even more. This results in much wider control words. The direct application of any

dictionary based or decoding aware compression technique on such control words fails to

reduce the code size significantly. An interesting solution to obtain redundancy is proposed

in [8], [10] and [17], which splits the input control words to multiple slices and compress

them using multiple dictionaries. The application of this multiple dictionary approach on

our proposed decoding aware bitmask compression technique (Section 3.1) with fixed word

length improves the compression ratio better than the compression technique proposed by

Gorjiara et al. [10]. The main disadvantage of existing algorithms is that they use variable

length dictionary size, which depends on control words pattern. Whereas our proposed

technique uses a fixed dictionary size. This limits the block RAM (BRAM) resources

required to store potentially huge dictionaries to a very small and finite size.

50

NISC control words have don’t care bits. This signifies that the bits indicating these

functional units can be either enabled or disabled without affecting the output. Gorjiara

et al. [10] discusses an interesting technique to resolve these don’t care bits to obtain

minimal dictionary size. Later we describe an extension of this algorithm to select an

efficient dictionary that is bitmask friendly. The selected dictionary results in maximal

bitmask matches with a smaller dictionary. In the next section we will describe our

compression algorithm applied on control words.

Algorithm 6: Multi dictionary compression

Input: Input control words with don’t cares I

number of slices n

threshold bits that can change t

Output:

W = strip constant bits(I);

S[] = slice and remove less frequent bits(W , n,t);

forall s in S[] do

S[i] = bitmask aware dont care resolve(s);

C[i] = rle bitmask compress(S[i]);

end

Generate verliog decoder code based on the parameters and skip map.

return C[];

4.2.1 Bitmask Based Multi Dictionary Compression

The input control words usually run close to 100 bits wide or even more, as discussed

in the previous section. To achieve more redundancy and to reduce code size, the control

words are split in to two or more slices depending on the width of the control word.

Each slice is then compressed using the algorithm described in Section 3.1. To achieve

further code reduction two techniques are proposed in the following two sub sections, these

illustrate compression ratio improvement without adding any significant overhead on the

51

decoder. The Algorithm 6 lists the steps in compressing NISC control words. Initially all

the constant bits are removed to get reduced control words along with a initial skip map

(skip map represents the bits that can be skipped to compress and are hardcoded). In the

next step the input is split into required slices. The less frequent bits are then removed

from each slice using Algorithm 8. In each slice, don’t care values are resolved using

Algorithm 7. The resultant of this algorithm is used in the next step to compress using

the algorithm described in section 3.1. It must be noted that the word length passed to

decoding aware compression algorithm is fixed and determined by the control words width.

This will not hamper the decompression efficiency because the compressed control words

resides in FPGA memory unlike in the case of reconfiguration bitstream compression

the compressed bitstream resides in an external memory. Finally a Verilog decoder is

generated based on the parameters selected for compression.

Algorithm 7: Bitmask Aware Don’t Care Resolution

Input: Unique input control words C = {ci, fi}
number and type of bitmasks b, B = {si, ti}
Output: merged control words M

forall u in C do

forall v in C do

if bit conflictu, v cannot be bitmasked using B then

add (u,v) with cuv = fu and (v,u) with cvu = fv

end

end

colors = wp color graph(G);

sort on frequencies(G);

forall clr in colors do

M = merge all the nodes with same color clr

Retain the bits of most frequent words while merging

end

52

4.2.2 Bitmask Aware Don’t Care Resolution

In a generic NISC processor implementation not all functional units are involved in a

given datapath, such functional units can be be either enabled or disabled. This leaves the

compiler [18] to insert don’t care bits in such control words. Any compression algorithm to

get maximal compression can utilize these don’t care values efficiently. One such algorithm

presented in [10] creates a conflict graph with nodes representing unique control words and

edges between them represents that these words cannot be merged (or conflict). Applying

minimal k colors to these nodes will result in k merged words. It is well known fact that

vertex coloring is a NP Hard problem. Hence a heuristic based algorithm proposed by

Welsh and Powell [19] is used to color the vertices and obtain optimal merged dictionary.

This algorithm is well suited in reducing the dictionary size with exact matches. The

dictionary chosen by this algorithm might not yield better bitmask coverage.

An intuitive approach is to consider the fact that the dictionary entries will be used

for bitmask based matching during compression. Algorithm 7 describes the steps involved

in choosing such dictionary. The algorithm allows certain bits that can be bitmasked

while creating a conflict graph. This reduces the dictionary size drastically. The algorithm

basically allows certain bits than can be bitmasked to avoid them to be represented as

edges in the conflict graph, thus allowing the graph to be colored with less number of

colors. This results in smaller dictionary size with smaller dictionary index bits thus

reducing the final compressed code. It may be noted that while merging the vertices if the

bits are already set then bits originating from the most frequent words will be retained.

This promises reduced size as they will result in more direct matches. Results indicate

that dictionary chosen using the proposed algorithm produces 3-4% better compression

ratio without any additional overhead on decompression.

Figure 4-2 describes a sample don’t care resolution of NISC control words and a

merging iteration. The input words and their frequencies are provided to the algorithm

as shown in Figure 4-2 (a), there are four inputs A, B, C and D. Figure 4-2 (b) represents

53

the conflict graph constructed by the original don’t care resolution algorithm [10]. The

algorithm chooses three colors which represents the merged dictionary entries. The new

proposed bitmask aware graph creation algorithm will skip edges which can be bitmasked

as illustrated in figure 4-2 (c). This example uses one 1-bit bitmask to store differences.

The dotted edges represent the bitmasked edges. The final colors indicate the merged

dictionary entries. While merging the colored nodes bits from high frequency words are

retained upon conflict.

(a) Input

A 0 0 0 X 1 10

2

5

8

B

C

D

1 0 0 X 1

0 0 0 1 1

0 1 1 X 0

BA

D C

BA

D C

0 0 0 1 1

1 0 0 X 1

0 1 1 X 0

0 0 0 1 1

(b) WP − Graph Coloring

(c) Bitmask Aware Graph Coloring

0 1 1 X 0

Figure 4-2. Comparison of compression ratio with different programs

4.2.3 Smart Encoding of Least Frequently Changing Bits

Upon closer analysis of the control word sequence reveals that some bits are constant

or changes less frequently throughout the code segment. Removal of such bits improves

compression efficiency and does not affect matches provided by rest of the bits. The least

frequent bits are encoded by using yet another unused bitmask value as a magic marker

(01 in case of 2-bit bitmask). A threshold number determines the number of times that

a bit can change in the given location throughout the code segment. It is found that

54

10 − 15 is a good threshold for the experimented benchmarks. Algorithm 8 lists the

steps in eliminating the non changing bits and less frequently occurring bits. Initially the

algorithms calculates the number of ones and zeros in each bit position. In the next step

only those bit positions with count 0 or less than threshold t are considered to be the

initial skip map. In the case of less frequent bit positions each of the bit positions should

not be allowed to change in the same control word, as this leads to multiple bit changes

to be encoded in this word. In order to avoid this condition, the last step of the algorithm

updates the skip map by constructing a conflict map for each word. The bit position

which causes the most conflicts are eliminated thus leaving the new skip map covering one

and only one bit positions in any given word. The following example clarifies the process

of bit elimination in detail.

− 1 − 2 1 − − −

1 0 1 1 0 0 0 0
0 0 0 1 0 0 0 X
1 0 1 1 0 0 0 X
0 0 0 1 0 X 0 0

0 0 1 1 0 X 0 0
1 1 0 1 0 0 X 0

− 0 − 1 0 0 0 0

Threshold = 2

0 0 1 0 1 0 X 0

Conflict map

1 1 0 0 0 0 X 0

0 0 1
1 1 1
0 0 1
1 1 0 0
0 1 1
1 1 0 1
0 1 0 1

1 1 1

− 0 − − 0 0 0 0

No Change

Skip map

Figure 4-3. An example illustrating removal of constant and least frequent bits in control
words

Figure 4-3 describes an example control word sequence under going bits reduction.

Each control word is scanned for number of ones and zeros in each bit position. The last

three bit position do not change throughout the input thus they can be unanimously

removed from input, storing the same bit in the skip map. Columns with bit changes

less than threshold (2 in this example) i.e. column 2, 4 and 5 have bits changing less

frequently. In the final step conflict map is created (listed at the bottom part of the

55

figure) representing the number of collisions. The bit positions with collisions 0 or 1 are

considered for skipping, the remaining columns (column 4) are excluded from the skip

map. The skip map and the bits which need to be encoded are shown in the extreme right

side of the same figure. It can be noted that there is a significant reduction in code size to

compress. The decompression section discusses in detail how these less frequent bits are

reassembled.

Algorithm 8: Removing Unchanging and Less Frequently Changing Bits

Input: Control Words with don’t cares D

Threshold t number of bits

Output: Skip Map S

S = φ;

forall w in D do

forall bi, ith bit in w do
count ones;

count zeros;

end

end

create a skip map of 0, 1 or taken with count ¡ threshold t.

forall w in D do

if w has a conflict with skip map then

count the number of bits w conflicts with skip map.

if conflict > 1 then

remove most conflict from previously calculated skip map.

end

return S;

The complete flow of uncompressed, compression and decompressed control words

is shown in figure 4-4. The input file containing the control words is passed to the

compressor. The compressor will reduce the control word size by applying the algorithm

56

described in the previous section and outputs the compressed file in the order of slices.

Later each decoder will fetch compressed control words from different location of the

memory. These compressed words and then decoded using the dictionary stored on Block

RAM (BRAM). After each decompressed code is ready, it is assembled to form the original

control word before sending it to the control unit.

Decompression Engine

C
om

pr
es

so
r

Control Words

Decoder 2

Decoder 1

Decoder 3
Control Word

Compressed Code

Figure 4-4. NISC compressed control word flow

4.3 Decompression of Control Words

This section analyzes the modification required to the decompression engine proposed

for reconfiguration bitstream compression in the previous chapter. This section also

discusses the branch target lookup table required to handle branch instructions.

4.3.1 Decompression Engine

Figure 4-5 illustrates the structure and components of the NISC control word

decompression engine. The decompression hardware comprises of multiple decoding

units for each slice of compressed control word. Each decompression engine contains

input buffer to store the incoming data from memory. The data from input buffer is

then assembled for further processing. Based on the type of compressed word, control is

passed to corresponding decode unit. Each decoding engine will have a skip map register

which is used to insert extra bits that were removed during least frequently occurring bit

optimization when required. A separate unit to toggle these bits handles the insertion

57

C
om

pr
es

se
d

C
on

tr
ol

 W
or

ds

Skip Map

Output Buffer

Matching Flag Register

Compression Flag Register
Buffer

Input Data

Buffer
Assemble

Decoder Decoder
RLE

Decoder
Bit LocationBitmask

Bypass

0

Decoder 1 Bits

. . . .

−− − . . −

From Decoder nFrom Decoder 1

Skip Map of
Constant Bits

Figure 4-5. A multi-dictionary based decompression engine

of these difference bits. The unit will read the offset within the skip map register to

toggle the bit and places in the output buffer. All outputs from decoding engine are then

directed to constant bits skip map which holds completely skipped bits (bits that never

change).

4.3.2 Branch Target Look Up Table

In any program branch control words produces program counter to jump to a different

location to load a new control word. The decoder should handle such jumps within

a program. A look up table based branch relocation approach is used in which static

jump location targets are stored in a table [12]. The proposed technique uses multiple

dictionaries and multiple decode units to handle decompression of all the slices. The table

is redesigned to store offset of all the slices along with the new target location. Figure

4-6 illustrates the branch look up table design. The look up table is indexed based on

new PC and returns multiple offsets to be used by individual decoders. Each offset stores

58

the compress register (CR) offset within its compressed word. The decoder will read the

new compress register from this offset. The offset also contains the word number from

which the decoding resumes. The limitation of this implementation is that decoder cannot

handle dynamic jumps which is also currently not supported by NISC architecture [18]

PC
PC Off 1 Off 2 Off 3

31 2 CR Word

Offset

Compressed Code

Decoders

Figure 4-6. Branch target look up table for compressed control words

4.4 Experiments

The effectiveness of the proposed compression technique is measured using benchmarks

in Gorjiara et al. [10]. The metrics evaluated are compression ratio, decompression speed,

resources used by decompression engine (LUT and BRAMs). It is found that the proposed

compression technique is found to reduce the code size further by 15-20% over the

compression technique proposed by Gorjiara et al. [10]. Decompression speed of the

decoding units capable of operating at 130 MHZ in the range of NISC processor operating

range. BRAM used is fixed for all the benchmarks usually 1 or 2 maximum.

Figure 4-7 shows the comparison of compression ratio of different benchmarks

provided in MiBench [20]. These benchmark consists of numerous code from security

algorithms, network and telecom algorithm implementations. Each benchmark is compiled

in release mode using NISC compiler [18] with optimization level set to 0. The proposed

compression technique with 3 slice option is found to compress all the benchmarks with

at least 15-20% better compression relative to 3-dictionary option of multi dictionary

algorithm proposed by Gorjiara et al. [10].

59

Figure 4-7. Comparison of compression ratio with dictionary based compression technique
on MiBench benchmark

60

CHAPTER 5
OPTIMAL REPRESENTATION OF BITMASKS

In a bitmask based compression each bitmask is represented as < si, ti, li >,

which denotes the size, type and offset within the word. A n-bit bitmask remembers n

consecutive bit differences between a matched word and a dictionary entry. To store n bit

differences a naive approach is to store all the n bits. But a careful and closer analysis

reveals that, to encode the same n bits we just need n − 1 bits. The following section will

discuss on how this can be achieved.

possible 2−bit changes

0 0 0 0
0 0 0 1

mask = 0 1 offset = 1

0 0 0 0
0 0 1 1

mask = 1 1 offset = 1

0 1

1 1

mask = 1 0 offset = 0
or

(a) Equivalence of 2−bit bitmask

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

1 0 0

1 0 0

1 1 0

1 0 0

1 0 1

1 1 0

1 1 1

1 1 0

Removed Bits

n bit n−1 bit

1 0 0

mask = 1 0

0 0 1 0
0 0 0 0

offset = 1

1 0

(a) A 3−bit bitmask transformed to
2−bit bitmaskto 1−bit bitmask

Figure 5-1. A n-1 encoding of n bit bitmask

5.1 Optimal Encoding of n Bits

Starting with a simple example, to encode a single bit difference we do not need

any bits to indicate the difference. The presence of offset bits indicates that there is a

one bit difference, since the XOR operation of two bits differing will be always 1, the

bit value stored is always value 1. Hence we can remove this bit to be encoded. Now

considering a 2-bit bitmask encoding, there are four possibilities { 00, 01, 10, 11 }. In

these possibilities the first pattern will never occur as this indicates that there are no

differences. The second and third bitmasks are both equivalent except that offset of these

will differ by one. Hence both can be represented using 10 bitmask. Thus there are only

61

two bitmasks (10, 11) that needs to be encoded. Hence a single bit is sufficient to represent

these 2-bit bitmasks. In general a n bit bitmask can theoretically cover 2n differences. Out

of which the first pattern will never be used which leaves 2n − 1 patterns to be encoded.

Out of these patterns there are 2n−1 − 1 starting with 0 i.e. the first half of truth table.

These bitmasks can be rotated such that it starts with 1 as shown in Figure 5-1 (b). The

rotation of the bitmask will leave the offset to be shifted suitably. Figure 5-1 (a) illustrates

all possible difference that can be encoded using a 2-bit bitmask. It can be noted that

bitmask difference 01 is equivalent to bitmask difference 10. The only difference is that the

offset gets changed from 1 to 0 as mentioned earlier (the offset is relative from the least

significant bit position). Thus in conclusion we need n− 1 bits to store n differences.

5.1.1 The Proof for n-1 Bit Representation

Definition 1. Let two words w1 and w2 have n bit consecutive differences then f(n) be the

function which represents the number of bit changes that n bits can record. Let o(n) be the

function which represents offset of the bit changes recorded from the least significant bit.

Note that f(n) = 2n, out of these 2n bit changes there are 2n−1 bit changes have most

significant bit (MSB) set to 0 and 2n−1 bit changes have MSB set to 1.

Lemma 1. Let G be the set that represents the bit changes with MSB set to 1, and H be

the set that represents the bit changes with MSB set to 0. Then G ≡ H.

Proof. Let G = {g1, g2, ..., gm}, H = {h1, h2, ..., hm}, where g1, g2, ..., gm are bit changes

with MSB set to 1, h1, h2, ..., hm are bit changes with MSB set to 0, m = 2n−1, and let

i be a bit change element from set H. Then in m possible bit changes with MSB set to

0 for any ith bit change element, let r(i) be the number of bit rotations required such

that ith bit change has 1 in its MSB set then the new offset for this bit change will be

o′(i) = o(i) − r(i). Since the number of rotation required is always less than n (r(i) < n)

and the previous offset is at least n o(n) ≥ n the new offset o′(i) is always greater than 0.

Thus all the elements in set H can be transformed to bit change element with MSB set to

1. Thus both sets H and G are equivalent, which proves the lemma.

62

Theorem 1. Let n be the number of consecutive bit changes to encode between two words

w1 and w2. Then n− 1 bits are sufficient to encode n bit changes.

Proof. A n bit change can encode possibly f(n) = 2n bit changes. Out of these 2n−1 bit

changes have MSB set to 0. These bit changes can be converted to a bit change with MSB

set to 1 (see lemma 1). Thus we have only 2n−1 or f(n− 1) to encode which requires n− 1

bits to encode these changes, which completes the the proof.

46

48

50

52

54

56

58

60

des56 RC5 fft simpleFIR ReCoLink crossbar ReCoNode

n bit n-1 bit

Figure 5-2. Comparison of compression ratio with and without using n-1 bit encoding
scheme

5.2 Experimental Results

The application of this optimization improves the compression efficiency in cases

when bitstreams contains data such that most of them are encoded using one or more

bitmasks. Figure 5-2 illustrates the comparison of the optimized representation of the

bitmask applied on benchmarks used in reconfiguration compression [2]. It is found that

on an average there is an improvement of around 1-3% on overall compression efficiency.

An advantage of this optimization is that the improvement is achieved without adding any

extra logic or overhead on decompression.

63

CHAPTER 6
CONCLUSION AND FUTURE WORK

6.1 Conclusion

This thesis analyzed two set of compression algorithms, A set of algorithms

that reduces bitstream size with better compression ratio but does not consider the

decompression overhead. Another set of compression techniques that are efficient in

decompression but with unacceptable compression ratio. This thesis proposed an efficient

decode aware compression technique which tries to balance between better compression

ratio and minimal decompression overhead. The proposed compression technique analyzes

the effect of parameters on decompression overhead and selects compression parameters

that are decode friendly. This smartly combined with run length encoding of consecutive

repetitive patterns improves the compression and decompression efficiency. This thesis

proposed a strategic rearrangement algorithm to reorganize variable length compressed

bits to obtain fixed length compressed bitstreams. The fixed encoding of the compressed

words enabled the decompression engine to decode at FPGA’s high operational frequency.

A novel dictionary selection algorithm is devised that produces dictionary, covering

maximum words using minimal dictionary size and minimum number of bitmasks. The

proposed technique to compress reconfiguration bitstream is found to improve compression

ratio by around 10-15% and the decompression engine capable of operating at around

200MHZ. The reconfiguration time is reduced by around 15-20% compared to nearest

decompression accelerator by Koch et al. [1].

Further this thesis also studied the application of decode aware bitmask compression

technique to compress NISC control words and to reduce BRAM usage on FPGA. A

novel technique in which smart encoding of constant and least frequently changing bits

is proposed to further reduce the control word size. The control words size is efficiently

reduced by splitting the wider control words to smaller slices and compressing them using

multiple dictionaries. This proposed technique is found to improve compression ratio

64

further by 15-20% over other control word compression techniques. Finally the thesis also

proposed a novel encoding scheme to smartly encode n bit changes in a bitstream or input

data using just n − 1 bits. This technique improves the compression ratio by around 1-3%

without adding any decompression overhead.

6.2 Future Research Directions

Memory and communication bandwidth has been a major bottleneck in most of the

system design. The operational speed of different components is diverging apart at an

ever increasing pace. Decode aware compression promises to bridge this gap by reducing

the data size and by accelerating the decompression process. This thesis explored only

few problems in reconfigurable systems where decode aware compression can system

performance. The proposed techniques in this thesis can be further explored in the

following directions:

1. Bitmask compression technique allows better compression and faster decompression
engine. Binary tries work on longest prefix and bit differences, drastically reducing
the bits required to encode. A interesting approach is to combine these two
techniques to compress very hard to compress audio and video data. Such a
combination would provide faster decoding and better lossless data compression.

2. The proposed technique can be explored to apply in compressing data sent over
heterogenous network elements. The decode aware decompression can bridge the gap
between the different bandwidth at which the existing network elements work.

3. Further studies can be conducted to eliminate the threshold parameter that is used
to limit the exploration of word length. The input data pattern can be automatically
analyzed to choose the parameters for compression. This will potentially bring the
compression ratio and decompression overhead closer to optimum efficiencies.

4. The current application of optimal representation of n bit difference can be further
explored on systems that store bit differences. The systems that requires large
number of bitmasks to encode the data will be benefited by the proposed optimal
encoding scheme. Some of the systems which we identified are in the area of efficient
database storage and differential data backup based systems.

65

REFERENCES

[1] D. Koch, C. Beckhoff, and J. Teich., “Bitstream decompression for high speed fpga
configuration from slow memories,” in Proc. ICFPT, pp. 161–168, 2007.

[2] Bitstream Compression Benchmark, Dept. of Computer Science 12. [Online].
Available: http://www.reconets.de/bitstreamcompression/.

[3] Opencores. [Online]. Available: http://www.opencores.org.

[4] J. H. Pan, T. Mitra, and W. F. Wong, “Configuration bitstream compression for
dynamically reconfigurable fpgas,” in Proc. ICCAD, pp. 766–773, 2004.

[5] D. A. Huffman, “A method for the construction of minimum- redundancy codes,” in
Proc. Institute of Radio Engineers, pp. 1098–1101, 1952.

[6] S. Hauck and W. Wilson, “Runlength compression techniques for fpga configuration,”
in Proc. FCCM, 1999.

[7] A. Dandalis and V. Prasanna, “Configuration compression for fpga-based embedded
systems,” in Proc. FPGA, 2001.

[8] S. W. Seong and P. Mishra, “A bitmask-based code compression technique for
embedded systems,” in Proc. ICCAD, pp. 251–254, 2006.

[9] Virtex-II Platform FPGA User Guide, Xilinx Inc., 2005. [Online]. Available:
http://www.xilinx.com.

[10] B. Gorjiara and D. Gajski, “Fpga-friendly code compression for horizontal
microcoded custom ips,” in Proc. FPGA, 2007.

[11] Virtex Series Configuration Architecture User Guide, Xilinx Inc., 2000. [Online].
Available: http://www.xilinx.com.

[12] S. W. Seong and P. Mishra, “An efficient code compression technique using
application-aware bitmask and dictionary selection methods,” IEEE Trans. Comput.-
Aided Design Of Integr. Circuits And Syst., vol. 27, no. 4, pp. 673–685, Apr. 2008.

[13] Y. Xie, W. Wolf, and H. Lekatsas, “Code compression for vliw processors using
variable-to-fixed coding,” In Proc. of Intl. Symposium on System Synthesis (ISSS),
2002.

[14] S. Bi, W. Wang, and A. A. Khalili, “Multiplexer-based binary
incrementer/decrementers,” in proc. IEEE-NEWCAS, pp. 219–222, 2005.

[15] NISC, 2007. [Online]. Available: http://www.cecs.uci.edu/ nisc.

[16] M. Reshadi and D. Gajski, “A cycle-accurate compilation algorithm for custom
pipelined datapaths,” in Proc. International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), 2005.

66

[17] CodePack PowerPC code Compression Utility Users Manual, IBM, Armonk, NY,
1998. Version 3.0. [Online]. Available: http://www.ibm.com.

[18] M. Reshadi, “No-instruction-set-computer (nisc) technology modeling and
compilation,” PhD thesis, University of California, Irvine, 2007.

[19] T. Jensen and B. Toft, Graph Coloring Problems. New York: Wiley-Interscience,
1995.

[20] MiBench benchmark, 2007. [Online]. Available:
http://www.eecs.umich.edu/mibench/.

67

BIOGRAPHICAL SKETCH

Chetan Murthy received his B.E. degree at the department of Information Science and

Engineering from People’s Education Society Institute of Technology (PESIT) affiliated

to Visvesraiah Technological University, India in 2004. In 2004, he joined at Huawei

Technologies India Private Ltd., Bangalore, India. As a Software Engineer, he worked

on developing kernel modules (memory, DB, message, INC, inspect, software patch,

memory based zip, memory file system and flash based file system) for distributed system

supporting realtime capabilities running on PPC, MIPS, ARM and X86 architectures.

Since summer of 2008, he has been working on compression algorithms for FPGA

specific configuration bitstreams and control word compression for NISC architecture

at Embedded Systems Laboratory, University of Florida.

68

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1 INTRODUCTION
	1.1 Introduction
	1.2 Thesis Contributions
	1.3 Thesis Organization

	2 BACKGROUND
	2.1 Introduction to FPGA
	2.1.1 FPGA Architecture
	2.1.2 Configurable Logical Block
	2.1.3 FPGA Reconfiguration
	2.1.4 Placement of Decompressor Engine

	2.2 Related Work
	2.3 Cost Benefit Analysis of Dictionary Based Compression Algorithms
	2.3.1 Dictionary Based Compression
	2.3.2 Bitmask Based Dictionary Compression
	2.3.3 Decoding Engine of Bitmask Encoded Bitstreams

	3 DECODING AWARE CONFIGURATION BITSTREAM COMPRESSION
	3.1 Decoding-Aware Bitstream Compression
	3.1.1 Parameter Selection for Dictionary Based Compression
	3.1.2 Decoding-Aware Parameter Selection for Bitmask Based Compression
	3.1.3 Efficient Dictionary Selection
	3.1.4 Run Length Encoding of Compressed Words

	3.2 Efficient Bitstream Decompression
	3.2.1 Decode Friendly Rearrangements of Bits
	3.2.2 Decoding-Aware Placement of Compressed Bitstreams
	3.2.3 Decompression Engine

	3.3 Experiments
	3.3.1 Decoding-Aware Parameters for Benchmarks
	3.3.2 Compression Efficiency
	3.3.2.1 Decoding aware vs. bitmask based compression
	3.3.2.2 Decoding-aware vs. bitstream compression techniques

	3.3.3 Decompression Efficiency

	4 NISC CONTROL WORD COMPRESSION
	4.1 NISC Architecture
	4.2 Control Word Compression
	4.2.1 Bitmask Based Multi Dictionary Compression
	4.2.2 Bitmask Aware Don't Care Resolution
	4.2.3 Smart Encoding of Least Frequently Changing Bits

	4.3 Decompression of Control Words
	4.3.1 Decompression Engine
	4.3.2 Branch Target Look Up Table

	4.4 Experiments

	5 OPTIMAL REPRESENTATION OF BITMASKS
	5.1 Optimal Encoding of n Bits
	5.1.1 The Proof for n-1 Bit Representation

	5.2 Experimental Results

	6 CONCLUSION AND FUTURE WORK
	6.1 Conclusion
	6.2 Future Research Directions

	REFERENCES
	BIOGRAPHICAL SKETCH

