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Abstract

Due to increasing demand for faster computations,

deeply pipelined processor architectures are being em-

ployed to meet desired system performance. Functional

validation of such pipelined processors is one of the most

complex and expensive tasks in the current Systems-on-

Chip design methodology. While language-based valida-

tion techniques have proposed several promising ideas,

many challenges remain in applying them to realistic

pipelined processors. This paper describes two practi-

cal challenges in this methodology: test generation and

equivalence checking. The time and resources required

for test generation using the existing approaches can be

extremely large for today’s pipelined processors. Sim-

ilarly, traditional equivalence checkers are not useful

in the context of language-driven model generation and

functional validation. This paper outlines our plan to ad-

dress these challenges using satisfiability checking.

1 Introduction

Functional validation is a major bottleneck is pipelined

processor design. Language-based processor validation

techniques have received considerable research interest

in recent years. These techniques use an architecture

description language (ADL) such as EXPRESSION [4],

LISA [36], MIMOLA [33], or nML [21] to enable various

validation efforts including test generation [15, 25, 27, 33]

and equivalence checking [29].

Figure 1 shows a top-down validation methodology for

pipelined processors [30]. In this methodology the pro-

cessor architecture is captured using an ADL such as

EXPRESSION [4]. Next, the ADL specification is val-

idated by analyzing both static and dynamic behaviors of

the specified architecture. The validated specification is

then used to generate various executable models including

simulator and RTL models. Finally, the implementation

is validated using a combination of simulation techniques

and formal methods. Necessary test programs are gener-

ated from the ADL specification using model checking.

These test programs are used for simulation of the imple-

mentation. Similarly, the generated RTL model is used to

verify the implementation using equivalence checking.
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Figure 1. Language-driven Validation Methodology

While language-based validation techniques have pro-

posed several promising ideas, many challenges remain

in applying them to realistic pipelined processors. This

paper describes two practical challenges in this method-

ology: test generation and equivalence checking. Due

to lack of structural similarity between the implementa-

tion and the generate RTL model, equivalence checking

is not possible for large designs. Similarly, model check-

ing based test generation techniques are time-consuming

for complex designs. This paper investigates the use of



satisfiability checking in the language-based validation

methodology.

The rest of the paper is organized as follows. Sec-

tion 2 presents related work addressing validation of

pipelined processors. Section 3 describes our test gen-

eration methodology using SAT-based bounded model

checking. Section 4 outlines our language-driven equiva-

lence checking approach using SAT solvers followed by a

case study in Section 5. Finally, Section 6 concludes the

paper.

2 Related Work

Several approaches for formal or semi-formal verifica-

tion of processors have been developed in the past. Theo-

rem proving techniques, for example, have been success-

fully adapted to verify pipelined processors ([23], [18],

[8], [34]). Burch and Dill presented a technique for for-

mally verifying pipelined processor control circuitry [16].

This technique has been extended to handle more complex

pipelined architectures by several researchers [24, 20].

Model checking based techniques have been success-

fully used in processor verification. Ho et al. [26] ex-

tract controlled token nets from a logic design to perform

efficient model checking. Jacobi [6] used a methodol-

ogy to verify out-of-order pipelines by combining model

checking for the verification of the pipeline control, and

theorem proving for the verification of the pipeline func-

tionality. Compositional model checking is used to

verify a processor microarchitecture containing most of

the features of a modern microprocessor [32]. Indus-

trial strength equivalence checkers have been successfully

used to check equivalence between RTL and gate level de-

signs. It assumes that the original RTL design is golden

and verifies the modified design (e.g., modified RTL or

gate level design).

Simulation is the most widely used form of processor

verification: millions of cycles are spent during simula-

tion using a combination of random and directed test cases

in traditional validation flow. Genesys [1] combines ar-

chitecture knowledge, user interactive interface and test-

ing knowledge for efficient test generation. Many tech-

niques have been proposed for generation of directed test

programs [2, 19]. Ur and Yadin [35] have presented a

method for generation of assembler test programs that

systematically probe the micro-architecture of a PowerPC

processor. Iwashita et al. [12] use an FSM based pro-

cessor modeling to automatically generate test programs.

Campenhout et al. [7] have proposed a test generation

algorithm that integrates high-level treatment of the dat-

apath with low-level treatment of the controller. Mishra

et al. [27, 28] have proposed functional test generation

techniques using model checking.

3 Test Generation

Test generation using model checking is one of the

most promising approaches due to its capability of au-

tomatic test generation. Mishra et al. [27] proposed a

pipeline coverage driven test generation technique using

model checking. However, the time and resources re-

quired for test generation using this approach can be ex-

tremely large for today’s pipelined processors. It may

not be possible to generate test programs when multiple

pipeline stages are involved e.g., creating multiple ex-

ceptions scenarios. As a complementary technique, SAT-

based bounded model checking (BMC) has given promis-

ing results. The basic idea is to restrict search space that

is reachable from initial states within a fixed number (k)

of transitions, called bound. After unwinding the model

of design k times, the BMC problem is converted into a

propositional satisfiability (SAT) problem. SAT solver is

used to find a satisfiable assignment of variables that is

converted into a counterexample. If the bound is known

in advance, SAT-based BMC is typically more effective

for falsification than UMC because search for counterex-

ample is faster and SAT capacity reaches beyond BDD ca-

pacity [3]. However, finding bound is a challenging prob-

lem since the depth of counterexamples is unknown in

general. We propose a method for determining the bound

for each property instead of using a maximum bound for

all properties.

Figure 2 shows our test generation methodology. Pro-

cessor model is generated from the architecture specifi-

cation. We use pipeline interaction fault model to define

functional coverage [13]. Temporal logic properties are

created from pipeline interaction faults based on the spec-

ification. We have developed a procedure for determin-

ing a bound for each property. Processor model, negated

property, and the bound are applied to SAT-based BMC to

generate a test program. Based on the coverage criteria,

more properties can be added. We use design and prop-

erty decompositions to further improve the performance

of test generation. In this section we briefly outline the

three important steps in SAT-based BMC: property gener-

ation, determination of bound for each property, and de-

sign decomposition. The detailed description of our test

generation technique using SAT-based BMC is available

in [14].
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Figure 2. Test Program Generation Methodology

3.1 Property Generation

A pipeline interaction fault is converted into a prop-

erty F(p1 ∧ p2 ∧ . . .∧ pn) that combines activities over

n modules using logical AND operator, where F is a

temporal operator (eventually) and pi is described as

(modulei.activity). The property is true if (p1 ∧ p2 ∧
. . .∧ pn) becomes true at any time step. The negation of

the property, G(¬p1 ∨ ¬p2 ∨ . . .∨ ¬pn), becomes true if

any of p1, p2, . . . , or pn is not true over all time steps.

3.2 Determination of Bound

The longest computation path in the pipeline corre-

sponds to the bound to generate tests for all interac-

tion scenarios. For example, in the MIPS processor

[17], the maximum bound is determined by the length of

{FE→ DE→ IALU→ MEM→ Cache→ MM → Cache→
MEM→ WB} if cache miss takes more time than any

other pipeline paths. However, this bound is over-

conservative in most test scenarios because a lot of inter-

actions do not include this longest path. Therefore, using

bound for each interaction is more efficient for test gener-

ation. The bound for each interaction fault is determined

by the longest temporal distance from the Fetch unit to the

nodes under consideration.

3.3 Design Decompositions

Design decompositions can be used to further improve

test generation performance. We consider only two design

partitioning techniques: vertical (path-level) partitioning

and horizontal (stage-level) partitioning. For example, the

integer-ALU pipeline path {Fetch, Decode, IALU, Mem,

WriteBack} in the MIPS processor [17] is treated as one

path level partition. Horizontal partitioning cuts off the

descendent of the nodes under consideration because the

descendent nodes do not affect the counterexample gen-

eration of property. These methods are similar to the cone

of influence adopted in model checking tools. Depending

on the properties, other forms of decompositions may be

useful.

4 Equivalence Checking

Language-driven equivalence checking flow [29] is a

promising approach but has one limitation: the structure

of the generated hardware model (reference) needs to be

similar to that of the processor implementation. This re-

quirement is primarily due to the limitation of the tradi-

tional equivalence checkers. The equivalence checkers

assume structural similarity and uses the similarity to re-

duce the complexity. Equivalence checking is not possi-

ble if the reference and implementation designs are large

and drastically different. In reality, the implementation

goes through numerous optimizations to improve various

design parameters such as cost, area, power and perfor-

mance. As a result, the final implementation may not have

the similar structure as intended in the original specifica-

tion, whereas the generated hardware model has the same

structure as in the specification. In other words, tradi-

tional equivalence checkers are not useful in the context

of language-driven model generation and functional vali-

dation.

We plan to perform equivalence checking using SAT

solvers. SAT solvers along with BDD and ATPG based

techniques have been successfully used in the context

of hardware verification [9, 11]. Initial studies with

our SAT-based combinational equivalence checker show

some promising results by exploiting the structural simi-

larities of the designs [38]. In the remainder of this section

we describe our efforts in using SAT solvers for combina-

tional as well as sequential equivalence checking.

4.1 Combinational Equivalence Checking

SAT solvers are widely used for the combinational

equivalence checking (CEC) of circuits. The existing re-

searches [9, 31, 38] use structural information to reduce

the search space and improve the performance.
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Figure 3. An example of structural similarity

Figure 3 shows a simple example of structural similar-

ity between two designs. In Figure 3, if we can prove

that xi and yi always have the same value, we can easily

show that X and Y will always have the same value. The

equivalence between < xi,yi > can be observed from the

design manually or by the CEC tool. We designed a com-

binational equivalence checker based on SAT solver [38]

that can exploit the structural similarities between the de-

signs automatically. The procedure with simulation, and

then forms clusters based on similar signals, and finally

checks whether two signals in a cluster are equivalent or

not. The experimental results are shown in Table 1.

4.2 Sequential Equivalence Checking

The problem of sequential equivalence checking (SEC)

is more difficult than CEC. Pipelined processors are ex-

tremely complex sequential designs. Many researches in

SEC [5] tries to exploit the structural information to im-

prove the performance. Seq-SAT [11] is one of the suc-

cessful sequential SAT tool. It performs state reduction to

reduce the searching time. Seq-SAT can perform SEC for

two pipelined designs when the designs are small.

There are various difficulties in SEC. First, it is difficult

to model the equivalence between two pipelined designs

with different number of stages. For example, if one de-

sign takes 4 cycles to finish one instruction and the other

design needs 5 cycles, it is very difficult to check the sig-

nals and conclude whether the two designs are equivalent

or not. The problem will be more difficult for a real-life

pipelined design with properties such as multi-issue, out-

of-order execution and so on. Second, it is more difficult

to find structural similarity in SEC than CEC, especially

when this kind of similarity may happen between signals

from different designs in different cycles. For example,

the value of a signal X in design A at cycle k may always

be equal to the value of another signal Y in design B at

cycle (k+1). This is a common scenario of two designs

with different number of pipeline stages. It is necessary

to handle such scenarios to be able to perform sequential

equivalence checking on pipelined processors.

5 A Case Study

This section presents our experimental results for test

generation as well as equivalence checking using SAT

solvers.

5.1 Test Generation Results

We applied our methodology on a simplified MIPS ar-

chitecture [17]. For our experiments, we used Cadence

SMV [37] as a model checker and zChaff [22] as a SAT

solver. We used 16 16-bit registers in the implementation

of the register file. All the experiments were run on a 1

GHz Sun UltraSparc with 8G RAM.
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Figure 4. Comparison of Test Generation Methods

Figure 4 shows average test generation time for differ-

ent module interactions by using a maximum bound for all

counterexamples and each bound for each counterexam-

ple. It is important to note that unbounded model check-

ing could not generate any test program (counterexample)

in this case due to state space explosion (out of memory)

problem. The X-axis in Figure 4 represents the number of

interactions considered for that particular test generation



instance, and Y-axis represents the required test genera-

tion time in seconds. We used the maximum bound of 45

assuming that the longest path is taken by memory op-

erations i.e., the sum of the IALU pipeline path length

(5) and data-transfer path length (40). The figure demon-

strates two important aspects. First, use of specific bound

for each property improves test generation time by 90%

compared to using a maximum bound in bounded model

checking. Second, it is possible to achieve further im-

provement in test generation time by applying design and

property decompositions.

5.2 Equivalence Checking Results

Table 1 shows the effect of exploiting structural simi-

larity in CEC. The first column shows the designs from

ISCAS85 benchmark suite [10]. The second column indi-

cates the equivalence checking time without using struc-

tural similarity (SS). The last column presents the total

time including determination of structural similarity and

equivalence checking. All the reported time are in sec-

onds. As expected, the equivalence checking time is dras-

tically reduced when the structural similarity is used.

Table 1. Equivalence Checking(EC) with/without

Structural Similarity(SS)

Design EC w/o SS EC with SS (seconds)

(seconds) SS time EC with SS Total time

C432 0.2 0.27 0.01 0.28

C499 8.05 0.72 0.3 1.02

C1355 26.13 4.54 0.3 4.84

C1908 31.15 7.74 0.2 7.94

C3540 2761.83 32.25 0.44 32.69

We used Seq-SAT [11] to test whether two simple

pipelined designs are equivalent. The instruction set of

each design includes NOP, AND, OR, NOT, and LOAD.

Both designs have five pipeline stages: read instruction,

decode, read operands, execute, and write back. However,

one design has a separate path for LOAD instruction.

Table 2 shows our experimental results using Seq-SAT.

The first column shows the number of registers used in

each design. Similarly, the second column shows the

length of each register. The third column indicates the to-

tal number of SAT variables. The last column presents the

equivalence checking time. As expected the equivalence

checking time is increasing drastically with the increase

in design complexity. Therefore, it is necessary to exploit

Table 2. Sequential Equivalence Checking for Simple

Pipeline Designs

# of Registers Reg. Length SAT variables Time (sec)

4 8 1469 4.78

4 16 2733 36.82

4 32 5261 19725.1

8 8 2709 26.89

8 16 5125 > 20 hrs

16 4 2993 17.42

16 8 5433 > 20 hrs

32 4 6173 64487.7

32 8 11429 > 20 hrs

the structural similarity to improve the performance of se-

quential equivalence checking.

6 Conclusions

Functional verification is widely acknowledged as

a major bottleneck in pipelined processor design.

Language-based processor validation techniques have re-

ceived considerable research interest in recent years. This

paper discussed various challenges in language-based val-

idation including test generation and equivalence check-

ing, and studied the use of SAT solvers to address these

challenges. Our experimental results had shown that SAT-

based bounded model checking performs well for find-

ing shallow counterexamples for test generation. Simi-

larly, our initial studies had shown encouraging results

for equivalence checking. Our future research includes

development of efficient sequential equivalence checkers

that can handle large designs without significant structural

similarity.
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