
A Property Checking Approach to Microprocessor Verification
using Symbolic Simulation

Prabhat Mishra† Narayanan Krishnamurthy‡ Nikil Dutt † Magdy Abadir‡

pmishra@cecs.uci.edu nari@ibmoto.com dutt@cecs.uci.edu M.Abadir@motorola.com

†Architectures & Compilers for Embedded Systems‡High Performance Tools and Technology
Center for Embedded Computer Systems Somerset Design Center

University of California, Irvine, CA 92697 Motorola Inc., Austin, TX

Abstract

Several bottom-up validation techniques have been
proposed to formally verify the implementation of a mi-
croprocessor by comparing the pipelined implementa-
tion with its Instruction-Set Architecture (ISA) specifi-
cation model, or by deriving the ISA model from the
implementation. We present a top-down validation ap-
proach using symbolic simulation. We define a set of
properties and verify the correctness of the processor
by verifying if the properties are met. We applied our
methodology to verify several properties on a Memory
Management Unit (MMU) of a microprocessor that is
compliant with the PowerPC instruction-set architec-
ture to demonstrate the usefulness of our approach.

1 Introduction

Shrinking time-to-market cycles coupled with short
product lifetimes create a critical need to drastically re-
duce microprocessor design cycle time. Since verifica-
tion and design analysis are major components of this
cycle time, any effort that improves verification effec-
tiveness and design quality is crucial for meeting cus-
tomer deadlines and requirements. Design validation
techniques can be broadly categorized into simulation-
based approaches and formal techniques. Due to the
complexity of modern designs, validation using only
traditional scalar simulation cannot be exhaustive. For-
mal techniques do an exhaustive analysis of the design
but can check only small designs completely.

In current state-of-the-art verification methodology,
the architect prepares an informal specification of
the microprocessor in the form of an English docu-
ment. The logic designer implements the modules

and verifies them using combination of simulation and
formal techniques. Many existing approaches ([2],
[3], [6]) employ a bottom-up approach to validation,
where the functionality of an existing processor is, in
essence, reverse-engineered from its RTL implementa-
tion. Hauke et al. [2] compare an extracted Instruction-
Set Architecture (ISA) description with the given ISA
specification. Ho et al. [1] extract controlled token nets
from a logic design to perform efficient model check-
ing. Our verification technique is complementary to
these bottom-up approaches: we leverage the system
architects knowledge about the behavior of the archi-
tecture through properties, thereby allowing a powerful
top-down approach to microprocessor validation. For
example, the property to verify the implementation of
a n input adder would beout put= ∑n

i=1 inputi . This
property should be satisfied irrespective of the adder
implementation such as ripple carry adder, carry looka-
head adder etc.

In this paper, we present a top-down validation
approach using symbolic simulation. We applied
our methodology to verify several properties on a
microprocessor that is compliant with the PowerPC
instruction-set architecture to demonstrate the useful-
ness of our approach.

2 Related Work
Several approaches for formal or semi-formal veri-

fication of processors has been developed in the past.
Theorem proving techniques, for example, have been
successfully adapted to verify processors ([8], [11],
[12]). However, these approaches require a great deal
of user intervention, especially for verifying control in-
tensive designs. Burch and Dill presented a technique

for formally verifying processor control circuitry [4].
Their technique verifies the correctness of the imple-
mentation model of a pipelined processor against its
ISA model based on quantifier-free logic of equality
with uninterpreted functions. The technique has been
extended to handle more complex pipelined architec-
tures by several researchers [5, 9]. In [10], Levitt and
Olukotun presented a verification technique, called un-
pipelining, which repeatedly merges the last two pipe
stages into a single stage, resulting in a sequential ver-
sion of the processor. All the above techniques attempt
to formally verify the implementation of pipelined pro-
cessors by comparing the pipelined implementation
with its sequential (ISA) specification model, or by de-
riving the sequential model from the implementation.
On the other hand, in our verification approach, we are
trying to define a set of properties which have to be
satisfied for the correct behavior, and verify the cor-
rectness of the processor by verifying if the properties
are met.

Symbolic simulation has proved to be an efficient
technique, bridging the gap between traditional sim-
ulation and full-fledged formal verification. Versys2
[14] serves as the mainstream custom-memory verifi-
cation tool for checking Register Transfer Language
(RTL) designs against schematics at Motorola’s Som-
erset Design Center. Beatty [13] verified a switch-
level non-pipelined processor description by using Bi-
nary Decision Diagrams (BDDs) and symbolic simu-
lation. Bhagwati and Devadas [7] verified a pipelined
implementation of the DLX processor architecture us-
ing BDDs and symbolic simulation.

3 Our Approach

Figure 1 depicts our verification approach. Logic
designers implement the architecture in Verilog RTL.
The verification engineers write several properties us-
ing the information available in the architecture specifi-
cation document to ensure that the implementation sat-
isfies the specification. A Boolean model is extracted
from the RTL and a state machine is coded in Verilog
for the properties to be checked. The Boolean model
and the Verilog state machine are fed to the Versys2
symbolic simulator. Versys2 [14] is used to verify that
the RTL design satisfies the properties. A counter-
example is generated if the RTL design violates the
property.

Properties
(Verilog) (Verilog)

(English Document)

RTL Design

Architecture Specification

Simulation
Symbolic

Pass / Fail

State Boolean

Automatic
Manual

Machine Model

Figure 1. Top-down validation flow

4 Experiments

We applied our methodology to a microprocessor
that is compliant with the PowerPC instruction-set ar-
chitecture. In this section we briefly describe how we
verified Memory Management Unit (MMU) of the mi-
croprocessor using our approach.

The MMU supports demand-paged virtual mem-
ory. It consists of blocks such asSegment Registers,
Translation Lookaside Buffers (TLBs), andBlock Ad-
dress Translation (BAT) Arrays. Each of these mem-
ory blocks are composed of sub-blocks. For example,
the TLB has three sub-blocks viz.,entry(data informa-
tion), LRU (least recently used information), andvalid
(information regarding validity of the data) as shown in
Figure 2. Each of these sub-blocks is implemented as
SRAM. The typical operations in SRAM are read and
write. So a natural property to verify is to check read
and write for each SRAM cell. The following Verilog
code segment shows the read and write properties for
an SRAM cell. Similar properties are verified for all
the memory blocks.

always @ (wrClk or wrEn or dIn or wrAddr)
begin

if (wrClk & wrEn) ram[wrAddr] <= dIn;
end

assign out = (rdClk & rdEn) ? ram[rdAddr] : 32’b0;

The following Verilog code segment verifies the
TLB miss detection property using the information
available in the architecture specification document. In
a similar manner we can write the property for the BAT
array miss detection.

assign inp =({1’b1,vsid[0:23],ea[4:9],ea[10:13]});
assign out0=({vld0,e0[0:23],e0[24:29],e0[54:57]});
assign out1=({vld1,e1[0:23],e1[24:29],e1[54:57]});
assign hit0=(inp == out0);
assign hit1=(inp == out1);
assign miss=˜(hit0 | hit1);

The TLB is 2-way set-associative. It would be a
simple extension for associativityn. Here vsid (vir-
tual segment id) andea (effective address) are inputs
andpa (physical address) is output of the TLB block.
Theeandvld variables are output fromentryandvalid
blocks respectively as shown in Figure 2.

Entry 1Entry 0

V
a

lid
 0

V
a

lid
 1

LRU

TLB

ea

vsid

pa

e0 e1

vld0 vld1

Figure 2. TLB block diagram
There were several issues in verifying these proper-

ties. The architecture specification document does not
provide the value for the else condition (default value
of a signal for example) most of the time. As a re-
sult the description of the property does not have the
default value for a signal whereas the signal has a defi-
nite value in its implementation under all possible con-
ditions. Symbolic simulation produces mismatches in
those cases. It is possible to impose certain constraints
in Versys2 [14] to avoid the detection of such false neg-
atives. For example, an architecture specification doc-
ument does not have the default value for the signal
out, whereas its implementation has a default value (as
shown below). To avoid detection of false negatives
we can set the condition (rdClk & rdEn) as true in the
Versys2 configuration file.

assign out = (rdClk & rdEn) ? ram[rdAddr] : 32’b0;

We encountered certain mismatches (not real bugs)
due to simulation specific implementation style of cer-
tain designs. For example, if a signal is delayed us-
ing temporary latches it will generate mismatch during
property verification.

5 Summary

Verification is one of the most complex and expen-
sive tasks in the current microprocessor design process.

Any effort that improves verification effectiveness and
design quality is crucial to meeting customer deadlines
and requirements. We presented here a top-down vali-
dation approach using symbolic simulation. We wrote
several properties using the information available in the
architecture specification document and applied them
to RTL using symbolic simulation.

We applied our methodology to verify the memory
management unit of a microprocessor that is compli-
ant with the PowerPC instruction-set architecture. In
the future, we plan to extend this methodology for the
verification of the complete microprocessor.

References

[1] P. Ho et al. Formal verification of pipeline control using
controlled token nets and abstract interpretation. InICCAD,
1998.

[2] J. Hauke and J. Hayes. Microprocessor design verification
using reverse engineering. InHLDVT, 1999.

[3] S. Ur and Y. Yadin. Micro architecture coverage directed
generation of test programs. InDAC, pages 175–180, 1999.

[4] J. Burch and D. Dill. Automatic verification of pipelined mi-
croprocessor control. InCAV, 1994.

[5] J. Skakkebaek, R. Jones, and D. Dill. Formal verification of
out-of-order execution using incremental flushing. InCAV,
1998.

[6] R. Ho et al. Architecture validation for processors. InISCA,
1995.

[7] V. Bhagwati and S. Devadas. Automatic verification of
pipelined microprocessors.DAC, 1994.

[8] M. Srivas and M. Bickford. Formal verification of a pipelined
of a pipelined microprocessor.IEEE Software, 7(5), Sept.
1990.

[9] M. Velev and R. Bryant. Formal verification of superscalar
microprocessors with multicycle functional units, exceptions,
and branch prediction.DAC, 2000

[10] J. Levitt and K. Olukotun. Verifying correct pipeline imple-
mentation for microprocessors.ICCAD, 1997.

[11] D. Cyrluk. Microprocessor verification in PVS: A methodol-
ogy and simple example. TR SRICSL9312, 1993.

[12] J. Sawada and J. W.A. Hunt. Trace table based approach for
pipelined microprocessor verification. InCAV, 1997.

[13] D. L. Beatty. A methodology for formal hardware verification
with application to microprocessors. PhD Thesis, School of
Computer Science, Carnegie Mellon University, 1993.

[14] N. Krishnamurthy et al. Design and Development Paradigm
for Industrial Formal Verification Tools.IEEE Design & Test
of Computers, July-August 2001.

[15] C-J.H. Seger et al. Formal Verification by Symbolic Evalua-
tion of Partially Ordered Trajectories.J. Formal Methods in
System Design, vol6, Mar. 1995, pp. 147-189.

