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Functional verification of microprocessors is one of the most complex and expensive

tasks in the current system-on-chip design methodology. Simulation using functional

test vectors is the most widely used form of processor verification. A major challenge in

simulation-based verification is how to reduce the overall verification time and resources.

Traditionally, billions of random and directed tests are used during simulation. Compared

to random tests, directed tests can reduce overall validation effort significantly since

shorter tests can obtain the same coverage goal. However, there is a lack of automated

techniques for directed test generation targeting micro-architectural design errors.

Furthermore, the lack of a comprehensive functional coverage metric makes it difficult to

measure the verification progress. This dissertation presents a functional coverage-driven

test generation methodology. Based on the behavior of pipelined processors, a functional

coverage is defined to evaluate the verification progress. My research provides efficient

test generation techniques using formal methods by decomposing processor designs and

properties to reduce test generation time as well as memory requirement. My research

also provides a functional test compaction technique to reduce the number of directed

tests while preserving the overall functional coverage. The experiments using MIPS and

PowerPC processors demonstrate the feasibility and usefulness of the proposed functional

test generation methodology.

9



CHAPTER 1
INTRODUCTION

Verification is the process of ensuring that the intent of a design is preserved in

its implementation. Functional verification (or validation1 ) can expose functional logic

errors in the hardware designs which are described in behavioral model, register transfer

level model, gate level model, or switch level model. Functional errors are introduced

due to various factors including careless coding, misinterpretation of the specification,

microarchtectural design complexity, corner cases, and so on. If any functional bug is

found in a chip already fabricated, the error needs to be corrected and the modified

version of the design needs to be fabricated again, which is very expensive. In the worst

case, bug fixing after delivery to customers will entail a very costly replacement as well as

re-fabrication expenses. For example, in 1994 Intel’s Pentium processor had a functional

error called FDIV bug2 and the company had to spend a staggering cost to replace the

faulty processors.

In modern microprocessor designs, functional verification is one of the major

bottlenecks due to the combined effects of increasing design complexity and decreasing

time-to-market. Design complexity of modern processors is increasing at an alarming

rate to cope up with the required performance improvement for increasingly complex

applications in the domains of communication, multimedia, networking and entertainment.

To accommodate such faster computation requirements, today’s processors employ many

complicated micro-architectural features such as deep pipelines, dynamic scheduling,

out-of-order and superscalar execution, and dynamic speculation. This trend again shows

1 The term “validation” is generally used for simulation-based approaches, while
“verification” is used for both simulation-based and formal methods.

2 The Pentium FDIV bug was the most infamous of the Intel microprocessor bugs. Due
to an error in a lookup table, certain floating point division operations would produce
incorrect results.
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Figure 1-1. Pre-silicon logic bugs per generation

an exponential increase in the number of logic bugs. For example, the number of logic

bugs in designing Intel processors has grown at a rate of 300-400% from one generation to

the next in Figure 1-1 [14, 103]. The increase in logic bugs is proportional to the increase

in design complexity. The increase in design errors makes verification tasks more difficult.

In addition to the growing difficulty of pipelined processor verification, time-to-market

has become shorter in the embedded processor designs. A recent study has shown that

functional verification accounts for significant portion (up to 70%) of the overall design

development time and resources [44]. As a result, design verification of modern processors

is widely acknowledged as a major bottleneck in design methodology.

Existing processor verification techniques adopt a combination of simulation

based-validation techniques and formal verification methods. Simulation-based validation

is the most widely used form of processor verification using test programs consisting of

instruction sequences. A major challenge in simulation-based validation is how to reduce

the overall validation time and resources. Traditionally, billions of random tests are used

during simulation. Furthermore, the lack of a comprehensive functional coverage metric

makes it difficult to measure the verification progress. To address these challenges, this

dissertation presents a coverage-driven test generation methodology that is composed of

11



defining a functional coverage for quantifying verification progress, generating directed

tests automatically for industrial strength processors, and minimizing the number of

tests for efficient validation. Introduction of the dissertation provides an overview of

the problems in functional test generation and my research contributions that will be

addressed in the rest of the dissertation.

1.1 Processor Validation

Existing processor design verification techniques are broadly categorized into

formal techniques [25, 64] and simulation-based methods [20]. The trade-off between

formal techniques and simulation-based methods is their capacity and completeness in

verification. Formal verification techniques provide the completeness of verification task

by proving mathematically the correctness of a design. However, they have difficulty

in dealing with the large designs due to the state space explosion problem.3 Theorem

proving [102, 113], model checking [77, 80], SAT solving [30, 93], symbolic simulation

[21, 72], and equivalence checking [73, 97] are typically used for formal verification of

processor designs.

Simulation-based validation discovers design errors using test vectors consisting of

input stimuli and expected outputs [3, 43, 94, 95]. Although simulation-based methods

are able to handle complex processor designs, they cannot achieve the completeness of

verification. For example, for microprocessor verification, all possible input instruction

sequences are required in order to confirm the correctness of a given microprocessor

design. But it is impossible to generate and simulate them in a reasonable time.

Therefore, formal methods are more applicable to the verification of the small and critical

components, whereas simulation-based methods are more advantageous in validation of

a complicated design by sacrificing completeness of verification. Primarily due to this

3 The size of the state space grows exponentially with the number of inputs and state
variables of the system.
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Figure 1-2. Simulation-based processor validation

reason, simulation-based validation is the most widely used form of verifying modern

complex processors.

The basic procedure in simulation-based processor validation consists of generating

test programs, simulating a given processor design with the test programs, comparing

the generated outputs with the expected results, and correcting design errors if the

simulation outputs are different from the expected results (Figure 1-2). A major challenge

in processor validation is how to reduce the overall validation time and resources. Since

the test generation and simulation for all input test programs is infeasible, we need a

method for deciding effective tests to achieve high confidence of the processor design. In

addition, test generation techniques must be able to accommodate complex processor

designs as well as produce tests in reasonable time. The main focus of this dissertation is

the functional test program generation for validation of pipelined processors.

13



There are three types of test generation techniques: random, constrained-random,

and directed. In the current industrial practice [2, 100], random and constrained-random

test generation techniques at architecture (ISA) level are most widely used because test

programs can be produced automatically and design errors can be uncovered early in the

design cycle. However, a huge number of tests are required to achieve high confidence of

the design correctness, and corner cases are easily missed. Furthermore, architectural test

generation techniques have difficulty in activating micro-architectural target artifacts and

pipeline functionalities since it is not possible to generate information regarding pipeline

interactions or timing details using input ISA specification.

Compared to the random or constrained-random tests, the directed tests can reduce

overall validation effort significantly since shorter tests can obtain the same functional

coverage goal. However, there is a lack of automated techniques for directed test

generation targeting micro-architectural faults. As a result, directed tests are typically

hand-written by experts. Due to manual development, it is infeasible to generate all

directed tests to achieve comprehensive coverage and this process is time consuming and

error prone. Therefore, there is a need for automated directed test generation techniques

based on micro-architectural functional coverage. Test generation using formal methods

has been successfully used due to its capability of automatic test generation. However,

the traditional test generation techniques are unsuitable for large designs due to the state

explosion problem. To address these challenges, my research provides automated test

generation techniques using decomposition of processor design and property to make the

formal methods applicable in practice.

1.2 Coverage-driven Functional Validation

A main drawback in simulation-based validation is that an assurance of the

correctness of the design requires exhaustive simulation which is possible only for small

designs. In other words, a certain degree of confidence can be achieved by simulating the

design using a large volume of tests. However, there is a lack of good metrics to quantify

14
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Figure 1-3. Coverage-driven validation flow

this degree of confidence and to qualify a test set. Therefore, it is hard to answer the

question, “When is verification done?”, due to difficulty in measuring verification progress

and test effectiveness.

A traditional flow of coverage-driven validation begins by defining coverage metric,

followed by test generation (Figure 1-3). A coverage metric provides a way to see what

has not been verified and what tests should be added. Many coverage metrics have

been proposed for different types of design errors (e.g., control flow, data flow) and at

different design abstraction levels (e.g., behavioral, RTL, gate level). In coverage-driven

test generation, tests are created to activate a target coverage point and it can effectively

reduce the number of tests compared to the random test generation. Through simulation,

the coverage is analyzed by examining whether target functionalities have been covered

or not, thereby we can measure the validation progress. If coverage holes are found,

additional tests are generated to exercise them. If higher degree of confidence is required,

we can improve the coverage metric or make use of additional coverage measures.

Verification engineers can change the scope or depth of coverage during the validation

15



process. For example, they can start from simple coverage metrics in the early verification

stage and use more complex coverage metrics later on. However, existing coverage metrics

do not have a direct relationship with the design functionality, we need a coverage metric

based on the functionality of the design. This dissertation provides a comprehensive

functional coverage metric by defining a functional fault model for pipelined processors.

Although directed tests require a smaller test set compared to random tests for

the same functional coverage goal, the number of tests can still be extremely large.

Therefore, there is a need for functional test compaction techniques. My research provides

a functional test compaction technique to reduce the directed test set.

1.3 Research Contributions

The goal of my research is to provide an efficient functional test generation methodology

for validation of pipelined processors, thereby reducing overall validation efforts. Since

generating and simulating all possible instruction sequences is not possible for modern

processor verification, we need a method to decide an effective test set to achieve high

confidence of the design correctness. In addition, test generation techniques should be able

to handle complex processor designs and produce the tests in efficient way. Therefore, two

important things should be considered in test generation: (i) what tests to be generated

and (ii) how to create them. Moreover, compacting the test set without sacrificing

coverage goal is necessary to further reduce validation efforts.

Figure 1-4 shows the overall flow of the proposed coverage-driven functional test

generation methodology [66]. The first step is to create a processor model and a functional

fault model from the processor architecture specification. Next, it generates a list of

all possible functional faults based on the fault model and the processor model under

validation. Test compaction is performed before test generation by eliminating the

redundant faults for the given design constraints. One of the remaining faults is selected

for test generation. A test program for this fault is produced automatically by formal

verification methods, e.g., model checking. The fault is removed from the fault list. This

16
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loop repeats until tests are generated for all the faults in the fault list. Functional test

compaction is performed after this flow of test generation. It is important to note that

two steps of compaction techniques are applied before and after test generation. This

dissertation makes three major contributions: i) development of efficient fault models

and a coverage metric for pipeline interaction functionalities, ii) novel test generation

techniques using formal methods for modern complex processor designs, and iii) functional

test compaction.

17



We define a pipeline interaction fault model using both graph and FSM-based

modeling of pipelined processors. The fault model is used to define a functional coverage.

The functional coverage is used to measure the validation progress by reporting the faults

that are covered by a given set of test programs.

This dissertation presents a unified methodology for automated test generation

using model checking and satisfiability (SAT) solving. To alleviate the state explosion

problem in the existing model checking-based test generation, we have developed efficient

test generation techniques that use design level as well as property level decompositions

to reduce test generation time and memory requirement. This dissertation presents

procedures for decomposing desired properties and processor model with an algorithm for

constructing test programs from partial counterexamples. Compared to traditional model

checking, SAT-based bounded model checking (BMC) is more efficient in generating

counterexamples if there exists a counterexample within search bound. However,

appropriate decision of the search space of tests is another challenging problem. This

dissertation also provides a procedure for determining the bound in the presence of design

and property decompositions. The dissertation shows the applicability of design and

property decompositions in the context of traditional model checking and SAT-based

BMC.

Development of a test compaction technique in the dissertation reduces the number of

directed tests without loss of functional coverage in an effort to further reduce the overall

validation effort. Even though the proposed test generation techniques require a much

smaller test set than random tests, the volume of a directed test set still remains huge.

Redundant properties are eliminated before test generation and test matrix reduction

techniques are applied after test generation. The efficient test generation and compaction

techniques in this dissertation will reduce the overall validation effort by several order of

magnitude.
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CHAPTER 2
PROCESSOR FAULT MODELING AND FUNCTIONAL COVERAGE

Coverage metrics are necessary to evaluate the progress of functional validation.

Several coverage metrics are commonly used during functional validation such as code

coverage, and state/transition coverage of abstract finite state machines (FSM). However,

these coverage metrics do not have a direct relationship with the design functionality. For

example, none of the existing coverage metrics determines if all possible interactions of

stalls are tested in a pipelined processor. Therefore, we need a coverage metric based on

the functionality of pipelined processors. In this chapter, a pipeline interaction fault model

is defined using graph-based modeling of pipelined processors. The fault model is used for

generating directed tests and defining the functional coverage to measure the validation

progress by reporting the faults that are covered by a given set of test programs.

2.1 Existing Fault Models and Coverage Metrics

The process of modeling design errors in the design hierarchy is called fault modeling

which is necessary to generate tests and analyze the result of the tests [1, 107]. A fault

model should be able to represent high percentage of actual errors. Moreover, it should be

as simple as possible to reduce complexity of test generation and coverage analysis. The

fault model can be used to define coverage metrics. For example, stuck-at fault model and

corresponding stuck-at fault coverage are used for manufacturing tests. This summarizes

existing work on functional fault models and coverage metrics.

2.1.1 Fault Models

Functional fault is a representation of an error at the abstracted functional level.

Since modeling of faults depends on modeling of design, fault models have been developed

at different levels of design abstraction, e.g., functional, structural (gate level), and

switch level [23, 62]. Functional fault models are defined at a high abstraction level

and functional faults correspond to incorrect execution of the functionalities against a

given specification. For example, in validation of microprocessor designs, an instruction
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fault causes an intended instruction to be incorrectly executed by executing a wrong

instruction or producing a wrong result [106]. Structural fault models are defined at the

gate level where the design is described as a netlist of gates. Structural faults refer to

incorrect interconnections in the netlist. The most well-known is the stuck-at-fault model

in which faults are modeled by assigning a fixed logic state 0 or 1 to a circuit line. Switch

level fault models are defined at the transistor level and faults are mainly modeled in

analog circuit testing. For example, in stuck-open fault model, if a transistor is always

non-conducting, it is considered to be stuck-open [111]. In addition, there are fault models

that may not fall under any level of the design abstractions. The quiescent current (IDDQ)

fault model, for example, does not fit in any of the design hierarchies but it can represent

some physical defects which are not presented by any other model [26].

The fault model at the lowest level of abstraction provides the benefit of describing

more accurate defects but the number of faults can be too huge to deal with them in

practice. Therefore, it is necessary to develop fault models at higher level of abstraction

in order to reduce the number of faults and corresponding tests as well as to detect errors

at early design stages. However, due to the less accurate modeling, many faults at lower

levels may remain undetected by the test set generated at higher levels. Therefore, there

are two conflicting goals in fault modeling: high accuracy and low complexity.

2.1.2 Coverage Metrics

A suite of comprehensive coverage metrics is vital for the success of simulation-based

validation because the coverage suite is essential for evaluating validation progress and

guiding test generation by identifying unexplored areas of the design. Although increasing

the coverage complexity generally provides more confidence in the correctness of the

designs, it requires more validation efforts. Therefore, the ideal suite of coverage metrics

should achieve comprehensive validation without redundancy among the coverage metrics.

Tasiran and Keutzer [104] have presented an extensive survey on coverage metrics in

simulation-based verification. Piziali [92] described a comprehensive study on functional
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verification coverage measurement and analysis. This section outlines the existing coverage

metrics popularly used in functional validation of processor designs such as code coverage,

FSM coverage, and functional coverage.

Table 2-1. Code coverage metrics

Coverage Report
Line Which lines have been executed
Statement/block Which statements have been executed
Path/branch Which control flows have been taken for if, for, etc
Event/trigger Which event in the sensitivity list of a process has been triggered
Toggle Which signals have transitioned from 0 to 1 and vice versa
Expression/condition Which permutation of branch conditions have been executed

Code-based coverage metrics define the extent to which the design has been exercised

usually at behavioral or RTL abstraction level, and examine syntactic structures in the

design description during execution. Table 2-1 shows various types of code coverage

metrics. The code coverage analysis consists of determining a quantitative measure of code

coverage as well as reporting the areas of a design description not exercised by a set of

tests. This analysis is used to create additional test cases to improve the coverage.

Verification engineers choose coverage metrics based on the design stages and the

cost of performing the coverage measurement. Code coverage metrics are often employed

as the first step because they can be applied at relatively low cost in a systematic way.

For example, in early design stages, the simple line coverage can provide a good overall

assessment of the completeness of the validation. Code coverage does not indicate the

correctness of the design description since it considers only possible errors in the structure

and the logic of the code itself. In other words, code coverage is not a sufficient indicator

of test quality or verification completeness because many functional errors can escape even

with 100% code coverage. Furthermore, it does not conform to any specific fault model

[105]. However, code coverage can provide minimum coverage requirement and its results

can be used to identify corner cases.
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Table 2-2. FSM coverage metrics

Coverage Report
State Which states of an FSM have been visited
Transition Which transitions between neighboring states have been traversed
Path Which routes through sequential states have been exercised

FSMs are widely used for representing the behavior of sequential systems, and

coverage models are defined to be applied to the state machines. Traditional FSM

coverage metrics [27] can be categorized into state coverage, state transition coverage, and

path coverage as described in Table 2-2. Although complete state or transition coverage

does not imply that a design is verified exhaustively, they are very useful metrics because

of their close correspondence to the behavior of the design. Transition coverage-based

test program generation was applied to a PowerPC superscalar processor by Ur and

Yadin [108]. FSM coverage-driven test generation have shown that it can detect many

hard-to-find bugs in the design [13]. Since each path of the path coverage represents each

possible combination of state transitions in the FSM, the FSM path coverage provides a

complete representation of the design functionality. However, an intractable number of

paths make it impractical to measure their coverage.

In contrast to the code coverage and the FSM coverage, the functional coverage is

based on the functionality of the design, thereby it is specified by the desired behavior

of the design. It determines that most of the important aspects1 of the functionalities

have been tested. A functional coverage can be defined as a list of functional events

or functional faults. Since functional coverage is typically specific to the design and is

much harder to measure automatically, functional coverage analysis is mostly performed

manually [46].

1 Like the FSM path coverage, due to an intractable number of functional events, it
is challenging to develop a comprehensive functional coverage that checks weather all
possible cases of the functionality have been tested.
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Azatchi et al. [11] have presented analysis techniques for a cross-product functional

coverage [51] by providing manual analysis techniques as well as fully automated coverage

analysis. To extract useful information out of the coverage data, they described coverage

queries that combine manual and automatic analysis and find holes that contain specific

coverage events. In the cross-product coverage, the list of coverage events consists of

all possible Cartesian products of the values for a given set of attributes. Based on the

cross-product coverage, Ziv [116] has proposed functional coverage measurement with

temporal properties-based assertions. Hole analysis for discovering large uncovered spaces

for cross-product functional coverage model was presented by Lachish et al. [74]. The

problem with the cross-product coverage is that the number of cross-product events is too

large to enable fast analysis. In addition, it is necessary to distinguish legal events since

not all attributes are independent thereby many of the cross-product events can never be

executed.

Piziali [92] described other types of functional coverage models as collections of

discrete events, trees, and hybrid models that combine trees and cross-product. Fournier

et al. [46] have proposed the validation suite for the PowerPC architecture based on a

set of combinational coverage models. Mishra and Dutt [85] have proposed a node/edge

coverage of the graph model of pipelined processors to generate tests. Recently, Harris

[53] has proposed a behavioral coverage metric which evaluates the validation of the

interactions between processes.

2.2 Graph-based Modeling of Pipelined Processors

The structure of a pipelined processor can be modeled as a graph G = (V, E). Nodes

V denotes two types of components in the processor: units (e.g., Fetch, Decode, etc) and

storages (e.g., register file or memory). Edges E consists of two types of edges: pipeline

edges and data transfer edges. A pipeline edge transfers an instruction (operation) from

a parent unit to a child unit. A data-transfer edge transfers data between units and

storages. This graph model is similar to the pipeline level block diagram available in a
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Figure 2-1. Graph model of the MIPS processor

typical architecture manual. This section presents graph models for a MIPS processor and

a PowerPC e500 processor.

2.2.1 Modeling of MIPS processor

For illustration, we use a simplified version of the multi-issue MIPS processor [54].

Figure 2-1 shows the graph model of the processor that can issue up to four operations

(an integer ALU operation, a floating-point addition operation, a multiply operation,

and a divide operation). In the figure, rectangular boxes denote units, dashed rectangles

are storages, bold edges are instruction-transfer (pipeline) edges, and dashed edges are

data-transfer edges. A path from a root node (e.g., Fetch) to a leaf node (e.g, WriteBack)

consisting of units and pipeline edges is called a pipeline path. For example, one of the

pipeline path is {Fetch, Decode, IALU, MEM, WriteBack}. A path from a unit to main

memory or register file consisting of storages and data-transfer edges is called a data-

transfer path. For example, {MEM, DataMemory, MainMemory} is a data-transfer path.
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Figure 2-2. Instruction flow of the PowerPC e500 processor

2.2.2 Modeling of PowerPC e500 processor

Figure 2-2 shows a functional graph model of the four-wide superscalar commercial

e500 processor based on the Power ArchitectureTM Technology2 [58] with seven pipeline

stages. We have developed a processor model based on the micro-architectural structure,

the instruction behavior, and the rules in each pipeline stage that determine when

instructions can move to the next stage. The micro-architectural features in the processor

model include pipelined and clock-accurate behaviors such as multiple issue for instruction

parallelism, out-of-order execution and in-order-completion for dynamic scheduling,

register renaming for removing false data dependency, reservation stations for avoiding

stalls at Fetch and Decode pipeline stages, and data forwarding for early resolution of

read-after-write (RAW) data dependency.

2 The Power Architecture and Power.org wordmarks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by Power.org
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2.3 Pipeline Interaction Fault Model and Functional Coverage

Today’s test generation techniques and formal methods are very efficient to find

logical bugs in a single module. Hard-to-find bugs arise often from the inter-module

interactions among many pipeline stages and buffers of modern processor designs. In

this section, we primarily focus on such hard-to-verify interactions among modules in a

pipelined processor. If we consider the graph model of the pipelined processor described in

the previous section, the pipeline interactions imply the activities between the nodes in the

graph model.

We first define the possible pipeline interactions based on the number of nodes in the

graph model and the average number of activities in each node. For example, an IALU

node can have four activities: operation execution, stall, exception, and no operation

(NOP). In general, the number of activities for a node will be different based on what

activity we would like to test. For example, execution of ADD and SUB operations can be

treated as the same activity because they go through the same pipeline path. Separation

of them into different activities will refine the functional tests but increase the test

generation complexity. Furthermore, the number of activities varies for different nodes.

Considering a graph model with n nodes where each node can have on average r activities,

a total of r(1 − rn)/(1 − r) properties are required to verify all interactions. The basic

idea of the proof is that if we consider no interactions, there are (n × r) test programs

necessary. In the presence of one interaction we need (nC2 × r2) test programs for possible

combination of two nodes. nCi denotes the ways of choosing i nodes from n nodes. Based

on this model, the total number of interactions will be:

n∑
i=1

nCi × ri (2–1)

Although the total number of interactions can be extremely large, in reality the

number of simultaneous interactions can be small and many other realistic assumptions
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can reduce the number of properties to a manageable one. For example, we can consider

four functional activities in each node: operation execution, stall, exception, or NOP

(no-operation). A unit in “operation execution” carries out its functional operations

such as fetching an instruction, decoding opcode/operand, performing arithmetic/logic

computation, etc. The “Stall” in a unit can be caused by various reasons such as data

dependency, structural hazard, child node stall, etc. Exception in a node is an exceptional

state such as divide-by-zero or overflow. A pipeline interaction can be described as a

combination of nodes and their activities. We define two types of faults: node interaction

fault, and transition interaction fault.

• Node interaction fault model: An interaction is faulty if execution of multiple
activities at a given clock cycle does not correctly perform its interacted computation.

• Transition interaction fault model: A transition is faulty if a pipeline interaction at
a given clock cycle does not correctly go through the pipeline interaction of the next
clock cycle.

The node interaction describes a snapshot behavior of a pipelined processor at a given

time, whereas the transition interaction captures the temporal behavior of the processor.

Comparing to FSM coverage, the node interaction faults and transition interaction faults

correspond to FSM state faults and FSM state transition faults. In the presence of a fault,

unexpected values will be written to the primary output such as data memory or register

file, or the test program will finish at incorrect clock cycle during simulation.

Using these pipeline interaction fault models, we define a functional coverage metric

with the consideration of the following cases:

• A node interaction fault is covered if the specified nodes are in their correct states at
the same clock cycle.

• A transition interaction fault is covered if two node interactions are exercised
consecutively during clock transition.

The functional coverage (FC) is defined as follows:

FC =
the number of faults detected by the test programs

total number of detectable faults in the fault model
(2–2)
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2.4 Chapter Summary

A coverage metric based on the functionality of pipelined processors is necessary for

the functional coverage-driven validation. This dissertation defines pipeline interaction

fault models. They are used to define a functional coverage as well as to facilitate

automated analysis of the functional coverage. It is important to note that the proposed

fault models are correspondent to FSM states and transitions respectively. In the following

chapters, the interaction faults are described as negated properties to produce directed test

programs.
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CHAPTER 3
TEST GENERATION USING DESIGN AND PROPERTY DECOMPOSITIONS

A significant bottleneck in processor validation is the lack of automated tools and

techniques for directed test generation. Model checking-based test generation has been

introduced as a promising approach for pipelined processor validation due to its capability

of automatic test generation. However, traditional approaches are unsuitable for large

designs due to the state explosion problem in model checking. We propose an efficient

test generation technique using both design and property decompositions to enable model

checking-based test generation for complex designs.

Processor modelProcessor model

Test 
generation

Test cases

PropertiesProperties

Property
decomposition

Model
decomposition

Architectural
specification

Figure 3-1. Test generation methodology using design and property decompositions

Figure 3-1 shows our functional test program generation methodology. The processor

model can be generated from the architecture specification or can be developed by the

designers. The properties can be generated from the specification based on a functional

coverage such as graph coverage or pipeline interaction coverage. Additional properties can

be added based on interesting scenarios using combined pipeline stage rules and corner

cases. For efficient test generation, we decompose the properties as well as the processor

model. Model checker and SAT solver are used to generate partial counterexamples for
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the partitioned modules and decomposed properties. These partial counterexamples are

integrated to construct the final test program.

The proposed methodology makes three important contributions: i) it develops a

procedure for decomposing a temporal logic property into multiple smaller properties,

ii) it presents an algorithm for merging the counterexamples generated by decomposed

properties, and iii) it develops an integrated framework to support both design and

property decompositions for efficient test generation of pipelined processors.

3.1 Model Checking

Model checking is a formal method for verifying finite-state concurrent systems by

proving mathematically that a system model satisfies a given specification [35]. The model

is often derived from a hardware or software design and the specification is typically

described as temporal logic properties. Model checking also provides an automated way of

verification compared to other verification methods such as theorem proving. Due to the

ability of finding even subtle design errors, model checking technique has been successfully

applied to many real system designs and it has become an integral part of industrial

design cycle. The verification procedure of model checking consists of formal modeling

of a design, creating formal properties, and proving or disproving by exploring the entire

computation space of the model exhaustively.

A design is modeled as a state transition graph, called a Kripke structure [71], which

is a four-tuple model M = (S, S0, R, L). S is a finite set of states. S0 is a set of initial

states, where S0 ⊆ S. R : S → S is a transition relation between states, where for every

state s ∈ S, there is a state s′ ∈ S such that the state transition (s, s′) ∈ R. L : S → 2AP

is the labeling function to mark each state with a set of atomic propositions (AP ) that

hold in that state. A path in the structure, π ∈ M from a state s, is a computation of the

implementation which is an infinite sequence of states and transitions, π = s0s1s2 such

that s0 = s and R(si, si+1) holds for all i ≥ 0. Temporal behavior of the implementation

is the computation represented by a set of paths in the structure. Properties are expressed
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as propositional temporal logic that describes sequences of transitions on the computation

paths of expected design behavior. A property is composed of three things as follows:

• Atomic propositions: variables in the design.

• Boolean connectives: AND, OR, NOT, IMPLY, etc.

• Temporal operators, assuming p is a state or path formula:

1. Fp (Eventually): True if there exists a state on the path where p is true.

2. Gp (Always): True if p is true at all states on the path.

3. Xp (Next): True if p is true at the state immediately after the current state.

4. p1Up2 (Until): True if p2 is true in a state and p1 is true in all preceding states.

For example, the property G(req → F (ack)) describes that if req is asserted then the

design must eventually reach a state where ack is asserted.

Given a formal model M = (S, S0, R, L) of a design and a propositional temporal

logic property p, the model checking problem is to find a set of all states in S that satisfy

p, {s ∈ S|M, s| = p}. If all initial states are in the set, the design satisfies the property. If

the property does not hold for the design, a trace from the error state to an initial state

is given as a counterexample that helps designers debug the error. To achieve complete

confidence of correctness of the design, the specification1 should include all the properties

that the design should satisfy.

Due to the high complexity of realistic designs, the number of states of the design can

be very large and the explicit traversal of the state space becomes infeasible, known as

the state explosion problem. To alleviate this problem, symbolic model checking [22, 80]

represents the finite state machine of the design in the form of binary decision diagrams

1 The hardware design process is divided into several steps based on refinement level
of abstractions. The next lower level of the specification on a certain abstraction level is
called implementation. If we partition the hardware design process into architecture-level,
RTL (register transfer level), gate level, transistor level, and layout level, then RTL design
is implementation of architecture design whereas RTL design is specification of the gate
level design.
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(BDDs) [19], a canonical form for boolean expression. More than 1020 states can be

handled by BDD-based model checkers. More recently, SAT solvers have been applied

to bounded model checking [15, 16]. The basic idea behind SAT-based bounded model

checking is to consider counterexamples of a particular length and produce a propositional

formula that is satisfiable if such a counterexample exists. This technique can not only

generate counterexamples much faster of minimal length but also handle larger number of

states of the design compared to traditional symbolic model checking.

Despite the success of symbolic model checking, the state explosion problem is still

challenging in applying to large designs of industrial strength. To reduce the number

of states of the design model, a lot of techniques have been proposed such as symmetry

reductions [31, 42, 82, 101], partial order reductions [5, 6, 12, 49, 91], and abstraction

techniques [9, 10, 32, 36, 39, 61, 76]. Among these techniques, combining model checking

with abstraction has been successfully applied to verify a pipeline ALU circuit with

more than 101300 reachable states [33]. The proposed test generation approaches in this

dissertation fit in the abstraction techniques in that the components of the original design

model that are irrelevant to a given property are removed through the decomposition of

design and property under consideration.

3.2 Test Generation using Model Checking

Test generation using model checking is one of the most promising directed test

generation approaches due to its capability of automatically producing a counterexample.

SpecificationSpecification

Model checker

Counterexample

(Test)

PropertiesProperties

Figure 3-2. Test generation using model checking
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Figure 3-2 shows a basic test generation framework using model checking. In this scenario,

a processor model is described in a temporal specification language and a desired behavior

is expressed in the form of temporal logic property. A model checker exhaustively searches

all reachable states of the model to check if the property holds (verification) or not

(falsification), which is called unbounded model checking. If the model checker finds any

reachable state that does not satisfy the property, it produces a counterexample. This

falsification can be quite effectively exploited for test generation. Instead of a desired

property, its negated version is applied to the model checker to produce a counterexample.

The counterexample contains a sequence of instructions from an initial state to a state

where the negated version of the property fails.

Processor modelProcessor model

Model
checker

Counterexample

(Test)

PropertiesProperties

Processor architecture
(ADL specification)

Figure 3-3. Specification-driven test generation using model checking

Specification-driven test generation using model checking has shown promising

results [86]. It can generate test programs at early design stage without any low-level

implementation knowledge. Figure 3-3 shows a specification-driven test program

generation scenario. A designer starts by specifying the processor architecture in an

Architecture Description Language (ADL) that is used to capture both the structure and

the behavior of the processor. A processor model is generated from the ADL specification.

Various properties (desired behaviors) are generated from the high level microarchitectural
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processor specification. A model checker accepts the properties and the model of the

processor to produce test programs that are used for validation of the processor design.

However, the time and memory required for test generation are prohibitively large.

Furthermore, this method cannot be used for test generation of complex pipelined

processors due to the state explosion problem. This dissertation presents an efficient

test generation technique to reduce both test generation time and memory requirement

for complex processors. The proposed test generation approach reduces the search space

of counterexamples by decomposing design specification and properties [67, 69] and

restricting the length of counterexamples [68, 87].

3.3 Related Work

Traditionally, validation of microprocessors has been performed by applying a

combination of random and directed test programs using simulation-based techniques.

There are many successful test generation frameworks in industry today. Genesys-Pro

[2], used for functional verification of IBM processors, combines architecture and testing

knowledge for efficient test generation. In Piparazzi [2], a model of micro-architectural

processor and the user’s specification are converted into a Constraint Satisfaction

Problem (CSP) and the dedicated CSP solver is used to construct an actual test program.

Many techniques have been proposed for directed test program generation based on

an instruction tree traversal [4], micro-architectural coverage [70, 108], and functional

coverage using Bayesian Networks [44]. Recently, Gluska [48] described the need for

coverage directed test generation in coverage-oriented verification of the Intel Merom

microprocessor.

Several formal model-based test generation techniques have been developed for

validation of pipelined processors. In FSM-based test generation, FSM coverage is

used to generate test programs based on reachable states and state transitions [24,

56, 59, 65]. Since complicated micro-architectural mechanisms in modern processor

designs include interactions among many pipeline stages and buffers, the FSM-based
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approaches suffer from the state space explosion problem. To alleviate the state explosion,

Utamaphethai et al. [109] have presented an FSM model partitioning technique based

on micro-architectural pipeline storage buffers. Similarly, Shen and Abraham [99] have

proposed an RTL abstraction technique that creates an abstract FSM model while

preserving clock accurate behaviors. Wagner et al. [112] have presented a Markov model

driven random test generator with activity monitors that provides assistance in locating

hard-to-find corner case design bugs and performance problems.

Model checking [35] has been successfully used in processor verification for proving

properties. Ho et al. [55] extract controlled token nets from a logic design to perform

efficient model checking. Jacobi [60] used a methodology to verify out-of-order pipelines

by combining model checking for the verification of the pipeline control, and theorem

proving for the verification of the pipeline functionality. Compositional model checking is

used to verify a processor microarchitecture containing most of the features of a modern

microprocessor [63]. Parthasarathy et al. [90] have presented a safety property verification

framework using sequential SAT and bounded model checking. Model checking based

techniques are also used in the context of falsification by generating counterexamples.

Clarke et al. [34] have presented an efficient algorithm for generation of counterexamples

and witnesses in symbolic model checking. Bjesse et al. [17] have used counterexample

guided abstraction refinement to find complex bugs. Automatic test generation techniques

using model checking have been proposed in software [47] as well as in hardware validation

[83]. However, traditional model checking based techniques does not scale well due to

the state space explosion problem. To reduce the test generation time and memory

requirement, Mishra and Dutt [84, 85] have proposed a design decomposition technique at

the module level when the original property contains variables for only a single module.

However, their technique does not handle properties that have variables from multiple

modules. Such properties are common in test generation. Our framework allows such
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input properties by decomposing the properties as well as the model of the pipelined

processor.

3.4 Test Generation using Design and Property Decompositions

Algorithm 1: Test Generation

Inputs: i) Processor model M

ii) Set of faults/interactions F based on functional coverage and corner cases

Outputs: Test programs

Begin

TestPrograms = φ

for each fault Fi in the set F

Pi = CreateProperty(Fi)

boundi = DecideBound(Pi)

Pi = Negate(Pi)

testi = DecompositonalModelChecking(Pi, M , boundi)

TestPrograms = TestPrograms ∪ testi

endfor

return TestPrograms

End

Algorithm 1 outlines our test program generation procedure. This algorithm takes

the processor model M and desired pipeline interactions F as inputs and generates a set

of test programs that can activate the required interactions. Each interaction is converted

to a temporal logic property. The search bound of a counterexample is determined for

each property as described in Chapter 4. The processor model, the negated version of

the property, and the required bound are applied to our decompositional model checking

framework to generate a test program for the property.

The algorithm iterates over all the interaction faults based on the functional coverage

and corner cases. The processor model as well as the properties can be generated from the
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Table 3-1. Design and property decomposition scenarios

Design Property Comments
0 0 Traditional model checking
0 1 Merging of counterexamples is not always possible
1 0 Similar to traditional model checking
1 1 Our approach, both property and design decompositions

0: Original; 1: Decomposed/partitioned.

specification. Section 2.2 describes a graph-based modeling of pipelined processors. The

property generation based on pipeline interaction coverage is described in Section 3.4.1.

The design and property decomposition techniques are described in Section 3.4.2 and

Section 3.4.3 respectively. Section 4.3.1 presents a technique to determine a bound for

finding counterexamples for a given property. The proposed approach in this chapter

uses unbounded model checking to generate partial counterexamples for the partitioned

modules and properties.

Integration of these partial counterexamples is a major challenge due to the fact that

the relationships among decomposed modules and sub-properties may not be preserved

at the top level. We propose a time step-based integration of partial counterexamples

to construct the final test program. Section 3.4.4 presents the proposed test generation

technique based on decompositional model checking. Section 3.4.5 presents our conflict

resolution technique during merging of partial counterexamples.

It is important to note that the property and design decompositions are not

independent. Table 3-1 shows four possible scenarios of design and property decompositions.

The first scenario indicates traditional model checking where original property is applied

to the whole design. The second case implies that the decomposed properties are

applied to the whole design. In certain applications this may improve overall model

checking efficiency. However, in general this procedure is not applicable since merging of

counterexamples may not generate the expected result. For example, two sub-properties

may generate counterexamples to stall the respective units in a pipelined processor but the

combined test program may not simultaneously stall both the units. The third scenario
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is meaningless since design decomposition is not useful if the original property is not

applicable to the partitioned design components. The last scenario depicts our approach

where both design and properties are partitioned.

3.4.1 Generation and Negation of Properties

The pipeline interaction properties described in Section 2.3 are expressed in linear

temporal logic (LTL) [35] where each property consists of temporal operators (G, F,

X, U) and Boolean connectives (∧, ∨, ¬, and →). We generate a property for each

pipeline interaction from the specification. Since pipeline interactions at a given cycle are

semantically explicit and our processor model is organized as structure-oriented modules,

pipeline interactions can be converted in the form of a property such as F(p1 ∧ p2 ∧
. . .∧ pn) that combines activities pi over n modules using logical AND operator. The

atomic proposition pi is a functional activity at a node i such as operation execution,

stall, exception or NOP. The property is true when all the pi’s (i = 1 to n) hold at some

time step. Since we are interested in counterexample generation, we need to generate the

negation of the property first. The negation of the properties can be expressed as:

¬X(p) = X(¬p),¬G(p) = F (¬p)

¬F (p) = G(¬p),¬pUq = pR¬q (3–1)

For example, the negation of F(p1 ∧ p2 ∧ . . .∧ pn), interaction fault, can be described

as G(¬p1 ∨ ¬p2 ∨ . . .∨ ¬pn) whose counterexamples will satisfy the original property. In

the following section, we describe how to decompose these properties (already negated) for

efficient test generation using model checking.

3.4.2 Property Decomposition

Various combinations of temporal operators and Boolean connectives are possible

to express desired properties in temporal logic. If the properties are decomposable, the

partial counterexamples generated from the decomposed properties can be used for

generating a counterexample of the original property. However, not all properties are
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decomposable, and in certain situations decompositions are not beneficial compared to

traditional model checking-based test generation. This section describes how to decompose

these properties (already negated) in respect to generation of a counterexample. We

assume that a set of counterexamples always exist for the original property since the

original property is the negated version of the desired property and the design is assumed

to be correct.

3.4.2.1 Decomposable properties

The following types of properties allow simple decompositions. Lemmas 1 - 3 prove

that the decomposed properties can be used for test generation.

G(p ∧ q) = G(p) ∧G(q)

F (p ∨ q) = F (p) ∨ F (q)

X(p ∨ q) = X(p) ∨X(q) (3–2)

X(p ∧ q) = X(p) ∧X(q)

Lemma 1: Counterexamples of the decomposed properties G(p) and G(q) can be

used to generate a counterexample of G(p ∧ q).

Proof. Let CG(p) denote the set of counterexamples for G(p) that should satisfy F (¬p),

CG(q) denote the set of counterexamples for G(q) that satisfies F (¬q), and CG(p∧q) denote

the set of counterexamples for G(p ∧ q) that satisfies F (¬p ∨ ¬q). Since F (¬p ∨ ¬q) =

F (¬p) ∨ F (¬q), so the sets CG(p) and CG(q) are subsets of CG(p∧q), that is, CG(p) ∪ CG(q) is

equivalent to CG(p∧q). Therefore, any counterexample of the decomposed properties G(p)

or G(q) can be used as a counterexample of G(p ∧ q).

Lemma 2: Counterexamples of the decomposed properties F (p) and F (q) can be

used to generate a counterexample of F (p ∨ q).
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Proof. Since G(¬p ∧ ¬q) = G(¬p) ∧ G(¬q), so the set CF (p∨q) is equal to the intersection

of CF (p) and CF (q), that is, CF (p) ∩ CF (q) is equivalent to CF (p∨q). Therefore, a common

counterexample between F (p) and F (q) can be used as a counterexample of F (p ∨ q).

Lemma 3: Counterexamples of the decomposed properties X(p) and X(q) can be

used to generate a counterexample of X(p ∧ q) and X(p ∨ q).

Proof. Since X(¬p ∨ ¬q) = X(¬p) ∨ X(¬q), so the sets CX(p) and CX(q) are subsets of

CX(p∧q), that is, CX(p) ∪ CX(q) is equivalent to CX(p∧q). Therefore, any counterexample of

the decomposed properties X(p) or X(q) can be used as a counterexample of X(p ∧ q).

In addition, since X(¬p ∧ ¬q) = X(¬p) ∧ X(¬q), so the set CX(p∨q) is equal to the

intersection of CX(p) and CX(q), CX(p) ∩ CX(q) is equivalent to CX(p∨q). Therefore, a

common counterexample between X(p) and X(q) can be used as a counterexample of

X(p ∨ q).

3.4.2.2 Non-decomposable properties

It is important to note that the property decomposition is not possible in various

scenarios when the combination of decomposed properties is not logically equivalent to the

original property. For example, F (p∧q) 6= F (p)∧F (q), and G(p∨q) 6= G(p)∧G(q). However,

with respect to test generation, the counterexamples of the decomposed properties can be

used to generate a counterexample of the original property as described below.

The property F (p ∧ q) is true when both p and q hold at the same time step.

But F (p) ∧ F (q) is true even when p and q hold at different time steps. Therefore,

F (p ∧ q) 6= F (p) ∧ F (q). However, we can use F (p) and F (q) for test generation to activate

the property F (p ∧ q) based on Lemma 4.

Lemma 4: Counterexamples of the decomposed properties F (p) and F (q) can be

used to generate the counterexample of F (p ∧ q).
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Proof. Since the relation between F (p ∧ q) and F (p) ∧ F (q) is F (p ∧ q) → F (p) ∧ F (q),

so CF (p∧q) ⊃ (CF (p) ∪ CF (q)). Therefore, any counterexample of the decomposed properties

F (p) or F (q) is a counterexample of F (p ∧ q).

The property G(p ∨ q) is true when either p or q holds at every time step. But

G(p) ∨ G(q) is true either when p holds at every time step, or when q holds at every

time step. Therefore, G(p ∨ q) 6= G(p) ∨ G(q). In this case, the counterexamples

of the decomposed properties G(p) and G(q) cannot directly be used to generate a

counterexample of G(p) ∨ G(q) since G(p) ∨ G(q) → G(p ∨ q), that is, (CG(p) ∩ CG(q)) ⊃
CG(p∨q). In other words, not all common counterexamples of G(p) and G(q) can be

used as a counterexample of G(p ∨ q). Furthermore, it is hard to know whether the

common counterexamples of G(p) and G(q) belong to CG(p∨q). To address this problem,

this dissertation proposes a scheme of introducing the notion of clock that allows the

decomposed properties to produce a counterexample of G(p ∨ q) as described in Lemma 5.

Lemma 5: Counterexamples of G(p) and G(q) can be used to generate a counterexample

of G(p ∨ q) by introducing a specific time step.

Proof. The relation between G(p ∨ q) and G(p) ∨ G(q) with time step is G((clk 6=
ts) ∨ (p ∨ q)) = G((clk 6= ts) ∨ p) ∨ G((clk 6= ts) ∨ q) because both sides are evaluated

true when (clk 6= ts), or when (clk = ts) and p = true or q = true. Therefore,

CG((clk 6=ts)∨(p∨q)) ≡ (CG((clk 6=ts)∨p) ∩ CG((clk 6=ts)∨q)).

For example, Figure 3-4 describes a Kripke structure [35] with four states s0, s1, s2,

and s3, where s0 is the only initial state. The structure has three transitions: (s0, s1),

(s0, s2), (s0, s3), and self-loop in each state. There are two local variables p for module1

and q for module2 : p holds on states {s0, s1} and q holds on states {s0, s2}. Assuming

the original property is F (p = 0∧q = 0), a specific time step is introduced F (clk = ts∧p =
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Figure 3-4. An example of Kripke structure model

0 ∧ q = 0)2 . Its negation will be G(clk 6= ts ∨ p = 1 ∨ q = 1). Let us assume that ts = 2. A

set of counterexamples of G(clk 6= 2 ∨ p = 1 ∨ q = 1) for the entire model:

CM = {(s0, s0, s3), (s0, s3, s3)}

A set of counterexamples of G(clk 6= 2 ∨ p = 1) for module1 is shown below:

Cm1 = {(s0, s0, s2), (s0, s0, s3), (s0, s2, s2), (s0, s3, s3)}

A set of counterexamples of G(clk 6= 2 ∨ q = 1) for module2 is shown below:

Cm2 = {(s0, s0, s1), (s0, s0, s3), (s0, s1, s1), (s0, s3, s3)}

We can see that Cm1 ∩ Cm2 = {(s0, s0, s3), (s0, s3, s3)} is the same as CM . Therefore, the

decomposed properties can be used by introducing the specific time step.

Based on Lemma 5, the interaction fault G(¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pn) is converted

into G((clk 6= ts) ∨ ¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pn)). The decomposed properties G((clk 6=
ts) ∨ ¬p1), G((clk 6= ts) ∨ ¬p2), . . . , G((clk 6= ts) ∨ ¬pn) are repeatedly applied to

the model checker until a common counterexample is found among them as described in

Section 3.4.4. The counterexample is one of the interactions that satisfies the property

F ((clk = ts) ∧ p1 ∧ p2 ∧ . . . ∧ pn)). In this decomposition scenario, the time step (ts)

2 The clk variable is used to count time steps, and ts is a specific time step during
model checking.
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should be decided to guarantee that a counterexample exist within the given bound (ts).

As described in the analysis of bounded model checking techniques [8], deciding bound

is a challenging problem since the depth of counterexamples is unknown in most cases.

Section 4.3.1 describes a way of deciding the bound (ts) that enables test generation using

SAT-based bounded model checking.

For certain properties such as pUq, F (p → F (q)), F (p → G(q)), G(p → G(q)), or

G(p → F (q)), decompositions are not beneficial compared to traditional model checking

because it is very difficult to decide a specific time step between their decomposed

properties. Although many property decompositions are not possible, it is important

to note that the scenarios described in this section are sufficient to generate the test

programs in the context of pipeline interactions. In addition to these interaction

properties, many micro-architectural properties have been created that are based on

real experiences of industrial designers for test generation of an e500 processor.

An important consideration during property decomposition is how to specify/handle

the different types of variables in the property. In general, the properties are described

as pairs of module names and variable names. An interaction fault property pi can be

either a local variable in a single module or a global variable over multiple modules. If pi

is a local variable, it is converted into (mi.pi) where mi is the corresponding module. If pi

is a global variable, pi is decomposed into sub-properties of corresponding modules. For

example, for the property G(¬p1 ∨ ¬p2), if p1 is an interface variable between m1 and m2,

then the property is converted as G(¬m1.p1 ∨ (¬m2.p1 ∨¬m2.p2)). Decomposition of global

variables is based on the decomposed modules of a processor model and their interfaces.

3.4.3 Design Decomposition

Decomposition of a design plays a central role in the generation of efficient test

programs. Ideally, the design should be decomposed into components such that there is

very little interaction among the partitioned components. For a pipelined processor the

natural partition is along the pipeline boundaries as described in Section 2.2. In other
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words, the partitioned pipelined processor can be viewed as a graph where nodes consist of

units (e.g., fetch, decode etc.) or storages (e.g., memory or register file), and edges consist

of connectivity among them. Typically, instruction is transferred between units, and data

is transferred between units and storages. This graph model is similar to the pipeline level

block diagram available in a typical architecture manual.

It is important to note that the design decomposition is dependent on the property

decomposition. The pipelined processor can be simply partitioned into functional modules.

However, we need to change the partitioning policy based on the properties. Because some

properties are hard to be decomposed at the module level when they are spread across

multiple modules or in the complicated forms such as pUq, F (p → G(q)), G(p → F (q)),

and so on. For example, a property may not be decomposable based on a module level

partitioning but it may be decomposable based on a pipeline path level partitioning.

We consider three partitioning techniques: module-level, path-level and stage-level

partitioning. Module (or node) level partitioning gives the lowest level of granularity in

the graph model in Figure 2-1. The integer-ALU pipeline path {Fetch, Decode, IALU,

MEM, WriteBack} is treated as one of the path level partitions. Similarly, the multiplier

path, the floating-point adder path, and the divider path are the other examples of

path level partitioning for the MIPS processor in Figure 2-1. Stage-level partitioning is

determined by the distance from the root node (e.g., Fetch). In general, various forms of

design and property partitioning are possible and different graph clustering algorithms

can be used to find different design partitions for a given property decomposition.

Section 3.4.4 describes two design partitioning techniques using illustrative examples.

3.4.4 Test Generation using Decompositional Model Checking

Algorithm 2 presents our decompositional model checking procedure (invoked

from Algorithm 1) for design and property decompositions. It applies the decomposed

properties (sub-properties) to model checking with the corresponding design partition, and

compose the generated partial counterexamples to construct the final test program.
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Algorithm 2: DecompositionalModelChecking

Inputs: i) Property Pi, ii) Design D, iii) Bound boundi

Outputs: Test program

Begin

TaskList = φ; NextList = φ; AllList = φ; PrimaryInputs = φ; clk = boundi

{P 1
i , P 2

i , ..., Pm
i } = DecomposeProperty(Pi); {M1,M2, ..., Mn} = DecomposeDesign(D)

for each design partition Mj

TaskList[j] = AllList[clk][j] = P j
i /* P j

i is applicable to Mj */

endfor

while TaskList is not empty and clk > 0

outRk = RemoveEntry(TaskList[k])

P k
i = MergeRequirements(outRk, AllList, clk)

P k
i = Negate(P k

i )

Counterexample = ModelChecking(P k
i , Mk, clk)

inpRk = input requirements for Mk from Counterexample

if inpRk are not primary inputs

for each applicable parent node Mr of Mk

outRr = Extract output requirements for Mr from inpRk

NextList[r] = NextList[r] ∪ outRr

AllList[clk][r] = AllList[clk][r] ∪ outRr

endfor

else PrimaryInputs = PrimaryInputs ∪ inpRk

endif

if TaskList is empty

clk = clk − 1; TaskList = NextList; NextList = φ

endif

endwhile

if clk = 0 and TaskList is not empty

Report(boundi is too small); testi = φ

endif

else testi = ExtractInstructions(PrimaryInputs)

return testi

End
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This algorithm accepts a property Pi (already negated in Algorithm 1), a design D,

and search bound boundi as inputs and produces the required test program. The property

is decomposed based on the techniques described in Section 3.4.2. Similarly, the design

is decomposed based on the property decomposition and the techniques described in

Section 3.4.3. This algorithm uses three lists to maintain the decomposed properties:

TaskList for the present clock cycle clk, NextList for the next cycle i.e., clk − 1,

and AllList for all properties. Each entry in the TaskList and the NextList contain

a collection of sub-properties that are applicable to corresponding design partitions.

Therefore, each list can have up to n entries where n is the number of design partitions in

the processor model. The tasks in the TaskList need to be performed in the current time

step (clk). The tasks in the NextList will be performed in the next time step (clk − 1).

AllList contains all the entries of TaskList for each time step. This information is used to

resolve the conflict among sub-properties as described in Section 3.4.5. Initially these lists

are empty.

The proposed algorithm generates one test program for each property set DPi

that consists of one or more sub-properties based on their applicability to different

modules or partitions in the design as discussed in Section 3.4.1. The algorithm adds

the sub-properties in the TaskList and AllList based on the partitions to which these

properties are applicable. The algorithm iterates over all the sub-properties in the

TaskList. It removes an entry (say k-th location) from the TaskList which is the output

requirement outRk of k-th partition. In general, this entry can be a list of sub-properties

(due to simultaneous output requirements from multiple children nodes) that need to be

applied to partition Mk. These sub-properties are composed to create the intermediate

property P k
i using MergeRequirements procedure described in Section 3.4.5. After

negation of P k
i , the property P k

i is applied to the corresponding partition Mk using the

model checker to generate a counterexample. The generated counterexample is analyzed

to find the input requirements inpk for the partition Mk. If these are primary inputs
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(inputs of the root node in the graph model), then they are stored in PrimaryInputs list.

Otherwise, for each parent node Mr to which inpk is applicable, the algorithm extracts

the output requirements for Mr. This output requirement is added to the r-th entry of

the NextList as well as to the AllList. Finally, if the tasks for the current time step

is completed (TaskList empty), NextList is copied to the TaskList and the time step

clk is reduced by one. This process continues until both the lists are empty. Using the

precise bound (boundi) for the original property Pi enables the clk to be zero and two lists

empty at the same time. If the boundi is larger than the counterexample of Pi, two lists

will empty before the clk becomes zero. These two cases imply that we have obtained the

primary input assignments for all the sub-properties. These assignments are converted

into a test program consisting of a sequence of instructions. However, if the time step clk

reaches zero even when sub-properties remain in the lists, then the boundi needs to be

assigned a larger value. This implies that all the counterexamples of Pi exist out of the

boundi.

For illustration, consider a simple property P1 to verify a multiple execution scenario

consisting of IALU (3rd module) and DIV (15th module) nodes in Figure 2-1 at clock

cycle 5. We assume the module level partitioning of the design for this example. The

property can be decomposed into two sub-properties P 3
1 (IALU not stalled in cycle 5)

and P 15
1 (DIV not stalled in cycle 5). This implies that TaskList will have two entries

before entering the while loop: TaskList[3] = P 3
1 and TaskList[15] = P 15

1 . At the

first iteration of the while loop P 3
1 will be applied to M3 (IALU) using model checker;

generated counter example will be analyzed to find the output requirement for the Decode

unit (2nd module in Figure 2-1) in clock cycle 4; and the requirement will be added

to NextList[2]. During second iteration of the while loop P 15
1 (TaskList[15]) will be

applied to M15 (DIV); generated counter example will be analyzed to find the output

requirement for the Decode unit in clock cycle 4; and the requirement will be added

to NextList[2]. At this point, the TaskList is empty and the NextList has only one
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entry with two requirements which is copied to the TaskList. At the third iteration

of the while loop, these two requirements are composed into an intermediate property

and applied to M2 (Decode) that generates requirements for Fetch node. Finally, in the

fourth iteration the corresponding property is applied to the Fetch unit that generates the

primary input assignments. These assignments are converted into a test program. The

following examples show test generation using module level as well as pipeline path level

partitioning of the processor model.

Example 1: Test Generation using Module Level Partitioning

Consider a multiple exception scenario at clock cycle 7 consisting of an overflow

exception in IALU, divide by zero exception in DIV unit, and a memory exception in the

MEM unit. The desired property P is shown as below:

P: F( (clk=7) & (MEM.exception = 1) & (IALU.exception = 1)

& (DIV.exception = 1))

The negated property, P ’, is shown below:

P’: G( (clk~=7) | (MEM.exception ~= 1) | (IALU.exception ~= 1)

| (DIV.exception ~= 1))

P ’ is decomposed into three sub-properties:

P1: G((clk~=7) | (MEM.exception ~= 1))

P2: G((clk~=7) | (IALU.exception ~= 1))

P3: G((clk~=7) | (DIV.exception ~= 1))

The sub-properties P1, P2, and P3 will be applied to MEM, IALU, and DIV modules

using SMV model checker. The model checker will come up with a counterexample in each

case as input requirements for the respective modules. For example, the counterexamples

for P1, P2, and P3 respectively are: (CP1) “Load” operation with memory address zero,

(CP2) “Add” operation with the maximum value for both source operands, and (CP3)

“Div” operation with second source operand value zero. These requirements are converted
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into properties and applied to the respective parent modules. In this case, P1’ (from CP1)

is applied to IALU, and P23’ (combine CP2 and CP3)
3 is applied to the Decode unit in

the next step. In each case, clock cycle value is reduced by one as shown below:

P1’: G((clk~=6) | (aluOp.opcode ~= LD) | (aluOp.src1Val ~= 0))

P23’: G((clk~=6) | (decOp[0].opcode ~= ADD) | (decOp[0].src1Val ~= 2) |

(decOp[0].src2Val ~= 2) | (decOp[3].opcode ~= DIV) |

(decOp[3].src2Val ~= 0))

The outcome of the property P1’ will be applied to Decode unit (generates P1” say)

whereas the outcome of the P23’ will be applied to fetch unit (generate primary inputs

PIi) in time step 5. In time step 4, P1” will be applied to Fetch unit that generates the

primary inputs PIj. The primary inputs PIi and PIj are combined based on their time

step (clock cycle) to generate the final test program as shown below:

Fetch Instructions ([0] for ALU... [3] for DIV) \\

Cycle [0] [1] [2] [3] //R0 is 0

1 ADDI R2 R0 #2 NOP NOP NOP //R2 = 2

2 NOP NOP NOP NOP

3 NOP NOP NOP NOP

4 LD R1 0(R0) NOP NOP NOP

5 ADD R3 R2 R2 NOP NOP DIV R3 R0 R0

Example 2: Test Generation using Path-level Partitioning

The example shown above assumes a module-level partitioning of the processor

model. However, it is not always possible to decompose a property based on module

level partitioning. For example, if we are trying to determine whether two feedback

3 Note that when multiple children create requirements for the parent (e.g, P23’),
conflicts can occur. In such cases, alternative assignments need to be evaluated for the
conflicting variable as described in Section 3.4.5.
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(data-forwarding) paths shown in Figure 2-1 are activated at the same time, it is not

possible to decompose this property at module level because the “implication” relation

between feedOut and feedIn (in the following property) will be lost.

To enable property decomposition in the this example, we need to partition the design

differently. The floating-point adder path (FADD1 to FADD4) should be treated as a

design partition Fpath. Similarly, the multiplier path (MUL1 to MUL7) should be treated

as another partition Mpath. This new partitioning is applied for test generation. First, P1

and P2 can be applied on Fpath and Mpath respectively to generate counterexamples C1

and C2. Next, C1 and C2 are combined and the corresponding property is applied to the

Decode unit to generate the counterexample C3. Next, the property corresponding to C3

is applied to the Fetch unit that generates the primary input requirements. Finally, these

primary input requirements are converted into the required test program. The property

decomposition procedure is shown below.

/* Original Property */

P: F((clk=9) & (FADD4.feedOut -> X(FADD1.feedIn))

& (MUL7.feedOut -> X(MUL1.feedIn)))

/* Converted Property */

P: F(((clk=9 & FADD4.feedOut) & (clk=10 & FADD1.feedIn))

& ((clk=9 & MUL7.feedOut) & (clk=10 & MUL1.feedIn)))

/* Property after Negation*/

P’: G(((clk~=9 | ~FADD4.feedOut) | (clk~=10 | ~FADD1.feedIn))

| ((clk~=9 | ~MUL7.feedOut) | (clk~=10 | ~MUL1.feedIn)))

/* Properties after Decomposition*/

P1: G((clk~=9 | ~FADD4.feedOut) | (clk~=10 | ~FADD1.feedIn))

P2: G((clk~=9 | ~MUL7.feedOut) | (clk~=10 | ~MUL1.feedIn))
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3.4.5 Merging Partial Counterexamples

The output requirement (outRk in Algorithm 2) generated from a single child node

can be directly used for the corresponding module (Mk) simply by negating the output

requirement. In the case of multiple children, the input requirements generated from

children nodes need to be merged appropriately into the output property for the parent

node. However, this is non trivial since the input requirements can conflict each other

due to the fact that the model checker assigns arbitrary values to the variables that do

not have influence on falsification of the children nodes. For example, in Figure 2-2, four

reservation station (RS) modules share the parent module Issue. Counterexamples (input

requirements of each RS) generated from four RSs at the time step ts + 1 should be

combined for creating the output property of Issue module at clk = ts. However, they can

require different output values for the same variable of the module Issue.

In case of output requirement conflict, the algorithm adjusts input requirements of the

children nodes by excluding the current input requirement, called false requirement. For

example, assume that output variables of the parent are p and q, the input requirement of

one child is (p = 1 ∧ q = 0) that is generated by G((clk 6= (ts + 1)) ∨ ¬(m1.p = 1)) at

module1, and the input requirement of the other child is (p = 0 ∧ q = 1) that is generated

by G((clk 6= (ts + 1)) ∨ ¬(m2.q = 1)) at module2. Obviously, there is no way to assign

output p and q to satisfy these two conflicting inputs. We refine the sub-properties of

children nodes to resolve the conflict requirements by excluding the false requirement. The

desired sub-properties stored in AllList[ts + 1] for children nodes are modified by adding

the negated version of the conflict requirement as shown below:

F ((clk = (ts + 1)) ∧ (m1.p = 1) ∧ ¬(m1.p = 1 ∧m1.q = 0))

F ((clk = (ts + 1)) ∧ (m2.q = 1) ∧ ¬(m2.p = 0 ∧m2.q = 1))

To generate the input requirements of the module1, the above properties are negated as

shown below:
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G((clk 6= (ts + 1)) ∨ ¬(m1.p = 1) ∨ (m1.p = 1 ∧m1.q = 0))

G((clk 6= (ts + 1)) ∨ ¬(m2.q = 1) ∨ (m2.p = 0 ∧m2.q = 1))

These sub-properties does not allow the counterexample (p = 1 ∧ q = 0) any more. The

generated counterexample will be (p = 1 ∧ q = 1) as the input requirements of module1

and module2. As a result, we can merge them into the output requirement of the parent

node as (p = 1 ∧ q = 1) at clk = ts. If there is an interface variable r between the

parent and its child module2, it does not cause the output requirement conflict of the

parent node since the input requirement of module1 does not care about the variable r. If

there is another child node module3 that has the interface variables p and r, we need to

adjust three input requirements of module1, module2, and module3 to resolve any conflict

among them. It is possible that there is no common variable assignments for shared input

variables among children nodes since their output requirements may be generated from

false input requirements from the subsequent stages (grandchildren nodes). In this case,

we need to refine the sub-properties of grandchildren nodes stored in AllList[ts + 2]. The

procedure of sub-property refinement continues until the conflict is resolved or clk is equal

to boundi which is upper bound to search for a test program.

3.5 Experiments

The proposed test generation methodology is applied on a multi-issue MIPS

architecture [54] and a superscalar commercial e500 processor [58]. Various test generation

experiments were performed for validating the pipeline interactions by varying different

design partitions and property decompositions. This section presents experimental results

in terms of time and memory requirement in test generation.

3.5.1 Test Generation using Module Level Decomposition

The test generation technique using UMC and module level decomposition is applied

on a multi-issue MIPS architecture as shown in Figure 2-1. SMV [79] model checker has

been used to perform all the experiments. Few simplifications was needed to the MIPS

processor to compare with two other approaches: i) naive approach where the original
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property is applied to the whole design, and ii) existing approach based on Mishra et al.

[84]. For example, if 32 32-bit registers are used in the register file, the naive approach can

not produce any counterexample even for a simple property with no pipeline interaction

due to memory depletion during model checking. We used eight 2-bit registers for the

following experiments to ensure that the naive approach can generate counterexamples.

All the experiments were run on a 1 GHz Sun UltraSparc with 8G RAM.

Table 3-2. Comparison of test generation techniques

Module Naive approach Existing approach Our approach
interactions BDD Time BDD Time BDD Time
None 6 M 165 3 K 0.06 3 K 0.06
Two modules 11M 215 NA NA 6 K 0.12
Three modules 21M 240 NA NA 9 K 0.19
Four modules 27M 290 NA NA 11K 0.28

NA: Not applicable.

Table 3-2 presents the results of the comparison of test generation techniques. The

first column defines the type of properties used for test generation. For example, “None”

implies properties applicable to only one module; “Two Modules” implies properties that

include two module interactions and so on. Each row presents the average values for

the BDD nodes (memory requirement) used as well as test generation time (in seconds)

for one property. For example, the first row presents the average time and memory

requirement for 68 (n=17, r=4, and i=1 in Eq. 2–1) single module properties. The naive

approach takes several orders of magnitude more memory and test generation time.

The existing approach is only applicable to the first row since it cannot handle multiple

simultaneous properties or property decompositions. As mentioned earlier, the naive

approach cannot finish in majority of the cases when more registers are used. As a result

we used only 8 2-bit registers. In spite of this simplification, naive approach takes several

orders of magnitude more memory and test generation time.
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3.5.2 Test Generation for e500 Processor

The proposed decompositional model checking technique was also applied on a

superscalar PowerPC e500 processor.4 Our processor model includes micro-architectural

structure and clock accurate behaviors of the processor. We represented one clock cycle

as two time steps (low and high at each cycle) so that the processor model accommodates

the behaviors of read and write at the same cycle in the first-in-first-out (FIFO) queues

and reservation stations. We performed various test generation experiments for validating

the pipeline interactions and corner cases. In this section, we present a subset of the

test sequences generated by our test generation framework. Next, we describe how the

generated test programs are used in processor validation framework.

3.5.2.1 Results

Table 3-3 shows a subset of the directed test cases, their corresponding length in

terms of number of instructions, and test generation time. For example, the test program

for case 11 validates the feature of Completion Queue (CQ) by piling data up and down

in the first-in-first-out (FIFO) queue. Test programs for case 3 through 6 exercise operand

read from four different resources as shown in Figure 3-5, which can be generated at

micro-architecture level but very difficult at ISA level. In terms of efficiency, only several

seconds were spent on test generation except for the case 11 where test generation took

few minutes. The test cases 13-18 shows various interaction scenarios. For example, test

case 13 only activates one node whereas test case 15 considers three node interactions at

the same clock cycle.

3.5.2.2 Micro-architectural validation using test programs

Micro-architectural design errors such as performance bugs are hard to be exposed by

architectural test generation. Furthermore, they may not be detected by ISA functional

4 The e500 processor specification and RTL design were provided by Freescale
Semiconductor Inc.
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Table 3-3. Various test cases generated by our framework

Test cases Test length Time
1 Instruction dual issue 15 30
2 Renaming src1 operand 12 25
3 Read operand from forwarding path (RAW) 9 20
4 Reservation station reads operand from forwarding path 7 15
5 Read operand from renaming reg. (RAW) 10 20
6 Read operand from GPR (RAW) 11 25
7 Renaming for WAW (no stall) 8 20
8 Stall at Decode stage due to IQ full 14 35
9 Stall at Decode stage due to CQ full, then released queue 34 61

full at the next clock cycle
10 CQ full, then full again 35 70
11 CQ full, then empty, and then full again 95 290
12 Retire only one instruction in Completion 12 28
13 “lwz” instruction at LSU stage3 7 15
14 “add” at Fetch 2 and “mulhw” at MU stage2 simultaneously 6 18
15 “addi” at Completion, “mulhw” at MU stage1, & “lwz” at 12 25

LSU stage1 at the same clock
16 “mulhw” at Completion, “add” & “addi” waits in 12 40

completion queue, & “lzw” at LSU stage3
17 “lwz” and “add” at Completion, “mulhw” at MU stage3, 14 35

“addi” at CQ, “lwz” at LSU stage1
18 “mulhw” & “add” retire, “mulhw” at MU stage4, 15 45

“addi” at CQ, & “lwz” at LSU-stage2

Issue Execute Complete Write-Back

Reservation
Station

3 5 6

4 Instruction flow

Forwarding data

Figure 3-5. Four different data forwarding mechanisms
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Figure 3-6. Micro-architectural validation flow

simulation. For example, test generation for uncovering incorrect stalls in pipeline stages

require timing information of instruction flow and those bugs are only visible during the

clock-accurate simulation. Therefore, micro-architectural validation plays an important

role in ensuring the correctness of performance as well as functionality of the processor

designs.

We have performed micro-architectural validation by using the existing methodology

in an industrial settings that includes an internal random test pattern generator (RTPG)

tool. Figure 3-6 shows the validation flow. We converted the assembly test sequences

generated by our method into the input format of the RTPG tool that produces

testbenches for RTL simulation. The simulator shows how instructions go through

the pipeline stages on a cycle-by-cycle basis as well as whether the stored results in

register files and memory are correct or not. Capturing when and which instructions

move from one stage to the next ensures that the generated tests exercise the target

micro-architectural artifacts. We compared the validation effort for activating these

micro-architectural features using the existing validation methodology in an industrial

setting and our approach. On an average each of our test case took less than 100 clock
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cycles whereas the existing random/pseudo-random tests took approximately 100,000 clock

cycles to activate the target fault.

3.6 Chapter Summary

Functional verification is widely acknowledged as a major bottleneck in microprocessor

design methodology. Compared to the random or constrained-random tests, the directed

tests can reduce overall validation effort since shorter tests can obtain the same coverage

goal. However, there is a lack of automated techniques for directed test generation.

This chapter presented an efficient directed test generation technique for validation

of performance as well as functionality of the modern microprocessors. Our methodology

is based on decompositional model checking where the processor model as well as the

properties are decomposed and the model checking is applied on smaller partitions of the

design using decomposed properties. We introduced the notion of time steps to enable

decomposition of the properties into smaller ones based on their clock cycles. We have

developed an efficient algorithm to merge the partial counterexamples generated by the

decomposed properties to create the final test program corresponding to the original

property. Our experimental results using MIPS and PowerPC e500 processor architectures

demonstrate the efficiency of our method by generating complicated micro-architectural

tests. Since the proposed technique is generic, its framework can be used for validation of

other industrial-strength processors. Furthermore, this work can be seamlessly integrated

in the current RTPG validation methodology without modification of the existing

validation flow.
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CHAPTER 4
TEST GENERATION USING SAT-BASED BOUNDED MODEL CHECKING

Efficient test generation is crucial for the simulation-based validation since it

determines the quality of test suites as well as the performance of validation. This chapter

presents an efficient test generation methodology for functional validation of processor

designs using SAT-based bounded model checking (BMC).

As a complementary technique of unbounded model checking (UMC) in Chapter 3,

SAT-based bounded model checking (BMC) has given promising results in the verification

domain. The basic idea is to restrict the search space that is reachable from initial

states within a fixed number (k) of transitions, called the bound. After unwinding the

model of design k times, the BMC problem is converted into a propositional satisfiability

(SAT) problem. A SAT solver is used to find a satisfiable assignment of variables that is

converted into a counterexample. If the bound is known in advance, SAT-based BMC is

typically more effective for falsification than UMC because the search for counterexamples

is faster and the SAT capacity reaches beyond the BDD capacity [15]. However, finding

the bound is a challenging problem since the depth of counterexamples is unknown in

general.

Choosing an incorrect bound increases test generation time and memory requirement.

In the worst case, test generation may not be possible. For example, we can increase

the bound iteratively starting from a small bound until a counterexample is found. This

approach is advantageous for shallow counterexamples, but disadvantageous for deep

counterexamples due to accumulation of iterative running time. Another example is to

choose a large bound such that all counterexamples are found. This approach loses the

benefits of BMC due to search in a large number of irrelevant states when the bound is

too big. Therefore, the performance of test generation closely depends on the schemes of

deciding the bound. We propose a method to find the bound for each property instead of

using the maximum bound for all properties.
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Figure 4-1. Test program generation using SAT-based bounded model checking

Figure 4-1 shows our test generation methodology. Processor model and properties

are generated from the architecture specification. We use the pipeline interaction fault

model to define functional coverage. Temporal logic properties are created from pipeline

interaction faults. We determine the bound for each property to reduce test generation

time and memory requirement compared to using the maximum bound for all properties.

The processor model, negated properties, and the bound are applied to SAT-based BMC

to generate a test program. Based on the coverage report, more properties can be added, if

necessary. We use design and property decompositions to further improve the performance

of test generation. Our technique makes two important contributions: i) it develops a

procedure to determine the bound for each property, and ii) it presents a scheme for design

and property decompositions in the context of SAT-based BMC.

4.1 SAT-based Bounded Model Checking

Boolean satisfiability (SAT) problem is to determine whether there exists a variable

assignment such that a propositional formula evaluates to true. If there exists such

an assignment, the formula is called satisfiable. Otherwise, the formula is said to be
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unsatisfiable. For example, the formula (a|¬b) ∧ (¬b|c) ∧ (¬c|¬a) is satisfiable when a = 1,

b = 0, and c = 0. SAT solver is a tool to check satisfiability of a given Boolean formula

represented in Conjunctive Normal Form (CNF)1 .

Bounded Model Checking (BMC) is a restricted form of model checking. Instead

of exhaustively searching a counterexample, BMC searches for a counterexample of a

particular length k, called bound or maximum length of counterexamples. The assumption

is that the property can be falsified (a counterexample exists) within k time steps.

In SAT-based BMC, the BMC problem is encoded into the satisfiability problem

and a SAT solver is used as a verification engine instead of a model checker. To perform

verification, SAT-based BMC includes the following steps:

1. Unfold design and property up to the bound k.

2. Encode the bounded design and property into a CNF formula.

3. Apply the CNF formula to a SAT solver.

4. If satisfiable, then the property does not hold for the design and the satisfiable
assignment of variables is converted to a counterexample.

5. If unsatisfiable and k ≥ d (d: diameter2 ), then the property holds for the design, else
if unsatisfiable and k < d, then the property does not hold.

The CNF formula is satisfiable if and only if a violated state is reachable within the

bound k. The resulting satisfiable assignment of variables is translated into an error trace

from a valid initial state to the violated state. If the bound k is equal to or larger than

the diameter and the CNF formula is unsatisfiable, then the design satisfies the property

1 CNF is a conjunction of clauses, each clause is a disjunction of literals, and a literal
is a Boolean variable or its negation. For example, the formula (a|¬b) ∧ (¬b|c) ∧ (¬c|¬a)
conforms the CNF.

2 Diameter is the reachable longest time step in the state space of a given finite state
system. By definition, any state that can be reached can be reached within the diameter.
[81]
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because there is no counterexample in the state space. However, if the bound k is smaller

than the diameter and the CNF formula is unsatisfiable, then SAT-based BMC cannot

prove or disprove the correctness of design since states beyond the bound k still remain

unchecked.

4.2 Related Work

Biere et al. [16] introduced bounded model checking (BMC) combined with

satisfiability solving. The recent developments in SAT-based BMC techniques have

been presented in [15, 30, 93]. BMC is an incomplete method that cannot guarantee a

true or false determination when a counterexample does not exist within a given bound.

However, once the bound of a counterexample is known, large designs can be falsified very

fast since SAT solvers [50, 78, 88, 114] do not require exponential space, and searching

counterexample in an arbitrary order consumes much less memory than breadth first

search in model checking.

The performance of bounded and unbounded algorithms was analyzed on a set of

industrial benchmarks in [7, 8]. The capacity increase of BMC techniques has become

attractive for industrial use. An Intel study [37] showed that BMC has better capacity and

productivity over unbounded model checking for real designs taken from the Pentium-4

processor. Recently, Gurumurthy et al. [52] have used BMC as test program generator for

mapping pre-computed module-level test sequences to processor instructions.

SAT-based BMC is one of the most promising test generation engines due to its

capacity and performance. However, finding the bound is a challenging problem. We

propose a method to determine the bound for each test generation scenario, thereby

making SAT-based BMC feasible in practice.

4.3 Test Generation using SAT-based Bounded Model Checking

During test generation, the processor model is described in a temporal specification

language such as SMV [79] or NuSMV [29]. We create negated properties and their

bounds. A SAT-based BMC unfolds the processor model along with a negated property
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up to the bound and converts it into a conjunctive normal form (CNF) formula. A SAT

solver accepts the CNF formula as input and finds a satisfiable assignment of variables.

The satisfiable assignment is converted into a counterexample. To create a test program,

we extract a sequence of instructions from an initial state to a state where the negated

property fails.

Algorithm 2: Test Generation using SAT-based BMC

Inputs: i) Processor model M

ii) Set of faults S from interaction fault model

Outputs: Test programs to excite the pipeline interactions

Begin

TestPrograms = φ

for each fault Si in the set S

Pi = CreateProperty(Si)

Pi = Negate(Pi)

ki = DecideBound(Pi)

testi = DoSATbasedBMC(M , Pi, ki)

TestPrograms = TestPrograms ∪ testi

endfor

return TestPrograms

End

Algorithm 2 describes our test generation procedure. This algorithm takes processor

model M and interaction faults S as inputs and generates test programs. For each fault

Si, the algorithm produces one test program. Fault Si is composed of a set of node

activities and their relations. The algorithm iterates over all the interaction faults in the

fault model. Each fault Si is converted to a temporal logic property Pi. The procedure

for creating and negating the property is described in Section 3.4.1. Bound ki for each

property is decided as discussed in Section 4.3.1. SAT-based BMC takes processor model
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M , negated properties Pi, and bound ki as inputs and generates a counterexample. A test

program is extracted by analyzing the counterexample.

So far, we assumed that the whole design model is applied to SAT-based BMC.

This approach is effective when the design is of moderate size and the bound is shallow.

However, for the test generation scenarios consisting of large designs and deep counterexamples,

SAT-based BMC may not be able to generate tests in a reasonable amount of time due

to large search space. In other words, the complexity problem still remains in SAT-based

BMC. In such cases, decompositions of property as well as design will reduce the test

generation complexity.

4.3.1 Determination of Bound

The bound for all interactions should be large enough to generate at least one

counterexample for the interaction whose state is farthest from the initial state. This

interaction can be reached by the longest pipeline path and data transfer path in the

graph model of pipelined processors. The longest path represents the largest number of

clock cycles for the first instruction to stay in the pipelined processor. Once an instruction

finishes its execution at the leaf node (e.g., WriteBack), the instruction does not affect the

execution flow of the following instructions any more. For example, in the graph model

of the MIPS processor in Figure 2-1, the maximum bound is determined by the length of

{FE→ DE→ IALU→ MEM→ Cache→ MM → Cache→ MEM→ WB} if cache miss takes

more time than any other pipeline paths. However, this bound is over-conservative in most

test scenarios because a lot of interactions do not include this longest path. Therefore,

using bound for each interaction is more efficient for test generation in terms of time and

memory requirement.

Bound for each interaction is determined by the longest temporal distance from

the root node to the nodes under consideration. For example, bound for the property

“IALU, FADD2, and FADD3 in operation execution at the same time” will be 5 because

FADD3 has the longest temporal distance from Fetch stage. If a property includes stall or
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exception activity, the temporal distance between the root node and the leaf node (WB) is

added to consider the causal node of the stall or exception. After deciding counterexample

bound, either traditional model checking or SAT-based BMC can be used for generating

counterexamples by taking processor model, negated properties, and bound as inputs.

4.3.2 Design and Property Decompositions

Design and property decompositions can be used to further improve the test

generation performance. In this section, we consider only three partitioning techniques:

module-level partitioning, vertical (path-level) partitioning, and horizontal (stage-level)

partitioning. Depending on the properties, other forms of decompositions may be useful.

For example, module (or node) level partitioning provides the lowest level of granularity

in the graph model described in Section 2.2. However, SAT-based BMC at the module

level may not be beneficial anymore because UMC can handle small designs efficiently.

Experimental results in Section 4.4.3 show that UMC might be better for small designs.

In addition, module level decomposition is not always possible since local properties

are not preserved at the global level in general. However, the properties that are not

decomposable at module level may be decomposable by the horizontal and vertical

partitioning techniques.

4.4 A Case Study

We performed various test generation experiments to validate the pipeline interactions

by varying interactions of functional units and decompositions of design and properties.

We excluded illegal interactions based on the fact that their negated properties could

not generate any counterexample. In this section, we present our experimental setup

followed by test generation examples using horizontal and vertical decompositions. Next,

we compare our test generation technique with UMC-based test generation method as well

as BMC using the maximum bound.
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4.4.1 Experimental Setup

We applied our methodology on a simplified MIPS architecture [12], as shown in

Figure 2-1. We chose the MIPS processor since it has been well studied in academia

and there are HDL implementations available for the processor that can be used for

validation purposes. Additionally, the MIPS processor has many interesting features, such

as fragmented pipelines and multi-cycle functional units that are representatives of many

commercial pipelined processors such as TI C6x and PowerPC.

For our experiments, we used Cadence SMV [79] as a model checker and zChaff

[88] as a SAT solver. We used 16 16-bit registers in the register file for the following

experiments. All the experiments were run on a 1 GHz Sun UltraSparc with 8G RAM.

4.4.2 Test Generation: An Example

Consider a test generation scenario for verifying the interaction “Decode in stall,

and IALU, FADD3 in operation execution at the same time”. Based on Algorithm 1, the

property F(Decode.stall ∧ IALU.exe ∧ FADD3.exe) is generated from the interaction.

Its negation will be G(¬Decode.stall ∨ ¬IALU.exe ∨ ¬FADD3.exe). According to

the horizontal and vertical partitioning, we can use a partial set of modules {Fetch,

Decode, IALU, FADD1, FADD2, FADD3} to generate a test program. Based on the

procedure of deciding bound for each property, bound will be 5. SAT-based BMC

accepts the decomposed processor model, the negated property, and the bound. The

generated test program is shown in Table 4-1 where Decode unit is in stall due to the

read-after-write(RAW) hazard by FADD instruction.

Table 4-1. Example of a test program

Fetch cycle Instructions
1 FADD R1 R2 R2
2 NOP
3 ADD R3 R2 R2
4 ADD R3 R1 R2
5 NOP
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Table 4-2. Comparison of test generation techniques for pipeline interactions

Interaction Decomposed UMC SAT-based BMC
modules design Max. k Each k

Whole X 5.63 0.48
1 Group X 3.87 0.22

Module 0.40 2.24 0.42
Whole X 7.42 0.65

2 Group X 4.31 0.43
Module 0.57 6.41 1.38
Whole X 7.74 0.70

3 Group X 5.72 0.52
Module 0.86 6.41 1.45
Whole X 8.79 0.75

4 Group X 6.98 0.64
Module 1.12 7.63 1.97
Whole X 9.29 0.89

5 Group X 8.31 0.62
Module 1.50 9.03 2.18
Whole X 9.58 1.05

6 Group X 9.04 0.68
Module 1.86 10.70 2.50

X: Not applicable.

4.4.3 Results

Table 4-2 compares our test generation technique with UMC-based test generation for

different module interactions. The first column specifies a set of properties based on the

number of interactions. For example, the third row presents average test generation time

(in seconds) for all properties consisting of two (“2”) module interactions. The second

column presents the level of decomposition used during test generation. The entry whole

implies that no decomposition is used. The entry group implies that either horizontal

or vertical or both decompositions are used. Similarly, the entry module implies that

the test generation uses module-level decomposition. The next three columns show the

performance of three test generation techniques: UMC, BMC using maximum bound,

and BMC using bound for each property. The maximum bound 45 was used assuming

that the longest length is taken by memory operations i.e., the sum of the IALU pipeline
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Figure 4-2. Test generation time comparison for four techniques

path length (5) and data-transfer path length (40). In the table, X indicates that a

counterexample was not found due to “Out of Memory” problem.

Figure 4-2 shows test generation time comparison for four techniques using: maximum

bound without decomposition, maximum bound with decomposition, individual bound

without decomposition, and individual bound with decomposition. As expected, Table 4-2

and Figure 4-2 show that the test generation time grows with the increase of the number

of module interactions. UMC can be used only with module level decompositions while

SAT-based BMC can be used without decomposition. Bound for each property reduces

approximately 90% of the test generation time compared to using BMC with maximum

bound. An interesting observation is that UMC with module level decomposition provides

better performance than SAT-based BMC. This is because the time to unfold the model

and convert it to a SAT problem is more than the time to search for a counterexample.
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4.5 Chapter Summary

We presented a directed test generation technique for pipelined processors using

SAT-based bounded model checking. We developed a technique to convert pipeline

interaction faults into temporal logic properties. We presented a procedure for determining

bound for each property. We also developed a method for decomposing design and

properties in the context of SAT-based BMC. Our experimental results using MIPS

processor demonstrated that the test generation time using our technique is an order-of-magnitude

better compared to UMC-based or SAT-based BMC with maximum bound.
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CHAPTER 5
FUNCTIONAL TEST COMPACTION

In the current industrial practice, random and biased-random test generation

techniques at architecture (ISA) level are most widely used for simulation-based validation

to uncover errors early in the design cycle [2, 100]. Although directed tests require a

smaller test set compared to random tests for the same functional coverage goal, the

number of directed tests can still be extremely large. Therefore, there is a need for

functional test compaction techniques. Since a test generated for activating a particular

functional fault goes through pipeline paths over multiple clock cycles, there is a high

probability that the test can accompany multiple pipeline interactions before and after

it reaches the state that it tries to activate. We present an efficient test compaction

technique to significantly reduce the functional test set for validation of pipelined

processors.

Figure 5-1 shows the overall flow of our proposed test compaction methodology.

Using the specification of a processor, we create a finite state machine (FSM) model of

the processor and an FSM coverage metric based on pipeline interactions. Each FSM

state (transition) indicates a pipeline interaction and can be represented as a property for

test generation. FSM compaction is performed before test generation by eliminating the

states and the transitions that are illegal, redundant, or unreachable for the given design

constraints. Properties for the remaining states (after elimination) can be automatically

generated from the FSM model of the processor. Test programs to exercise the states in

the FSM model are produced using the model checking-based test generation technique.

Once all the tests are generated, test compaction is performed by pruning redundant test

programs to reduce the size of a test set.

The proposed method makes three important contributions. First, we propose an

efficient FSM model of the pipelined processors, and define FSM state and transition

coverage based on the pipeline interactions. Second, we propose an efficient compaction
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Figure 5-1. Functional test compaction methodology

technique to significantly reduce FSM states/transitions. Finally, we apply existing test

matrix reduction and minimization techniques to further reduce the number of directed

tests.

5.1 Related Work

Several FSM model-based test generation methodologies [24, 59, 65, 115] have

been developed for validation of pipelined processors where an FSM model is used to

generate a test suite based on FSM coverage metrics such as state, transition, or path

coverage. In modern processor designs, complicated micro-architectural mechanisms

include interactions among many pipeline stages and buffers that can lead the FSM-based

approaches to the state space explosion problem. To alleviate the state explosion, FSM

abstraction techniques [89, 99, 109] have been presented. However, these techniques use
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reverse engineering to derive an FSM model from its RTL implementation because there

is a lack of a golden reference model. We propose a specification-driven FSM modeling

technique.

Due to the large volume of test data and the extremely long test time for manufacturing

test, considerable research has been done to reduce the structural test data volume. Test

compaction techniques are generally categorized into dynamic and static compactions.

Dynamic compaction is applied during test generation while static compaction is applied

after test generation. Rudnick and Patel [96] have proposed dynamic test compaction

for sequential circuits using fault simulation and genetic algorithms. El-Maleh and Osais

[41] have presented decomposition-based static compaction algorithms where a test

vector is decomposed into atomic components and the test vector is eliminated if its

components can be all moved to other test vectors. Set covering has been applied to

static compaction procedures for combinational circuits using the fault detection matrix

[18, 45, 57]. Dimopoulos and Linardis [40] have modeled static compaction for sequential

circuits as a set-covering problem. The matrix reduction techniques [110] can be applied

to mitigate the complexity of set covering by eliminating redundant rows (faults) and

columns (test vectors) in the fault detection matrix.

Although a lot of structural test compaction techniques have been proposed in

manufacturing test domain, there has been no work in functional test compaction in

validation domain since functional redundancy can be hard to find among functional

tests. Since the volume of functional tests can be extremely large even for directed tests,

we propose a functional test compaction methodology to reduce overall processor design

validation efforts.

5.2 FSM Modeling

Many works [28, 56, 75, 98] have been done on FSM modeling of processors as

bottom-up approaches where an abstract FSM model is extracted from RTL designs for

formal verification and test generation. However, in addition to difficulty in creating an
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abstract model, these bottom-up approaches are not suitable for test generation since

design errors in RTL implementation will exist in the abstracted FSM model. As a result,

the FSM model may guide test generation incorrectly. Therefore, we propose an efficient

FSM model that can be generated from the specification. A pipelined processor is modeled

as an FSM by defining desired functionalities of the processor using states and their

transition functions. The proposed FSM model is used to generate a set of test programs

based on FSM coverage metrics. The test set is reusable during design validation at

different levels of abstraction as well as for various implementations of the specification.

5.2.1 Functional FSM Modeling of Processors

An FSM model is defined as M = (I, O, S, δ, λ) where I, O, S, δ, and λ are a finite

set of inputs, outputs, states, state transition function δ : S × I → S, and output function

λ : S × I → O, respectively. When the model M is in the state s (s ∈ S) and receives

an input a (a ∈ I), it moves to the next state specified by δ(s, a) and produces an output

given by λ(s, a). For an initial state s1, an input sequence x = a1, ..., ak takes the M

successively to states si+1 = δ(si, ai), i = 1, ..., k with the final state δ(s1, x) = sk+1. In

the pipelined processor FSM model, assuming each ai corresponds to instruction(s) fetched

from instruction cache (or memory), the input instruction sequence x = a1, ..., ak can be

used as a test program to exercise the states as well as the state transitions from s1 to

sk+1.

5.2.1.1 Modeling of FSM states

We create the functional states S in the form of binary data from the processor

specification that contains both the pipelined structure and the behaviors of the processor.

The proposed FSM model is based on interactions among functional units of the pipelined

processor. A group of bits are assigned to describe the functional status of each functional

unit. A functional state of the entire processor consists of bit concatenation of local states

of all functional units. We denote the number of activities in the functional unit fuj by

pj and the number of bits to be assigned to the unit by bj where j = 1, ..., U and U is
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the number of functional units in the processor. Therefore, the total number of bits to

describe the processor FSM states is N =
∑U

j=1 bj. We denote the number of states in the

machine M by NS = |S| = 2N . The state of functional unit fuj is denoted as ssj using

bj bits and the state sk of the processor FSM can be defined by concatenating ss1, ss2, ...,

ssU .

WB

…
MEM IFID

Bit: BN B(N-1) … … B4 B3 B2 B1
Figure 5-2. Binary format of the states in FSM model

For example, we assign two bits to represent four functional states of Fetch unit: ‘00’

for idle, ‘01’ for instruction fetch, ‘10’ for stall, and ‘11’ for exception. Figure 5-2 shows an

example of the FSM states of the pipelined processor. Given that all the functional units

have only four possible states, each unit requires 2 bits for its four functionalities. This

binary format of functional FSM model provides an efficient indexing mechanism to access

and analyze each functional state. In addition, next states can be described as Boolean

functions. For example, assuming the state transitions (si, sj) and (si, sk) with sj = ‘0011’

and sk = ‘0010’, the next states of si are expressed as B̄4B̄3B2B1 + B̄4B̄3B2B̄1 = B̄4B̄3B2.

For each state, a list of the next states are produced by transition functions described in

the following section.

5.2.1.2 Modeling of FSM state transitions

In this section, we describe the state transition functions based on the pipelining

behavior of the processor and the functional decomposition of the processor FSM into

smaller FSMs at unit level. The pipelining behaviors are the rules in each pipeline stage

that determine when instructions can move to the next stage and when they cannot. Since

not all the functional units affect the next state of other functional units, the transition

functions of the FSM can be decomposed into sub-functions each of which is dedicated to

a specific functional unit.
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fu k, j-1
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fu l, j+1
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Figure 5-3. Instruction flow

fu k, j-1

fu i, j

fu l, j+1

Stagej-1

Stagej

Stagej+1

fu i, j

fu l, j+1

Time step: t-1 t

Figure 5-4. Pipeline interactions

Figure 5-3 and 5-4 show the general behaviors of pipelined processors. Every

instructions goes through the current pipeline stage to the next stage as shown in

Figure 5-3, where fu is a functional unit, 1 ≤ i, k, l ≤ U , 1 ≤ j ≤ D, and D is the

pipeline depth. Since each functional unit fui,j can have different number of interactive

functional units at stage j − 1 and j + 1, fuk,j−1 and ful,j+1 can be multiple units. For

example, a decode unit may have multiple execution units at its following stage while a

fetch unit may have only one unit (decode unit) at the following stage.

Figure 5-4 shows the pipeline interactions of the functional unit fui,j. The state of

fui,j at time step t is decided by the previous and current states of its interactive units

fuk,j−1 and ful,j+1 as well as itself. For example, if ful,j+1 and fui,j are on the same

pipeline and ful,j+1 is in the stall state at time step t, then fui,j should be in stall because

the instruction in fui,j cannot go to the next stage ful,j+1. Considering feedback loop such
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as data forwarding in the pipelined processor, fui,j at t will be also affected by the state of

fui,j+α at (t− 1) where 0 ≤ α ≤ D.

Based on the pipelining behavior, the state transition to the functional unit fui,j at

time step t is defined as ssi,j(t) = f(ssk,j−1(t − 1), ssi,j(t − 1), ssl,j+1(t − 1), ssl,j+1(t)).

Here, ssi,j(t) represents a set of bits to describe the functional state of fui,j at time step t,

and f represents a transition function decided by interactive units. Therefore, the state s

of the processor FSM can be expressed by concatenating ssi,j where i = 1, ..., U and 1 ≤ j

≤ D.

5.2.2 Functional Coverage of FSM Model

State coverage and transition coverage are most widely used as a coverage metric of

FSM models to generate a test set. State coverage ensures that every state of an FSM has

been visited. Transition (arc) coverage ensures that every transition between FSM states

has been traversed.

Assuming that each state transition occurs on the basis of clock cycle, the state

coverage of the proposed FSM model is similar to the pipeline interaction coverage at a

given clock cycle because an FSM state consists of the states of each functional unit. The

test program that covers the state will activate the corresponding pipeline interaction.

We can compute the number of theoretically possible FSM states based on the number of

functional units in the processor model and the average number of activities at each unit.

In general, the number of activities for a unit will be different based on what activities

we want to test. Furthermore, the number of activities varies for different units, thereby

each unit may require different number of bits for its functional states. Considering an

FSM model with m units where each unit can have on average p activities, the FSM will

have pm states which can be extremely large even for simple processors. For example, a

simple MIPS processor [54] with 10 functional units and 4 activities has approximately one

million states. This theoretical number of functional states can be reduced by eliminating

unreachable states using functional constraints described in the processor specification.

75



A test suite generated for the state coverage can successfully be used to reveal design

bugs during simulation-based validation. However, the state coverage has many holes

that represent functional behaviors and the hard-to-find bugs typically reside in state

transitions. Based on the state transition functions described in Section 5.2.1.2, each

state has a list of their next states. When a test visits the state and goes to one of its

next state, we put the next state off the list since the transition between the two states

is covered. State transition coverage of the FSM is achieved when the next state lists for

every states are empty. The number of state transitions is determined by the processor’s

functional behaviors. Theoretically, The maximum number of state transitions is N2,

where N is the number of states, and any state can go to any state.

5.3 Compaction before Test Generation

The state and transition compaction of an FSM plays a major role in efficient test

generation since reduction of one state or transition implies one less test vector to generate

and apply on the RTL implementation. The basic idea is to identify and eliminate all the

unreachable and redundant states as well as transitions with respect to coverage-driven

test generation.

5.3.1 Identifying Unreachable States

We use functional constraints described in the processor specification to distinguish

unreachable states from reachable ones. The constraints are represented as binary patterns

of FSM states. The states of those patterns are removed from the FSM and they are

not considered during test generation and coverage analysis since they are unreachable.

For example, for single instruction issue constraint at Issue stage with only one pipeline

register, if there are two following parallel execution pipelines EX1 and EX2, both

execution units cannot be in normal operation at the same time since this behavior is

illegal due to the single issue restriction. Assuming that EX1 and EX2 correspond to

the state variables B6B5 and B4B3 respectively in an 8-bit FSM, the binary pattern

‘xx0101xx’ represents unreachable states for the single issue constraint, where ‘01’
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represents the unit state of normal operation and ‘x’ represents ‘0’ or ‘1’. By applying

all the functional constraints described in the processor specification, we can identify the

unreachable states of the FSM and compute the number of reachable states.

5.3.2 Identifying Redundant States and Transitions

We define redundant states and transitions in terms of coverage-driven test

generation. A state (transition) is redundant if the test generated for activating any

other states or transitions has to go through this state (transition). This redundant

state (transition) is called an inevitable state (transition). Identifying a redundant state

(transition) is similar to finding fault dominance in manufacturing test compaction except

the fact that in this case we do not need any test generation.

State aaaa

State bbbb

State cccc

State eeee

State ffff

State dddd

Figure 5-5. Single transitions between neighboring states

We employ various techniques to remove redundant states and transitions. Figure 5-5

shows inevitable states and transitions that have single outgoing transition (a and b) and

single incoming transition (e and f). The states c and d are inevitable states to their

neighbors because all the paths to travel a and b (e and f ) should include the state c (d).

The transitions (a → c), (b → c), (d → e), and (d → f) are inevitable transitions to

their neighbors. We can eliminate the test cases to activate these inevitable states and

transitions since any test program to exercise their neighboring states goes through them.

The next state lists of each state are used to identify the inevitable states of the single

outgoing transitions. If a state has only one state in its next state list, the next state is an

inevitable state. In the same way, the previous state lists are used to identify the single

incoming transitions.
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5.3.3 Identifying Illegal State Transitions

The processor specification provides the rules in each pipeline unit when instructions

can move to the next stage and when they cannot. Our technique to identify illegal state

transitions is based on the rules in each functional unit and the composition of sub-state

transitions at unit level into processor state transitions as described in Section 5.2.1.2.

For example, if the state of the functional unit ssi,j is in normal operation at time t, then

the state of the previous stage unit ssk,j−1 cannot be in idle state at time t − 1 since the

instruction in fui,j must be ready at the previous pipeline stage at time t− 1.

Table 5-1. Transition rules between ssk,j−1(t− 1) and ssi,j(t)

ssk,j−1(t− 1) ssi,j(t)
idle idle, stall
normal op. normal op., stall, exception
stall idle, stall
exception idle, stall

Table 5-2. Transition rules between ssi,j(t− 1) and ssi,j(t)

ssi,j(t− 1) ssi,j(t)
idle idle, normal op., stall, exception
normal op. idle, normal op., exception
stall idle, normal op., stall, exception
exception idle

Table 5-3. Transition rules between ssl,j+1(t− 1) and ssi,j(t)

ssl,j+1(t− 1) ssi,j(t)
idle idle, normal op., stall, exception
normal op. idle, normal op., stall, exception
stall idle, normal op., stall, exception
exception idle

Sub-state transition rules between interactive units are presented in the following

tables assuming four functional activities at each unit and one register between consecutive

pipeline stages. For example, in Table 5-1, if ssk,j−1(t − 1) = stall, then ssi,j(t) can be

either in idle or stall state because no instruction moves from the previous stage. In

Table 5-2 and Table 5-3, if ssk,j−1(t − 1) or ssl,j+1(t − 1) = exception, then ssi,j(t) should

be the idle state to flush the following instructions in the pipeline.
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5.4 FSM Coverage-directed Test Generation

Model checking is very promising for directed test generation. In this approach, each

state and their transitions are converted into temporal properties. Instead of using the

properties, their negated version is applied to a model checker such that the model checker

produces a counterexample automatically. The counterexample contains a sequence of

instructions (test program) from an initial state to the state where the negated version of

the property fails.

5.4.1 Test Generation for State Coverage

An FSM state is composed of the sub-states of all functional units. We convert each

state into a linear temporal logic (LTL) property [35] where each property consists of

sub-states, temporal operators (G,F, X, U), and Boolean connectives (∧, ∨, ¬, and →).

Since pipeline interactions at a given cycle are semantically explicit and our processor

model is organized as structure-oriented functional units, each state can be converted

in the form of a property F (p1 ∧ p2 ∧ . . . ∧ pU ∧ (clk = t)) that combines activities pi

at i -th unit over U functional units at time step t. The negation of the property results

in G(¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pU ∨ (clk 6= t)) that is applied to a model checker for test

generation.

For example, in order to generate a test for a 4-bit FSM state sj = ‘0011’ that has

2-bit sub-states ss1 and ss2 for two functional units, the property of the state is described

as F (ss1 = ‘00’ ∧ ss2 = ‘11’ ∧ (clk = t)) and its negated property G(ss1 6= ‘00’ ∨ ss2 6=
‘11’ ∨ (clk 6= t)) is applied to generate a test program that activates the state sj at time t.

5.4.2 Test Generation for Transition Coverage

Using the state transition functions described in Section 5.2.1.2, the next state can be

expressed in the same form of the current state as p1’ ∧ p2’ ∧ . . . ∧ pU ’ ∧ (clk = t + 1).

Temporal operator X is used to describe the state transition between two consecutive

states where Xp means that p holds at next time step. We convert each state transition in

the form of a property F ((p1 ∧ p2 ∧ . . . ∧ pU ∧ (clk = t)) → X(p1’ ∧ p2’ ∧ . . . ∧ pU ’ ∧
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(clk = t + 1))). The negation for test generation results in G((¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pU ∨
(clk 6= t)) ∨ (¬p1’ ∨ ¬p2’ ∨ . . . ∨ ¬pU ’ ∨ (clk 6= t + 1))) that is applied to a model checker

to produce a test program.

For example, for test generation of a state transition (sj, sk) where sj = ‘0011’ and sk

= ‘0110’, the transition is described as F ((ss1 = ‘00’ ∧ ss2 = ‘11’ ∧ (clk = t)) → X(ss1 =

‘01’ ∧ ss2 = ‘10’ ∧ (clk = t + 1))). We apply the negated property G((ss1 6= ‘00’ ∨ ss2 6=
‘11’ ∨ (clk 6= t)) ∨ (ss1 6= ‘01’ ∨ ss2 6= ‘10’ ∨ (clk 6= t + 1))) to generate a test program

that activates the state transition between sj and sk.

5.5 Compaction after Test Generation

The functional validation cost is highly dependent on the size of its test set because

functional validation of modern complex microprocessors needs a large functional test set

and extremely long simulation time. Even though directed tests require a smaller test set

than random tests for the same functional coverage, the volume of the directed test set

can still be extremely large. Therefore, test compaction of directed tests is necessary to

improve overall validation time. We use the existing matrix reduction technique and set

covering algorithm to reduce the functional test set.

5.5.1 Test Matrix Reduction

Let us consider a set of test programs T = {t1, t2, ..., tn} detecting the set of

functional states (or transitions) S = {s1, s2, ..., sn}, where n is the number of states

and directed test programs through test generation process. The test compaction problem

is a problem of selecting the minimal number of test programs, i.e. a minimum subset of

T , such that all states (or state transitions) in S are covered. To represent a given test set,

an n × n matrix can be used. Each row of the matrix corresponds to a test program and

each column corresponds to a state (or state transition). The element of the matrix with

coordinates i, j holds the value 1, if the test ti can detect the state sj, else it holds the

value 0. We will denote this matrix as Test Matrix. Figure 5-6 shows the Test Matrix after
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s1 s2 s3 … sn

1 0 0 … 1       t1
0 1 1 … 0       t2
0 0 1 … 0       t3
… … … … … ...
0 1 … … 1       tn

TM =

Figure 5-6. Test matrix for FSM coverage

test generation. Diagonal elements in the matrix are all set to 1 due to the directed test

generation.

5.5.2 Test Set Minimization

The test compaction problem can be formulated as a set covering problem [38].

However, finding the minimum test set suffers from exponential blow-up because the

set covering problems are NP-complete. Therefore, there is a need to reduce the size of

matrix before applying any algorithm to solve set covering problems. The Test Matrix

shrinks after iteratively applying the following rules: test essentiality, test dominance

for row elimination, and state (or state transition) dominance for column elimination.

If i-th column is covered by only one test, the test is an essential test that cannot be

removed from the test set. The columns that are covered by the essential tests can be

removed from the matrix. If all states (or state transitions) of ti are covered by tj, tj

dominates ti and ti (i-th row) is eliminated. If all tests of si detect sj, sj dominates si and

sj (j-th column) is removed. After matrix reduction, the set covering is used to achieve

the minimum test set.

5.6 Experiments

We applied our test compaction methodology on a single-issue MIPS architecture [54].

Figure 5-7 shows a simplified version of the architecture. There are three pipeline stages:

Fetch (FE), Execution, and WriteBack (WB). Execution stage consists of four pipelines

for integer ALU (IALU), load (LD), store(ST), and multiplication (MULT) operation and

each pipeline is considered as one functional unit.
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Figure 5-7. Simplified MIPS processor

We assumed that the processor has two constraints: single issue and write back of

only one execution result. Figure 5-8 shows the functional FSM model of the processor in

the form of 7-bit binary. Each functional unit has two states (idle or normal operation)

except the WriteBack unit which has three states (idle, write back, or write back with

Execution in stall) and writes one execution result at a time. Therefore, theoretically

possible number of states is 3× 25 = 96.

7 6 5 4 3 2 1

FEIALUSTLDMULTWB

0: idle
1: issue

0: idle
1: exe

0: idle
1: exe

0: idle
1: exe

0: idle
1: exe

00: idle
01: WB, no stall
10: WB, stall at EX

Figure 5-8. 7-bits functional FSM model

Unreachable states are removed by using the constraints of processor behavior. For

example, the unreachable binary pattern ‘xxxx11x’ (where x is a don’t-care bit) represents

the single issue constraint that two execution units IALU and ST cannot be executed at

the same time. We can eliminate 24 states since this pattern of states means multiple

issue from the FE unit. In addition, ‘101101x’ and ‘101110x’ are unreachable since these
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patterns are only possible in dual issue scenario. After removing all unreachable states,

the number of states to be considered is reduced to 57 (41% reduction). For FSM state

compaction, we searched for incoming and outgoing single transitions that have inevitable

states to their neighbors to travel to other states. We do not need to generate a test for

those states since one or more test programs to exercise their neighbors will cover them.

After state compaction, we could reduce the number of tests by 6 (11% reduction). As

a result, the number of directed test programs required for the state coverage is 51. Our

framework generated 51 tests using model checking. After applying test matrix reduction

technique on these 51 tests, 26 essential tests are identified. Set covering produced another

3 tests in the matrix. As a result, the total number of tests is 29 (70% overall reduction)

to cover all the states of the MIPS processor.

So far we discussed the test compaction in the context of FSM states. In the

remainder of this section, we present the results for test compaction using FSM transitions.

Unless we apply our test compaction technique we need to generate test for 3249 (57× 57)

transitions since there are 57 valid states. Clearly, each state cannot have transition to

all other states. Once we apply the elimination technique described in Section 5.3.3, our

framework identifies 2793 illegal transitions (86% reduction) and thereby only 456 valid

transitions are left. In other words, only 456 test vectors are sufficient to cover all the

transitions in the MIPS processor. This can be improved further by applying matrix

reduction and set covering techniques. However, the number of final required tests depend

on the length of each test. If each test tries to cover a longest path in the transition

diagram, only 44 (overall 99% reduction) tests will be required. However, a model checker

typically uses the shortest possible test to activate the required transition which can lead

to any number between 44 and 456. Therefore, our approach can generate 86-99% overall

reduction in functional tests without sacrificing functional coverage.
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5.7 Chapter Summary

This chapter presented a functional test compaction methodology that can significantly

reduce the number of directed tests without sacrificing the functional coverage. Our test

compaction technique made three important contributions. First, it proposed a simple

FSM model of the pipelined processors and defined FSM state and transition coverage

based on pipeline interactions. Second, we proposed an FSM state/transition reduction

technique to eliminate the redundant states/transitions that can be covered by the

remaining states/transitions with respect to test generation. This leads to reduction

on directed tests since each state/transition in the FSM corresponds to a directed test.

Finally, we used existing test matrix reduction and minimization techniques to further

reduce the number of directed tests. Our experimental results using a simple MIPS

processor demonstrated an overall 86-99% reduction of functional tests.
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CHAPTER 6
CONCLUSIONS AND FUTURE WORK

Functional validation is widely acknowledged as a major bottleneck in modern

processor design methodology. Due to the lack of a comprehensive functional coverage

metric and directed tests, huge amount of random test programs are used for the

validation of microprocessor design. This dissertation presented coverage-driven test

generation techniques using formal methods to reduce overall validation efforts. This

chapter concludes the dissertation and describes future research directions.

6.1 Conclusions

Efficient functional validation is a critical issue in modern processor design methodology

because verification complexity increases at an exponential rate. Simulation-based

validation is widely used in modern processor design flow. Because formal verification

methods have difficulty in verifying complex processors due to the state explosion problem.

There are three major challenges in simulation-based processor validation: evaluation of

the validation progress, automated generation of directed tests, and reduction of the test

set. To address these issues, this dissertation presented the pipeline interaction fault model

and functional coverage that are useful for measuring the quality of test programs as well

as for coverage-driven test generation. The dissertation proposed efficient directed test

generation techniques using formal methods. To overcome the state explosion problem in

formal methods, the dissertation proposed decompositional model checking and SAT-based

bounded model checking as test generation engines. Experimental results demonstrated

significant reduction in test generation time as well as memory requirement. In addition,

the proposed functional test compaction technique has been used for further reduction of

the test suite.

The proposed functional test generation methodology provides high quality test

programs, efficient test generation, and small test suites to find design errors in early

stages of the development. Furthermore, it combines the benefits of both simulation-based
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techniques and formal methods to reduce the overall effort for functional validation of

pipelined processors.

6.2 Future Research Directions

Automated coverage-driven test generation for validation of microprocessors is a

challenging problem. The work presented in this dissertation can be extended in the

following directions:

• Develop an efficient technique of clustering modules for decompositional model
checking. Not all the properties described in temporal logic can be decomposed at the
module level. However, if the design is decomposed into several groups of modules,
most of the properties can benefit from decompositional model checking.

• Find the bounds of counterexamples for SAT-based bounded model checking for other
functional fault models. Proper determination of the bounds for each property results
in reduction of test generation time.

• Develop an algorithm to find the most effective test programs in a test set. They
probably contain complex combinations of pipeline interactions. Instead of finding
an optimal test set which is NP problem, greedy approach can be applied to test
compaction methodology by identifying the most effective tests.

• Extend the proposed coverage-driven test generation methodology to SoC design
validation which will have much more communication and interaction among its
functional units.

• Investigate relationship between functional verification and manufacturing testing.
The goal is to reuse the common aspects of the two activities for improved functional
verification. For example, automatic test pattern generation (ATPG) can be
guided (or even replaced) by the functional test programs generated for functional
verification. Similarly, the properties, constraints as well as the functional verification
environments can be used to guide ATPGs. Likewise, the manufacturing test patterns
can be used in functional verification to improve functional coverage and reduce
verification effort.
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