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Abstract SAT-based Bounded Model Checking (BMC) is
promising for automated generation of directed tests. Due
to the state space explosion problem, SAT-based BMC is
unsuitable to handle complex properties with large SAT in-
stances or large bounds. In this paper, we propose a frame-
work to automatically scale down the SAT falsification com-
plexity by utilizing the decision ordering based learning from
decomposed sub-properties. Our framework makes three im-
portant contributions: i) it proposes learning-oriented decom-
position techniques for complex property falsification, ii)
it proposes an efficient approach to accelerate the complex
property falsification using the learning from decomposed
sub-properties, and iii) it combines the advantages of both
property decomposition and property clustering to reduce
the overall test generation time. The experimental results
using both software and hardware benchmarks demonstrate
the effectiveness of our framework.

Keywords Property decomposition · Bounded model
checking · SAT · Test generation

1 Introduction

Boolean Satisfiability (SAT) based Bounded Model Check-
ing [3] is promising for automated generation of directed
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tests. The basic idea is to restrict the search range and trans-
form the test generation problem into a SAT problem. Dur-
ing test generation using SAT-based BMC, the design spec-
ification is translated to a formal model (e.g., SMV [12])
and the negation of coverage requirement (e.g., functional
fault models [17,23]) is translated to a set of safety proper-
ties in the form of temporal logic. Given a formal model M,
a safety LTL property p, and a bound k, SAT-based BMC
encodes the state search problem by unrolling the model k
times using the following propositional Boolean formula.

BMC(M, p,k) = I(s0)∧
k−1∧
i=0

T (si,si+1)∧
k∨

i=0

¬p(si) (1)

It consists of three parts: i) I(s0) indicates the system initial
state, ii) T (si,si+1) presents the state transition from state
si to state si+1, and iii) ¬p(si) checks whether property p
is violated in the state si. This formula is transformed to
Conjunctive Norm Form (CNF) and solved by SAT solvers.
Semantically, if there is no satisfying assignment for Equa-
tion (1), it means that the property holds for the design within
bound k, written M |=k p. Otherwise, the property p will not
hold in M, written M |=/ p. The counterexample (i.e., a satis-
fying assignment for BMC(M, p,k)) can be used as a test to
check the functional scenario described by p [11].

In practice, most validation flows need to check various
functional scenarios involving a large number of properties.
To improve the overall directed test generation performance,
property clustering [6] and property learning approaches [9]
are proposed. Since learning can be reused across similar
properties, many repeated validation efforts can be efficiently
avoided. It is important to note that the checking time of the
first property significantly impacts (as demonstrated in Sec-
tion VI) the overall test generation time of a cluster of sim-
ilar properties. If the checking time for the first property is
too long, it will be detrimental for the overall test genera-
tion time even if the other properties can efficiently utilize



2 Mingsong Chen et al.

the learning from the first property. Therefore, it is crucial to
reduce the test generation time of the first property as well
as utilize the learning information across similar properties
to reduce the overall validation effort.
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a) Test−oriented decomposition:
partial tests are composed to
produce the final test.

learning from decomposed sub−properties
utilized in solving the original property.

b) Our learning−oriented decomposition:

Fig. 1 Two property decomposition techniques

Due to random search in conventional SAT solvers, the
test generation time for the base property (first one to be
solved in a cluster) can be prohibitively long in the presence
of complex design and properties. To address this issue, Koo
and Mishra proposed a property decomposition technique
[19] as shown in Figure 1a. The basic idea of their method
is to decompose a complex property into several simple sub-
properties based on design structure. After generating tests
for each sub-property, this approach composes the sub tests
to form a test for the original property. Since only part of a
design is involved in the property falsification, the test gen-
eration time of sub-properties can be significantly smaller
than that of the original property. However, the composi-
tion of sub tests cannot be fully automated when there are
complex interactions between components that may lead to
conflicting assignments in sub tests. As a result, composi-
tion of sub tests may require many iterations and/or manual
intervention.

This paper proposes a novel learning-oriented property
decomposition approach, which supports both efficient iden-
tification of property similarity and automated generation of
directed tests. Unlike the test oriented method in [19], our
approach (as shown in Figure 1b) uses decision ordering
based learning derived from the checking of decomposed
sub-properties. Such learning can be used to dramatically
accelerate the original property falsification. It is important
to note that our approach is based on learning from decom-
posed sub-properties, thus it can be fully automated. Since
our target is to reduce the overall test generation time for
a cluster of complex properties, our approach mainly ad-
dresses the following three issues.

1. How to effectively decompose a complex property to
scale down the property checking complexity as well as
achieve profitable learning? This paper proposes prof-
itable spatial, temporal and hybrid decomposition tech-

niques to exploit decision ordering based learning for
complex property falsification.

2. How to automatically utilize learning derived from de-
composed sub-properties to reduce test generation time
of the original complex property? This paper proposes a
method to predict the decision ordering for the complex
property checking based on the results of sub-properties.

3. How to reduce the overall time (learning derivation time
and test generation time) when checking multiple com-
plex properties? This paper proposes two similarity met-
rics for property clustering to enable knowledge sharing
between a cluster of similar properties.

The rest of the paper is organized as follows. Section 2
and Section 3 present related work and background of au-
tomated test generation using SAT. Section 4 proposes our
learning-oriented property decomposition approach. Section 5
proposes an efficient test generation method based on the
decomposition information. Section 6 presents the experi-
mental results. Finally, Section 7 concludes the paper.

2 Related Work

Model checking based property falsification techniques are
promising for automated generation of directed tests [11].
However, due to “state space explosion problem”, Binary
Decision Diagram (BDD) based unbounded model checking
approaches [12] cannot handle complex designs. SAT-based
BMC [3] is a promising alternative to alleviate the capacity
and productivity restrictions over unbounded model check-
ing for many real designs [1]. It has been widely used for
faster bug localization during design verification [5].

The complexity of both designs and properties deter-
mines the model checking performance. To reduce the check-
ing time, various techniques are proposed. Bjesse and Kukula
[4] proposed a method based on the counterexample guided
abstraction refinement. The basic idea is to generate step-
ping stones from the abstracted system and to divide the
search into a number of short searches. Amla et al. [2] intro-
duced a decompositional algorithm for model checking of
timing diagram specifications. Such decompositions can not
only promote the model checking performance, but also en-
able the composition of new regular time graphs hierarchi-
cally. To advance the applicability of model checking tools
to realistic applications, Meyer et al. [24] proposed an auto-
matic decomposition of duration calculus specification into
sub-properties that can be verified quickly and independently.
Koo and Mishra [19] proposed a framework that can decom-
pose a complex property into several simple sub-properties.
By checking all the sub-properties and combining corre-
sponding sub tests, this method can obtain a counterexample
for the original complex property. Although these decompo-
sition techniques are time-efficient, it is difficult to automate
their composition procedure in many scenarios.
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Sharing learning across properties can improve the over-
all test generation performance since repeated validation ef-
forts can be avoided. Based on the observation that conflict
clauses can be replicated and forwarded as variable assign-
ment constraints, various incremental SAT solvers [29,18]
were developed. In the context of Automatic Test Pattern
Generation (ATPG), an incremental SAT framework [30,16]
which stores learned information was proposed. Here, learned
information is used during the search by targeting similar
faults that share a cone of influence. However, these ap-
proaches rely on structural analysis of the circuit and do
not decompose properties. Chen and Mishra [6] noticed that
when checking a large set of relevant properties, SAT in-
stances of similar properties have a large overlap of CNF
clauses and can be clustered. Conflict clauses generated by
the base property can be forwarded to other properties in
the same cluster. Decision ordering information can also be
used to guide the SAT search [22,14]. Strichman [28] pre-
sented a BMC optimization technique based on decision or-
dering derived from the characteristics of BMC formulas.
Wang et al. [31] analyzed the correlation among different
SAT instances of a property. They used the unsatisfiable
core of previously checked SAT instances to derive the vari-
able ordering for the current SAT instance. Zhang et al. [33]
investigated the BMC-specific ordering strategies for SAT
solvers. They proposed an incremental framework for BMC
which uses a clever orchestration approach of variable or-
dering. Chen and Mishra [9] tuned decision ordering based
on the counterexamples of checked properties. Test genera-
tion complexity can be reduced by sharing knowledge (i.e.
conflict clauses and decision ordering) among properties [8].
However, the clustering-based approaches have one major
limitation. The base property (the first property in a clus-
ter) is solved alone without any benefit of learning. There-
fore, the solving time for the base property can be too long
compared to other properties in the cluster. Consequently,
complexity of the base property dominates the overall test
generation time.

To the best of our knowledge, our approach is the first at-
tempt to propose efficient property decomposition and learn-
ing techniques to significantly reduce the overall test gener-
ation time for a large set of properties.

3 Preliminaries

3.1 Test Generation using SAT-Based BMC

Algorithm 1 outlines the test generation procedure using
SAT-based BMC [19]. The algorithm produces a test suite
from: i) a formal description of golden reference model, and
ii) a set of false safety properties in the form of !F(S) in-
dicating the negation of the desired functional scenario S. It
iterates until all the properties are checked. In each iteration,
the bound boundi of each safety property pi is determined

first. Then SAT-based BMC takes model M, negated prop-
erty pi, and bound boundi as inputs and generates a coun-
terexample (test) to falsify the property pi.

Algorithm 1: Test Generation using SAT-Based BMC
Input: i) Formal Design Model, M and

ii) A set of false properties P
Output: Testsuite
TestGen(M,P) begin

TestSuite = φ;
for each property pi in the set P do

boundi = DetermineBound(M, pi);
testi = BMC(M, pi, boundi);
TestSuite = TestSuite ∪ testi;

end
return TestSuite;

end

Determination of bound is hard in general. Similar to
the work described in [10,11], we assume that the bound
of a complex property and decomposed properties can be
estimated by exploiting the structure of underlying models
of designs (see the example shown in Section 4.5).

3.2 SAT Solving – CDCL Algorithm

Since in SAT-based BMC a test is a satisfying assignment
for a SAT instance, the test generation performance is deter-
mined by the SAT solving procedure. Several popular SAT
solvers such as Chaff [26] and MiniSAT [25] adopt the Conflict-
Driven Clause Learning (CDCL) algorithm [21].

Algorithm 2: CDCL based SAT-solving procedure
while TRUE do

run periodic f unctions();
if decide next branch() then

while deduce() == CONFLICT do
blevel = analyze con f licts();
if blevel < 0 then

return UNSAT;
end

end
else

return SAT;
end

end

Algorithm 2 shows a general implementation of CDCL
based SAT solving procedure. It contains three parts:

– Periodic functions update SAT settings periodically, such
as updating literal scores after a certain number of back-
tracks.

– Boolean Constraint Propagation (BCP) is implemented
in deduce(). It determines all possible implications made
by decide next branch().

– Conflict analysis analyzes the reason of conflict and cre-
ates a conflict clause to avoid the same conflict in future
processing, and then does a non-chronological backtrack-
ing up to the closest decision which caused the conflict.
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3.3 Decision Ordering

Decision ordering specifies which variable should be selected
first and which value (true or false) needs to be first assigned
to this variable. Since different decision ordering heuristics
can lead to different SAT search trees [22], decision order-
ing plays an important role in determining the performance
of SAT solving. The decision ordering heuristic VSIDS [26]
is widely used in modern SAT solvers such as MiniSAT [15]
and zChaff [26].

During the SAT solving using MiniSAT, each Boolean
variable is associated with a counter which indicates the pri-
ority for decision ordering at decide next branch(). Initially
the counter value is only determined by the structural infor-
mation of the corresponding CNF file. During SAT solving,
the update of counter values is triggered by specific peri-
odic events (i.e., a certain number of backtracks). Instead
of being divided by a constant factor as implemented in
zChaff, in MiniSAT, variable counters are “bumped” with
larger and larger floating-point based values. When some
variable counter reaches a very large limit value, the value
of all variable counters will be scaled down. All the variable
counter values are stored in a MinHeap, and the function
decide next branch() will choose the variable with the min-
imum counter value for decision.

3.4 Property Learning and Clustering Techniques

According to Equation (1), similar properties are expected
to have a large overlap between their CNF clauses, because
they share both the transition relation T (si,si+1) and part of
property checking (p(si)). Since T (si,si+1) occupies a ma-
jor part of CNF clauses, the clause overlap between sim-
ilar properties is large, which enables the conflict clause
sharing between properties for test generation. Alternatively,
for similar properties, there exists a large overlap between
the variable assignments in corresponding counterexamples.
Therefore, the satisfying assignments of checked properties
are effective to predict the decision ordering for unchecked
properties [7].

To fully exploit the learning potential, [6] identifies four
promising similarity metrics for property clustering.

– Similarity based on structural overlap can be used
when the structure information of the design is provided.

– Similarity based on textual overlap is beneficial when
the properties are well structured, but the information
regarding the design is not available.

– Similarity based on influence can be used when the
cause-effect relations of design component activations
can be inferred.

– Similarity based on CNF intersection can be used when
only the CNF clauses are provided in the absence of both
the design and property information.

Unlike the above clustering methods proposed in [6],
the clustering approaches proposed in this paper are based
on the decomposed sub-properties. Since we consider both
the structure and behavior information of design from the
property perspective, the proposed clustering approaches in
this paper are more beneficial than the methods in [6]. Al-
though [9] presented a promising approach to improve the
base property, it solves the base property using the learning
from the SAT instance itself without using any beneficial
learning from other external sources. In this paper, we in-
vestigate the learning derivation from the decomposed sub-
properties, which is more efficient to accelerate the solving
of a base property.

4 Learning-Oriented Property Decomposition

During model checking based test generation, falsification
of a complex property is very time-consuming. It is promis-
ing to exploit the fact that the test of a complex property and
the tests of its sub-properties usually have a large overlap
in variable assignments. In other words, the results of sub-
property checking can be beneficial for the complex prop-
erty checking.

P

P1

P

a) Without step−stone properties b) With step−stone properties

P3

P’

P2

Fig. 2 An example of test generation with learning

Inspired by the ideas presented in [4], several “step stone”
properties can be exploited to help the complex property
checking. Figure 2 shows the basic idea of our method. In
Figure 2a, due to random search in a decision tree and lack
of guidance by “step stone” sub-properties, the test gener-
ation time is extremely long. In Figure 2b, P1, P2 and P3
represent some sub-functional scenarios of property P, and
property P′ is in the same cluster as P due to their similarity.
Since a sub-functional scenario involves only a small sub-
set of components of the original design, the cost of check-
ing P1, P2 and P3 is typically much lower than checking P.
However, the learning derived from such sub-properties can
be beneficial for checking P, which can reduce the overall
test generation time for P. Furthermore, since P′ is similar
to P (i.e., they have an overlap on two sub-properties P1 and
P3 ), the learning derived from P can also be utilized to ac-
celerate P′’s test generation.
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Definition 1 A property series is a sequence of properties
for sharing knowledge. It is in the form ({P1,P2, . . . ,Pn} : X−→
P), where P is the target property; Pi (1≤ i≤ n) is a benefi-

cial sub-property to derive learning; and “: X−→” indicates that
the learning is based on the decomposition of type X .

In our approach, the goal of property decomposition is to
construct a series of simple properties, which can be used to
derive decision ordering based learning for complex prop-
erty checking. To construct such a property series, we pro-
pose three types of decomposition methods: i) spatial de-
composition which breaks down a complex system-level prop-
erty into several component-level sub-properties, ii) tempo-
ral decomposition which deduces a large-bound property
(i.e., property activated at a late stage) from some smaller
bound properties (i.e., properties activated at earlier stages),
and iii) hybrid decomposition which combines the advan-
tages of both temporal and spatial decompositions for fur-
ther improvement.

4.1 Decision Ordering Based Learning

Generally, the counterexamples of decomposed beneficial
sub-properties have a large overlap in variable assignment
with the original property. They contain rich information to
guide the SAT solving of the base property. Therefore, they
can be used as a learning to bias the decision ordering when
checking the base property. Moreover, when the base prop-
erty checking is done, its checking result contains abundant
learning information (i.e., variable assignments) to guide the
checking of other similar properties in the same cluster.

In SAT search, decision ordering plays an important role
to quickly find a satisfying assignment. In our test genera-
tion framework, we developed a heuristic to predict the de-
cision ordering based on the statistics collected from the de-
composed sub-properties as well as checked complex prop-
erties (see details in Section 5.2).
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Fig. 3 Decision ordering prediction based on learning information

Figure 3 shows the basic idea of our heuristic. In a de-
cision tree, each node indicates a Boolean variable. The left
branch of the node means that the variable is assigned with
true, while the right branch denotes the false assignment1.
Each edge of the tree is associated with a weight, which is
used to predict the decision ordering. Assume that we are
checking two similar complex properties P and P′, and P
is checked first. The property P with a bound of 3 has two
beneficial sub-properties p1 and p2 with bound 1 and 2, re-
spectively. Assume that we always check the variables in the
order of a, b, c. Initially, since the weight on all edges is set
to 0, there is no learning when checking p1. However, after
checking p1, the weighted edges will be updated based on
the result of p1 (i.e., a = 0, b = X , c = X). In this case, the
weight of the edge a = 0 will be increased by the bound of
p1 (i.e., 1). Then the decision ordering for p2 can be pre-
dicted based on the result of the updated decision tree. As
indicated by the solid arrow line, when checking p2, the as-
signment of a is more likely to be false, and the value of b
and c are unknown. Similarly, we can predict the decision
ordering for P and P′ based on the learning derived from the
checked properties.

4.2 Spatial Property Decomposition

A complex property may describe a functional scenario with
multiple component interactions. Spatial property decompo-
sition tries to partition such a complex functional scenario
into several sub-functional scenarios which involve fewer
component interactions.
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Fig. 4 An illustration of spatial property decomposition

As shown in Figure 4a, assume that property P can be
broken into 3 component level sub-properties P1, P2 and P3
with different Cone of Influence (COI)2, where COI(Pi) ⊂
COI(P) (1 ≤ i ≤ 3). As shown in Figure 4b, the spatial de-
composition tries to construct a property series ({P1,P2,P3}

1 In this paper, v = 1, v = 0 and v = X indicate that the Boolean
variable v equals to true, false and UNKNOWN respectively.

2 Here, COI indicates the variables involved during the property
checking.
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: S−→ P), where : S−→ indicates that the learning is derived from
spatial decomposition. For a complex design, when check-
ing a sub-property such as Pi (with bound K, 1≤ i≤ 3) with
a smaller COI, it usually needs much less time and memory
than P. However, the knowledge learned from Pi can be very
useful for test generation of property P.

A Linear Temporal Logic (LTL [12]) formula consists
of temporal operators (G, F, X, U) and Boolean connectives
(∧, ∨, ¬ and →). When a property involves complex logic
formula syntax, after proper transformation, it can be de-
composed into a set of sub-properties. If partial counterex-
amples generated by the sub-properties can be processed to
guide the complex property falsification, the original prop-
erty is spatially decomposable.

Definition 2 A false safety property P is spatially decom-
posable if all of the following conditions hold.

– P can be transformed to the property in the form of p1∧
p2 ∧ . . .∧ pn or in the form of p1 ∨ p2 ∨ . . .∨ pn, where
the bounds of sub-properties pi (1≤ i≤ n) are the same.

– There exists a property series such that ({pi} : S−→P) (1≤
i≤ n).

It is important to note that, if the original property is in
the form p1∧ p2∧ . . .∧ pn, then at least one sub-property pi
(1≤ i≤ n) is required to have a counterexample. The bound
of P is the minimum bound of pi which has a counterexam-
ple. If the original property is in the form p1∨ p2∨ . . .∨ pn,
then every sub-property pi (1 ≤ i ≤ n) should be false. The
bound of P is the maximum bound of all decomposed sub-
properties.

According to Definition 2, the following rules can be
used for complex property decomposition.

¬X(p∨q)≡ ¬X(p)∧¬X(q)

¬X(p∧q)≡ ¬X(p)∨¬X(q)

¬F(p∨q)≡ ¬F(p)∧¬F(q)

(2)

In the context of test generation using some fault models
[6], the properties are typically in the form of ¬F(p∨ q),
¬F(p→ q) and ¬F(p∧ q). For a complex property in the
form of ¬F(p∨q), it can be decomposed into a conjunctive
form p1∧ p2∧ . . .∧ pn. In this case, it is not necessary to use
the learning information. Since the size of SAT instances
derived from model checkers partially reflects the COI and
bound information of properties, our framework needs to
sort the sub-properties pi (1 < i ≤ n) according to the in-
creasing size of their SAT instances. The counterexample of
the first falsified property can be used as a counterexample
for the complex property.

It is important to note that the properties in the form of
¬F(p∧ q) or ¬F(p→ q) cannot be directly decomposed
into conjunctive or disjunctive form. However, by explicitly

introducing the notion of a synchronous clock variable clk
[19], the properties in the form of ¬F(p∧q) can be spatially
decomposed as shown in the Equation (3).

¬F(p∧q) = f alse

≡ ¬F(p∧q∧ clk = k) = f alse

≡ (¬F(p∧ clk = k)∨¬F(q∧ clk = k)) = f alse

≡ (¬F(p∧ clk = k) = f alse)∧ (¬F(q∧ clk = k) = f alse)

where k = bound of ¬F(p∧q).
(3)

It implies that the counterexample of ¬F(p∧ q) can bene-
fit from the counterexamples of ¬F(p∧clk = k) and ¬F(q∧
clk= k), i.e., ({¬F(p∧clk= k),¬F(q∧clk= k)} : S−→¬F(p∧
q)).

For a property in the form ¬F(p→ q), it cannot be di-
rectly transformed into ¬F(¬p∨ q). In ¬F(p→ q), p de-
notes the pre-condition and q indicates the post-condition.
When G(¬p) holds, ¬F(p→ q) = f alse will be vacuously
true, and the checking of¬F(p→ q) will report a counterex-
ample without satisfying the precondition p. This counterex-
ample cannot match the original testing intention. For the
purpose of test generation, in our decomposition approach,
the properties in the form of ¬F(p→ q∧ clk = k) can be
transformed to ¬F(p∧ q∧ clk = k) where k equals to the
bound of ¬F(p∧ q). The Equation (3) then can be used to
decompose the property ¬F(p∧q∧ clk = k).

Note that when checking a complex property which can
be decomposed in disjunctive form, it is not necessary to
check all its sub-properties. If the COI of a sub-property
is similar to the original property, the complexity of such
sub-property will be similar to the complex property. In this
case, the learning is not economical. In other words, the sub-
properties with smaller COI than the complex property need
to be checked.

When a complex property involves too many atomic sub-
properties, checking each of them individually may not de-
rive useful learning, since each atomic sub-property only
have a narrow view of the system. In this case, the com-
mutative and associative laws can be used to classify atomic
sub-properties into several groups. For example, in Equa-
tion (4), pi and pk are grouped together, and p j belongs to
another group.

pi∨ p j ∨ pk = (pi∨ pk)∨ p j (4)

For each group, we generate a refined property which rep-
resents all the atomic sub-properties in the group to derive
learning. For grouping, the following rules based on mod-
ular and functional information work well for most of the
time.
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– Modular similarity: In each group, all the variables in
the sub-formulas should come from the same component
(e.g., fetch module in a processor design).

– Functional similarity: In each group, all the sub-formulas
should describe related functional scenarios (e.g., fetch-
ing instructions/data in a processor design).

Algorithm 3 outlines our spatial decomposition method
to derive a set of refined sub-properties with small COI for
deriving learning. The inputs of the algorithm are the design
model D and the complex property P in disjunctive form.
Step 1 initializes the SD props with an empty set. Step 2
tunes sub-properties’ order according to the commutative
law and groups sub-properties using the specified similar-
ity grouping rules. Step 3 selects the ith group of k sub-
properties. If the combined COI of such a group is smaller
than k

n of P′s COI, step 4 will generate a refined property
newP for the ith cluster, and step 5 adds newP to SD props.
Finally this algorithm returns a series of sub-properties for
deriving learning (described in Section 5.2). Since the COI
of refined properties is small, the test generation complex-
ity for the whole sub-property series is expected to be much
smaller than that of the original complex property. It is im-
portant to note that Algorithm 3 may return an empty prop-
erty series if spatial decomposition is not beneficial.

Algorithm 3: Spatial Decomposition
Input: i) The design model, D and

ii) A property P in the form p1∨ p2∨ . . .∨ pn
Output: A property series using spatial decomposition
spatial decompose(D,P) begin

1. SD props = {};
2. (group1, . . . ,groupm) =
grouping(P,modular/ f unctional);
for i is from 1 to m do

3. groupi = {prop1, . . . , propk} ;
if COI(groupi)≤ k

nCOI(P) then
4. newP = prop1∨ . . .∨ propk;
5. SD props = SD props

⋃
{newP};

end
end
return (SD props : S−→ P);

end

4.3 Temporal Property Decomposition

In event-driven designs, a transaction consists of a sequence
of correlated events, whose order can be used to indicate
different stages of a dynamic system behavior. When gen-
erating a directed test for activating such a transaction, the
corresponding property is specified to validate a single event
or a scenario (a sequence of events). If the investigated event
has a large delay (i.e., bound), the complexity of the prop-
erty checking using SAT-based BMC will increase drasti-
cally, because it requires increased unrollings of the design.

P

P2

P1

k1

k2

k

Fig. 5 An illustration of temporal property decomposition

Temporal property decomposition tries to eclipse the ef-
fect of bound. The basic idea of temporal decomposition
is to deduce the long bound property from a sequence of
short bound properties, i.e. to construct a property series
({P1,P2, . . . ,Pn} : T−→P) where bound(Pi)< bound(Pi+1) (1≤
i < n), and : T−→ indicates that the learning can be achieved
from temporally decomposed sub-properties. For example
in Figure 5, P1 and P2 are sub-properties representing dif-
ferent stages of property P. The bound of them are k1, k2,
and k respectively and k1 < k2 < k. Because P1’s counterex-
ample is similar to the prefix of P2’s counterexample, P1’s
counterexample contains rich knowledge that can be used
for checking P2. Similarly, during the property checking, P
can benefit from both P1 and P2. By using such learning, we
can quickly obtain a counterexample for P.

Definition 3 Let P be a false safety property of the design,
and P is temporally decomposable if all of the following
conditions are satisfied.

– P can be decomposed into false properties p1, p2, . . ., pn
with increasing bounds and P = pn.

– ({¬pi} : T−→¬pi+1) (1≤ i≤ n−1), which indicates that
the counterexample generated from properties pi can guide
the test generation for property pi+1. We use ({¬p1,¬p2,

. . . ,¬pn−1} : T−→ P) to denote ({¬pi} : T−→¬pi+1) (1≤ i≤
n−2), and ({¬pn−1} : T−→ P).

In temporal decomposition, finding the implication re-
lation (“: T−→”) between properties is a key process. In our
framework, we construct such implication relation by ex-
ploring the partial order of events. For example in Figure 6,
there are 3 transactions, and each transaction has two events.
We classify the relation between these events in two cate-
gories. The cause-effect relation (marked by⇒) defines the
causal relation between inter-transaction events. For exam-
ple, there are two events e1 and e5 in transaction T 1. e1⇒ e5
means that if e1 happens, e5 should happen in future. The
happened-before relation (marked by ≺) specifies the re-
lation between events. It indicates which events may hap-
pen before other events under some condition. For instance,
e3 ≺ e5 means that e3 may happen before e5.
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During test generation, we apply properties in the form
¬F(e) to indicate that the event e cannot be activated. Gen-
erally, if the event happens with a large delay, BMC needs to
unroll the design many times that can drastically increase the
checking complexity. According to Definition 3, the “⇒”
relation can be used to derive learning. For example, in Fig-
ure 6, instead of checking the property P1 = ¬F(e5) di-
rectly, we can check P2 = ¬F(e1) first. Since e1 ⇒ e5 im-
plies F(e1)→ F(e5) ( i.e., ¬P2→¬P1), it indicates that P2’s
counterexample can be used to guide the generation of P1’s
counterexample. This can be written as ({P2} : T−→ P1). The
“≺” relation also can be used to indicate the learning infor-
mation.

e1 e5

e4e2

e3 e6

T1

T2

T3

Fig. 6 A sequence of three transactions

In Figure 6, e3 ≺ e5 indicates that the counterexample of
¬F(e3) is shorter than the counterexample of ¬F(e5). Al-
though the occurrence of e3 may not lead to the occurrence
of e5, the counterexample of ¬F(e3) may still have a large
overlap of variable assignments with the counterexample of
¬F(e5). Therefore the happened-before relation can be used
as a weak form of implication defined in Definition 3. It is
important to note that the cause-effect relation is a stronger
form of happened-before relation.

Event Happen beforeCause effect

e3 e5e4

e1 e2 e7 e8 e9

1
3

1 2

2

2 155

e6

Fig. 7 An example of event relation graph

When checking a property with a large bound, there may
be many events along the path to the target events. Checking
all of them individually is time-consuming. In fact, only the
events that follow branching and merging points along the
path from initial events to target events need to be consid-
ered since they are important in determining the execution
order, while the other points are only used to indicate “⇒”
relations. For example, in Figure 7, the relation between
events is described using a directed acyclic graph (DAG).

Such information can be derived from the graph model auto-
matically by exploring the structure of the given graph mod-
els (see the examples in Section 4.5). In a DAG, each node
indicates an event; each directed edge indicates the relation
of⇒ or≺; and the weight on each edge is the delay between
two adjacent events. In this DAG, there are 8 events before
e9 (i.e., the target event). For the temporal decomposition in
this DAG, it is beneficial to consider only the branching and
merging events e1, e3 and e7.

Algorithm 4: Temporal Decomposition
Input: i) Formal model of design, D

ii) A property P = ¬F(dest) where dest is a target event
Output: A property series using temporal decomposition
temporal decompose(D,P) begin

1. (D′, src) = event graph(D,P);
2. path = Dijkstra(D′, src, dest) to find a shortest path;
3. T D events = {¬F(src)};
for i is from 2 to len (number of events in path) do

4. (ei−1,ei) = (i−1)th edge of path;
if out degree(ei−1) + in degree(ei)> 2 then

5. T D events = T D events
⋃
¬F(ei);

end
end
return (T D events : T−→¬F(dest));

end

Algorithm 4 describes how to obtain a sequence of sub-
properties for temporal decomposition. It accepts the for-
mal model of the design and a complex property indicat-
ing the target event. Step 1 figures out the corresponding
event graph of the design as well as the source event. Since
BMC can detect errors within smallest range, we use Dijk-
stra’s algorithm [13] to find a smallest delay path in Step
2. Step 3 initializes the set T D events with the sub-property
based on initial event. Steps 4 and 5 select the branch events
and append corresponding sub-properties to the T D events.
Finally the algorithm reports the sub-property series gen-
erated by temporal decomposition. By using this algorithm,
({¬F(e1),¬F(e3),¬F(e7)} : T−→¬F(e9)) is a property series
for temporal decomposition in Figure 7.

4.4 Hybrid Decomposition

Spatial decomposition is promising for the properties in the
form of p1 ∧ p2 . . .∧ pn or p1 ∨ p2 . . .∨ pn. However, when
the COI of decomposed sub-properties is large, spatial de-
composition may not be economical due to long learning
derivation time. As an alternative, temporal decomposition
exploits learning from different stages of designs. However,
in many scenarios, it is hard to figure out the cause-effect
and happened-before relations from designs.

Figure 8 shows a part of a design. Assume that we need
to generate a test to exercise three events e1,3, e2,2, and e3,4 at
the same time, i.e. clk = k, the corresponding false property
would be P = ¬F(e1,3∧ e2,2∧ e3,4∧ clk = k). By using spa-
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tial decomposition, we can decompose P and achieve a prop-
erty series ({¬F(e1,3∧clk= k),¬F(e2,2∧clk= k),¬F(e3,4∧
clk = k)} : S−→ P) for test generation. However, since e1,3,
e2,2, and e3,4 may have large COI, the test generation will
fail because checking SAT instances of sub-properties may
be more costly than the original property. Temporal decom-
position is promising to handle the properties of large bounds.
Since (e1,1∧ e2,1∧ e3,1∧ clk = k−4)⇒ (e1,3∧ e2,2∧ e3,4∧
clk = k), it indicates that ({¬F(e1,1∧ e2,1∧ e3,1∧ clk = k−
4)} : T−→ P). However, ¬F( e1,1 ∧e2,1 ∧ e3,1 ∧ clk = k− 4)
may still have large SAT instance size, which needs a long
checking time.

2

2

2

4

1

1

e1,1

e1,2

e2,1

e2,2

e3,1

e1,3

e3,3
e3,2

e3,4

1
1

e2,3

Component1 Component2 Component3

1

Fig. 8 An example of hybrid decomposition

To address this issue, we can utilize the hybrid decom-
position combining both spatial decomposition and tempo-
ral decomposition. As an example for P, we can get four
property series as follows:

1. ({¬F(e1,3∧clk = k),¬F(e2,2∧clk = k),¬F(e3,4∧clk = k)} : S−→P)

2. ({¬F(e1,1∧ clk = k−4)} : T−→¬F(e1,3∧ clk = k))

3. ({¬F(e2,1∧ clk = k−4)} : T−→¬F(e2,2∧ clk = k))

4. ({¬F(e3,1∧ clk = k−4)} : T−→¬F(e3,4)∧ clk = k)

Although checking ¬F(e1,3), ¬F(e2,2), ¬F(e3,4) indi-
vidually without learning can be costly, the overall test gen-
eration time can be drastically reduced because of the tem-
poral decomposition shown in property series (2) - (4). It
is true that we can consider the above property series as
a dependence graph. As shown in Figure 9, the property
P depends on ¬F(e1,3), ¬F(e2,2) and ¬F(e3,4); ¬F(e1,3)

depends on ¬F(e1,1); ¬F(e2,2) depends on ¬F(e2,1); and
¬F(e3,4) depends on ¬F(e3,1).

F(e3,4   clk=k)F(e2,2   clk=k)F(e1,3   clk=k)

F(e1,1   clk=k−4) F(e2,1   clk=k−4)

v v

v v v

v v v

p =   F(e1,3    e2,2    e3,4    clk=k)

v

F(e3,1   clk=k−4) 

Fig. 9 An example of property dependence

Similarly, when checking the property P′=¬F(e2,3) with
a bound k, it is hard to do the spatial decomposition. To
achieve learning for test generation, we can use the hybrid
decomposition which first temporally decompose the com-
plex property and then spatially decompose the property. It
is important to note that only the temporally decomposed
sub-property with the smallest bound needs to be spatially
decomposed. In the example of decomposition of P′, we can
get two property series for test generation of P′ as follows:

1. ({¬F(e1,1 ∧ e2,1 ∧ e3,1 ∧ clk = k− 5),¬F(e1,3 ∧ e2,2 ∧ e3,4 ∧ clk =

k−1)} : T−→ P′)

2. ({¬F(e1,1 ∧ clk = k− 5),¬F(e2,1 ∧ clk = k− 5),¬F(e3,1 ∧ clk =

k−5)} : S−→¬F(e1,1∧ e2,1∧ e3,1∧ clk = k−5))

Algorithm 5 describes our hybrid decomposition method.
The inputs of the algorithm are a formal model of the de-
sign and a complex property P. Step 1 initializes an empty
property series set PS. Step 2 tries to decompose property P
spatially and step 3 figures out the corresponding beneficial
sub-properties defined in Definition 1. If P cannot be spa-
tially decomposed, step 4 puts P to the property set props for
the second try of spatial decomposition in steps 7 and 8. Oth-
erwise, step 5 includes the property series into PS. Then the
algorithm tries to decompose each beneficial sub-property
temporally in step 6. If P cannot be spatially decomposed in
step 2, step 7 selects the beneficial sub-property p with the
smallest bound, and step 8 applies spatial decomposition on
p. Step 9 incorporates the property series derived from tem-
poral decomposition into PS. Finally, the algorithm reports
property series PS for test generation.

Algorithm 5: Hybrid Decomposition
Input: i) Formal model of the design, D

ii) A complex property P
Output: A set of property series, PS
hybrid decompose(D,P) begin

1. PS = {};
2. s series = spatial decompose(D,P);
3. props = bene f icial property(s series);
if |props|== 0 then

4. props = {P};
else

5. PS = PS
⋃

s series;
end
foreach property pi ∈ props do

6. t series = temporal decompose(D, pi);
if |bene f icial property(t series)|> 0 then

if props == {P} then
7. p = f irst element(t series);
8. PS = PS

⋃
spatial decompose(D, p);

end
9. PS = PS

⋃
t series;

end
end
return PS;

end
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4.5 An Illustrative Example

This section presents an example to illustrate the use of de-
composition methods using a MIPS processor design shown
in Figure 10. The figure shows the graph model of a MIPS
processor. It consists of five pipeline stages: fetch, decode,
execute, memory and writeback. It has four pipeline paths in
the execute stage: ALU for integer ALU operation, FADD
for floating-point addition operation, MUL for multiply op-
eration and DIV for divide operation. In the figure, solid
ovals denote functional units; dashed ovals are storages; solid
edges are instruction-transfer (pipeline) edges; and dashed
edges are data-transfer edges. Assume that we want to check
a complex scenario that the functional units MUL5 and FADD3
will be active at the same time. We need to generate the
property P=!F(MUL5.active= 1&FADD3.active= 1) which
is the negation of the desired behavior. The remainder of this
section describes how to perform property checking using
spatial, temporal and hybrid decompositions.

Fetch

FADD2

FADD3

FADD4

WriteBack

MEM

MUL1 FADD1

Decode

IALU

MUL7

DIV

RegFile

Memory

MUL5

Instruction Flow
Data Transfer

P: ! F(MUL5.active = 1 & FADD3.active = 1)

/* Original Complex Property */

Fig. 10 A VLIW MIPS process example

4.5.1 Example of Spatial Decomposition

In the MIPS design, assume that each functional unit has
a delay of one clock cycle. To trigger the functional unit
MUL5.active, at least 7 clock cycles are required (there are
7 units along the path Fetch → Decode → . . . → MUL5).
Similarly, to trigger the functional unit FADD3.active, at
least 5 clock cycles are required. To guarantee that both units
are active at the same time, at least 8 clock cycles are re-
quired to activate this interaction - the first clock cycle is
used for instruction initialization; then a MUL instruction
is fetched in the second clock cycle, and an FADD instruc-
tion is fetched in the fourth clock cycle, and so on. Thus the
bound of this property is 8. According to Equation (3) and

Algorithm 3, property P can be spatially decomposed into
two sub-properties as follows. Assuming that the COI of P1
and P2 are both smaller than half of COI of P, we can get
the property series ({P1,P2} : S−→ P). It is important to note
that the exact value assigned to clk is based on the bound of
the property.

/* Spatially decomposed properties*/
P1: !F(MUL5.active=1 & clk=8)
P2: !F(FADD3.active=1 & clk=8)

When checking P1 and P2 individually, we can get the
following two counterexamples.

Cycles P1’s Counterexample P2’s Counterexample
1 NOP NOP
2 MUL R2, R2, R0 NOP
3 NOP NOP
4 NOP FADD R1, R1, R0

... ...

However, if the test generation of P2 is under the guid-
ance of P1’s result, the counterexample of P2 will reflect
P1’s partial behavior (see clock cycle 2 below). It can be ob-
served that P2’s counterexample has a large overlap with P’s
counterexample. Thus the counterexamples of both P1 and
P2 can be used to derive decision ordering based learning
(see Section 5.2) for P’s checking.

Cycles Counterexample for P2 guided by P1
1 NOP
2 MUL R2, R2, R0
3 NOP
4 FADD R1, R1, R0

...

4.5.2 Example of Temporal Decomposition

For temporal decomposition, we need to figure out the event
implication relation first. Because we want to check the prop-
erty P, the target event is MUL5.active= 1&FADD3.active=
1. Figure 11 shows the implication relation for this event.
There are 7 events in this graph, and e7 is the target event.

DIV

MUL3

MUL3

IALU

e4e2

e3

e5

e1 e6

FETCH

MUL1 MUL2

DECODE

MUL3

FADD1

MUL4

FADD2

MUL5

FADD3

e7

1 1

1

11

1

1

1 1

Fig. 11 The event implication graph for property P

Assuming e1 is the initial event, from e1 to e7, there is
only one path e1→ e2→ e4→ e6→ e7. Along this path there
is a branch node e4. According to Algorithm 4, we need to
check two events e1 and e4 using following properties. We
can get the property series ({P e1,P e4} : T−→ P).
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By using our learning technique during the test gener-
ation, P e1 can benefit P e4, and P e4 can benefit P. It is
important to note, from e4 to e7, there are no branch nodes.
In other words, if e4 is triggered, then e7 should be triggered
2 clock cycles later. That means, the test for P e4 is also a
test for P.

/* Temporally decomposed properties*/
P_e1: !F(FETCH.active=1 & MUL1.active=1)
P_e4: !F(MUL3.active=1 & FADD1.active=1)

4.5.3 Example of Hybrid Decomposition

By using our hybrid decomposition method described in Al-
gorithm 5, the complex property P can be first spatially de-
composed and then temporally decomposed. In this case,
the spatial decomposition is the same as the example shown
in Section 4.5.1. Therefore we can get the property series
({P1,P2} : S−→ P). Since each of the properties (P1 and P2)
is related to only a single pipeline path, they can be further
decomposed temporally. P1 can be decomposed into a prop-
erty series ({P1 1,P1 2} : T−→ P1), and P2 can be decom-
posed into a property series ({P2 1,P2 2} : T−→ P2), where
P1 1, P1 2, P2 1 and P2 2 are described as follows.

/* Properties decomposed by hybrid method*/
P1_1: !F(Fetch.active=1 & clk=2)
P1_2: !F(MUL1.active=1 & clk=4)
P2_1: !F(Fetch.active=1 & clk=4)
P2_2: !F(FADD1.active=1 & clk=6)

5 Test Generation using Property Decomposition and
Learning Techniques

In our framework, the decomposed sub-properties have two
utilities: i) they can be used to efficiently cluster similar
complex properties; and ii) they can be used to derive de-
cision ordering based learning to reduce the test generation
time. We have developed a test generation framework based
on property decomposition and learning techniques.

Figure 12 shows the overview of our test generation frame-
work. Firstly, properties are decomposed based on the struc-
ture information of the design. Since this step only analyzes
the structure of the design, the decomposition overhead is
negligible compared to model checking complexity. Then
by comparing the similarity of decomposed sub-properties,
complex properties are grouped into several clusters. The
accumulative learning (shown using arrow towards “Learn-
ing” box) from the decomposed beneficial sub-properties as
well as the checked complex properties in a specific prop-
erty cluster can be utilized to improve the test generation
time of unchecked complex properties. It is important to
note that, in our approach, only the base property check-
ing directly utilizes the learning from its sub-properties. The

non-base property solving is based on accumulative learn-
ing from both checked sub-properties and the base property.
The following sub-sections will describe our test generation
approach in detail.

Properties
Non−base

Base property

Generation

Test

Formal Model
Generation

Property
Decomposition

Design Specification Complex Properties

C
h

ec
k

in
g

Formal Model
Beneficial

Sub−Properties

Learning

Cluster

Clustering

Property

Validation

Specification Implementation

Validation
Tests

Checking

Fig. 12 Our test generation framework

5.1 Clustering using Decomposition Based Similarity

By decomposing a complex property into several sub-properties,
spatial and temporal methods unveil different aspects of a
system via utilizing structure and behavior information. For
spatial decomposition, decomposed sub-properties involve
fewer functional components, which in turn indicate par-
tial behavior of the original complex property. For tempo-
ral decomposition, decomposed sub-properties infer differ-
ent execution stages which can be considered as stepping
stones of the desired behavior. Based on above facts, decom-
posed sub-properties can be used as preferable candidates to
determine the similarity between complex properties. They
can be used to cluster similar properties together for sharing
learning.

Definition 4 Assume that two properties P and P′ can be
spatially decomposed, and their property series are ({p1, p2,

. . ., pm}:
S−→P) and ({p′1, p′2, . . ., p′n}:

S−→ P′) respectively. Let
|A| denote the cardinality of the set A. The spatial similarity
between property P′ and P is

|{p1, p2, . . . , pm}
⋂
{p′1, p′2, . . . , p′n}|

Max(|{p1, p2, . . . , pm}|, |{p′1, p′2, . . . , p′n}|)
×100%

To reduce the complexity of a property, spatial decompo-
sition divides a complex property syntactically. The spatial
similarity can be simply determined by checking how many
sub-properties are same between properties.

For example, assume that there are two spatially decom-
posed property series ({a, b, c}: S−→P) and ({b, c, d, e}: S−→P′).
The spatial similarity between P and P′ is 50%.
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Unlike spatial decomposition, temporally decomposed
sub-properties denote the potential events during the system
execution. The behavior of the original complex property
can be considered as an ordered sequence of such events
(sub-properties). For two complex properties, the more sim-
ilarity between two event sequences implies that more learn-
ing can be shared between two original complex properties.
In our method, the temporal similarity is based on the match-
ing of same segments between two event sequences.

Definition 5 Assume that two properties P and P′ can be
temporally decomposed, and their property series are ({p1,

p2, . . ., pm}:
T−→P=pm+1) and ({p′1, p′2, . . ., p′n}:

T−→ P′=p′n+1)
respectively. Let σ(P, i) denote the consecutive sub-property
pair (pi, pi+1) of P, and δ(P, i) = bound(pi+1) - bound(pi)
denote the bound difference between two elements of the
pair. Let α(σ(P, i),P′) be a Boolean predicate (0 means false,
1 means true) to determine whether σ(P, i) is a consecutive
sub-property pair of P′. The temporal similarity of P′ over P
is

Σm
i=1 (δ(P, i)×α(σ(P, i),P′))

Max(Σm
i=1 δ(P, i),Σn

j=1 δ(P′, j))
×100%

For example, let P.b indicate that the bound of property P is
b. Assume that there are two temporally decomposed prop-
erty series ({a.1, b.3, c.5}: T−→P.10) and ({b.3, c.5, d.8, e.9}: T−→
P′.10). The temporal similarity between P and P′ is 20%.

As shown in Algorithm 5, hybrid decomposition approach
adopts both spatial and temporal methods. We can consider
the hybrid method as a two-phase method (i.e., first spa-
tial decomposition and then temporal decomposition, or vice
versa). Since the second phase only decomposes light-weight
sub-properties for further improvement, it can be ignored for
similarity checking. In other words, the first phase of hybrid
method plays a key role in similarity checking. In the case
of spatial decomposition followed by temporal decomposi-
tion, the sub-properties derived from spatial decomposition
already show the similarity between properties. Similarly,
in the case of first temporal decomposition and then spatial
decomposition, only one sub-property with smallest bound
is involved for spatial decomposition. Therefore the tempo-
rally decomposed sub-properties are enough to determine
the similarity between complex properties in this case.

5.2 Derivation of Decision Ordering Based Learning

Unlike the heuristics proposed in [9], we consider the bound
information in our variable assignment statistics (an illus-
trative example is shown in Figure 3). Let varStat[sz+1][2]
(sz is the variable number for a complex property) be a 2-
dimensional array to keep literal statistics. Initially, varStat
[i][0] = varStat[i][1] = 0 (1≤ i≤ sz). Since spatially decom-
posed sub-properties have the same bounds and are checked
first, in our approach, the weight of such sub-properties is set

to 1. However for temporal decomposition, the sub-property
with larger bound can provide better support to the origi-
nal property. Therefore, the weight of temporally decom-
posed sub-properties is equal to its real bound. When the
base property checking is done, the weight change on literals
also equals to the bound of the checked complex property.

Algorithm 6: Update of Weight Statistics of Literals
Input: i) The variable assignment statistics varStat

ii) A test generated from a checked property P
iii) WeightP, which is the weight of P

Output:
Update(varStat, test,WeightP) begin

for i is from 1 to sz do
if test.VarAssign[i] == 0 then

1. varStat[i][0] += WeightP;
end
if test.VarAssign[i] == 1 then

2. varStat[i][1] += WeightP;
end

end
end

Algorithm 6 describes our approach to achieve the ac-
cumulative weight for all literals to predict decision order-
ing of unchecked properties. After each property checking,
varStat will be updated. Based on the satisfying variable as-
signment (i.e., test) of P, each element of varStat[i][ ] will be
increased by boundP according to the value of the variable
vi (i.e., test.VarAssign[i]). It is important to note that, if vari-
able k is not determined yet when checking P, the value of
both varStat[k][0] and varStat[k][1] will remain unchanged.
By using Algorithm 6, the decision ordering heuristic of
unchecked properties is gradually tuned by the checked prop-
erties based on the information saved in varStat.

MiniSAT employs a variant of the VSIDS heuristic. How-
ever, MiniSAT does not support explicit ordering for liter-
als. It only keeps activity scores for variables and clauses,
which cannot be used to predict the variable polarities (i.e.,
Boolean values of variables). Based on the statistics col-
lected in varStat, if a variable has not been determined yet,
its polarity can be predicted at the beginning and the restart
of the search using the following formula:

polarity(vi) =


true (varStat[i][1]> varStat[i][2])

f alse (varStat[i][1]< varStat[i][2])

skip (varStat[i][1] = varStat[i][2])

5.3 Test Generation using Our Method

Algorithm 7 outlines our test generation approach illustrated
in Figure 12. The inputs of the algorithm are a formal model
of the design, a property set P and corresponding satisfying
bounds, and the similarity threshold for property clustering.
In Algorithm 7, step 1 initializes DecompProp and testP.
Step 2 decomposes all the complex properties and step 3
clusters them according to decomposition based similarity.
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For each property cluster, steps 4-13 utilize both decom-
position and learning techniques to reduce the overall test
generation time. Step 4 initializes varStat and step 5 de-
composes p′0 (p′0 is the base property, i.e., the property to
check first) into a set of properties props by applying suit-
able decomposition methods. Step 6 translates the decom-
posed sub-properties into a set of CNFs for SAT solving.
To handle the simpler sub-properties first, step 7 sorts the
encoded CNFs according to their DIMACS file size. Steps
8 and 9 solve each decomposed sub-property individually,
and update varStat accordingly. Since the complex proper-
ties in cluster Clu are assumed to be similar to p′0, steps 10-
13 check the m+1 (m≥ 0) properties one-by-one based on
the statistics collected in varStat. Finally, step 14 reports the
test set testP for all properties in P.

Algorithm 7: Our Test Generation Approach
Input: i) Formal model of the design, D

ii) Property set P = {p0, p1, . . . , pn}, with satisfying
bounds

iii) similarity to cluster properties
Output: Directed test set testP for P
OurTestGenApproach(D,P,similarity) begin

begin
1. DecompProp = {}, testP = {};
for i is from 1 to the n do

2. DecompProp =
DecompProp

⋃
decompose(D, pi) ;

end
3. PropClusters =
Cluster(P,DecompProp,similarity);
foreach cluster Clu = {p′0, . . . , p′m} ∈ PropClusters
do

4. Initialize varStat;
5. (props′,bounds′) = decompose(D, p′0);
6. CNFs = BMC(D, props′, bounds′);
7. (CNF1, . . . ,CNFk) = sort CNFs using
increasing DIMACS size;
for i is from 1 to the k do

8. testi = SAT (CNFi, varStat);
9. Update(varStat, testi, bounds′CNFi

) ;
end
for j is from 0 to the m do

10. CNFp′j = BMC(D, p′j , boundsp′j );
11. testp′j = SAT (CNFp′j , varStat);
12. testP = testP

⋃
testp′j ;

13. Update(varStat, testp′j , boundp′j );
end

end
14. return testP

end
end

6 Experiments

In this section, we present two case studies: a MIPS pro-
cessor design and a stock exchange system. Both of them
are generated from high-level graph models [10], which en-
able automatic analysis of spatial and temporal decomposi-
tions. The design is transformed into a formal specification.
The testing targets (based on fault modes) are converted into

properties. Based on the graph traversal on the graph mod-
els using the breadth-first-search approach, the decomposi-
tion of each complex property of the two case studies can
be conducted within 0.01 second, which is far less than the
SAT solving time of the complex property. Therefore, we do
not provide the property decomposition time explicitly in the
experiment. They are included in either the sub-property or
complex property checking time. We used NuSMV [27] to
generate SAT instances (in DIMACS format) for automated
test generation. Since from graph models we can figure out
the bound of each property, the derived SAT instances are
all satisfiable. In our approach, we assume that there exists a
larger overlap between the variable assignments of original
complex property and decomposed sub-properties. Accord-
ing to the observation that decision ordering-based learning
are more effective than conflict-based learning under this
assumption [7], we only investigate the decision ordering-
based learning in our decomposition-based test generation
approach. To incorporate our learning-based techniques, we
modified the SAT solver MiniSAT-2.2 [25], which supports
efficient decision ordering tuning. The experimental results
are obtained on a Linux PC using 2.0GHz Core i7 CPU with
3 GB RAM. Since the intra- and inter-property approach [9]
outperforms the methods described in [6], we only compare
our method to the heuristics proposed in [9].

6.1 A MIPS Processor Design

This section demonstrates the effectiveness of our approaches
using a pipelined MIPS processor design illustrated in Sec-
tion 4.5. Since interactions between functional components
[19] are recognized as complex scenarios, in this case study,
the directed tests are generated for interaction faults.
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Fig. 13 Test generation results using MiniSAT

We selected 14 complex properties from the MIPS de-
sign based on the “2-interaction fault model”3. To check
each property individually, Figure 13 shows the test gen-
eration results using MiniSAT with different learning tech-
niques. When MiniSAT is used for the SAT solving, the

3 A k-interaction property involves interactions among k compo-
nents. For example, “!F(decode.stall∼=1 & fetch.stall∼=1)” is a 2-
interaction property that involves interactions between fetch and de-
code units.
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intra-property learning method [9] can get 1.40X overall
improvement over MiniSAT. We can find that both of our
spatial and temporal decomposition techniques outperform
the methods using MiniSAT and intra-property learning ap-
proach. In this case, directed test generation using spatial de-
composition method (4.20X improvement over MiniSAT) is
better than temporal method (1.06X improvement over Min-
iSAT). This is mainly due to the fact that the temporally
decomposed sub-properties still have large bounds, which
needs a long solving time. To further reduce the test gener-
ation time, we applied hybrid decomposition in two ways:
spatial followed by temporal (S-T) and temporal followed
by spatial (T-S). The results show that the hybrid approach
“S-T” and “T-S” can achieve 6.42X and 4.09X overall im-
provement over MiniSAT, respectively.

Table 1 Test Generation Results for the MIPS Design

Clustering Learning # of Time Speedup
Methods Methods Clust. (second)
MiniSAT None 16 23.11 1

Intra+Inter 2 3.14 7.36
Structural Spatial 2 2.49 9.28
Clustering Hybrid (S-T) 2 2.22 10.41

Temporal 2 3.20 7.22
Hybrid (T-S) 2 2.30 10.05
Intra+Inter 3 3.98 5.81

Textual Spatial 3 2.50 9.24
Clustering Hybrid (S-T) 2 2.37 9.75

Temporal 3 5.19 4.45
Hybrid (T-S) 3 2.56 9.03
Intra+Inter 2 3.14 7.36

Influence Spatial 2 2.49 9.28
based Hybrid (S-T) 2 2.22 10.41

Clustering Temporal 2 3.20 7.22
Hybrid (T-S) 2 2.30 10.04
Intra+Inter 16 12.78 1.81

CNF Spatial 16 4.92 4.70
Intersection Hybrid (S-T) 2 3.55 6.51
Clustering Temporal 16 18.48 1.25

Hybrid (T-S) 16 6.76 3.42
Intra+Inter 4 4.22 5.48

Decomposition Spatial 4 2.48 9.32
based Hybrid (S-T) 2 2.19 10.55

Approach Temporal 4 5.57 4.15
Hybrid (T-S) 4 2.07 11.16

We also derived 16 complex “3-interaction properties”
from the MIPS design, which involve interactions of 3 dif-
ferent functional units of different pipeline paths. Besides
our decomposition-based clustering method, Table 1 presents
the test generation results using various clustering approaches
on these 16 properties. The first four clustering methods
are introduced in [6], whereas the last one is our proposed
decomposition-based clustering technique. Since structural
clustering and influence-based clustering have the same clus-
tering results, their test generation time using the same learn-
ing approaches is identical. It is important to note that the

clustering strategies are independent with the learning mech-
anisms. This case study shows that different kinds of learn-
ing can be beneficial to the same clustering method. The first
column of this table indicates the clustering type. The sec-
ond column presents the type of the learning strategies. In
this column, “None” means that no learning is applied. “In-
tra+Inter” means that the intra-property learning is applied
on the base property and the inter-property learning is shared
among all other properties [9]. The test generation schemes
of “Spatial”, “Temporal” “Hybrid (S-T)” and “Hybrid (T-
S)” are similar to the “Intra+Inter” approach. The only dif-
ference is that the base property adopts the learning from
spatial, temporal and hybrid (S-T or T-S) decomposition ap-
proaches, respectively (as described in Section 4). The third
column presents the number of clusters using different clus-
tering methods. The fourth column gives the overall test gen-
eration time using MiniSAT. Since the overlap between dif-
ferent CNFs of properties is too small, the CNF-intersection
clustering fails to cluster the properties. That means each
cluster contains only one property. Finally, the last column
shows the speedup of the overall test generation time com-
pared to the method using MiniSAT. It can be found that,
when using MiniSAT for SAT solving together with decom-
position based learning, our decomposition-based cluster-
ing approach can achieve the best performance compared
to other clustering approaches irrespective of learning cat-
egories. The combination of the decomposition-based clus-
tering and hybrid decomposition approaches can achieve the
maximum speedup (11.16 times improvement over MiniSAT).

To illustrate the effectiveness of our decomposition-based
clustering and learning approaches, Table 2 provides more
test generation details. Based on the similarity defined in
Section 5.1, we clustered the sixteen properties into four
clusters, where each cluster has four properties. The first col-
umn shows the interaction types. For example, MUL(2) and
FADD(1) indicate that the 3-interaction properties involve 2
multiplication units and 1 floating-point addition unit. The
second column shows the property index. The third column
provides the similarity between the base property and other
properties in the same cluster. For the 3-interaction proper-
ties, since the temporally decomposed sub-properties cannot
directly reflect the similarity information, this column only
presents the spatial similarity. The fourth column presents
the test generation time using MiniSAT without any learn-
ing. Column 5 shows the test generation time using both
the Intra+Inter approach introduced in [9]. In each cluster,
we adopted intra-property learning for base property check-
ing, and applied inter-property learning for other properties
in the same cluster. Columns 6-9 provide the results using
our four decomposition methods. In columns 4-9, each cell
gives the test generation time using MiniSAT or our mod-
ified MiniSAT. In the first row of each property cluster, we
provide the SAT solving time for both sub-properties and the
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Table 2 Test Generation Results for 3-Interaction Properties Using Decomposition-based Clustering

Interaction Prop. Similarity MiniSAT Intra+Inter Spatial Hybrid (S-T) Temporal Hybrid (T-S) Max
Units (Tests) Ratio Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) Speedup

p1
* - 0.82 0.71 0.19+0.10 0.17+0.07 0.66+0.08 0.24+0.02 3.41

MUL(2) p2 66.6% 0.78 0.1 0.09 0.09 0.09 0.10 8.67
FADD(1) p3 66.6% 0.90 0.10 0.10 0.10 0.09 0.10 10.00

p4 66.6% 0.91 0.11 0.10 0.10 0.09 0.10 10.11
Summary all - 3.41 1.02 0.58 0.53 1.01 0.56 6.43

p5
* - 0.87 0.62 0.15+0.14 0.10+0.08 0.56+0.12 0.13+0.08 4.83

MUL(3) p6 66.6% 0.87 0.10 0.08 0.10 0.10 0.10 10.88
p7 66.6% 17.99/0.86 0.10 0.10 0.10 0.09 0.11 9.50
p8 66.6% 1.01 0.10 0.11 0.10 0.11 0.09 11.22

Summary all - 3.61 0.92 0.58 0.48 0.98 0.51 7.52
p9

* - 1.91 0.83 0.25+0.09 0.13+0.07 1.18+0.09 0.20+0.04 9.55
MUL(2) p10 66.6% 1.94 0.08 0.08 0.08 0.08 0.08 24.25
FADD(1) p11 66.6% 1.98 0.09 0.08 0.08 0.08 0.08 24.75

p12 66.6% 1.92 0.09 0.08 0.08 0.08 0.08 24.00
Summary all - 7.75 1.09 0.58 0.44 1.53 0.48 17.61

p13
* - 1.64 0.89 0.27+0.16 0.14+0.15 1.55+0.20 0.15+0.08 5.66

MUL(3) p14 66.6% 2.52 0.14 0.14 0.15 0.14 0.13 19.38
p15 66.6% 1.98 0.08 0.08 0.09 0.08 0.09 24.75
p16 66.6% 2.30 0.08 0.09 0.09 0.08 0.09 28.75

Summary all - 8.44 1.19 0.74 0.62 2.05 0.64 13.61
* Base property

original property in the form of a+b, where a indicates the
sub-property solving time and b denotes the original prop-
erty solving time. Finally, column 10 provides the max over-
all speedup over MiniSAT using the following formula:

column4
Min(Column5,Column6,Column7,Column8,Column9)

.

In the summary row, we provide the overall test generation
time and the speedup over MiniSAT for each cluster.

Table 2 shows that our decomposition methods outper-
form both MiniSAT and the Intra+Inter method [9]. In this
case, we can find that the spatial method outperforms tempo-
ral method. This is because that: i) we adopted spatial sim-
ilarity to cluster the properties; and ii) the temporally de-
composed sub-properties still have large bounds, which can
easily result in a large overhead. To further reduce the test
generation time, the temporally/spatially decomposed sub-
properties can be further spatially/temporally decomposed.
Due to the extra learning derived by hybrid decomposition
method (T-S or S-T), the overall test generation time is re-
duced in all the four clusters. It can be found that the hybrid
method outperforms both spatial and temporal decomposi-
tion methods. The major reason is that the hybrid decompo-
sition approach is promising in reducing the base property
checking time. The smaller base property checking time im-
plies less overall test generation time for a cluster of similar
properties. The results indicate that, when the hybrid decom-
position is applicable to a design, it can achieve the best test
generation time. It shows that, for the overall test genera-
tion time of these four clusters, our decomposition methods
can achieve up to 17.61 times improvement over MiniSAT.
Compared to the Intra+Inter method [9], our decomposition

methods can achieve up to 2.27 (1.09/0.48=2.27) times im-
provement by using MiniSAT.

From the above experimental results, we can find that the
hybrid methods (i.e., S-T and T-S) can always achieve best
performance for the directed test generation of the MIPS de-
sign. As shown in Figure 13, for MiniSAT, the hybrid S-
T approach consistently outperforms spatial decomposition
method, and hybrid T-S approach outperforms the temporal
decomposition method. From Table 1, we also can find that
the hybrid approaches can achieve the best results (marked
in bold font) when employing different property clustering
strategies. Specifically, Table 2 shows the test generation
details using the decomposition-based clustering approach.
From this table, we can consistently find that the hybrid ap-
proaches together with property decomposition-based clus-
tering can achieve the best performance. Although hybrid
S-T and hybrid T-S approaches adopt different decomposi-
tion order, all the above experiment results demonstrate that
the test generation time difference between the two hybrid
approaches is quite small compared to the solving time of
original complex properties. Therefore, for directed test gen-
eration, hybrid decompositions are better choices than both
spatial and temporal decomposition methods.

6.2 A Stock Exchange System

The on-line stock exchange system (OSES) [11] is a con-
trol intensive design which mainly deals with stock order
transactions. All these scenarios are described by a UML
activity diagram which contains 27 activities and 29 tran-
sitions. We extracted the formal model from the specifica-
tion and transform it to a NuSMV specification. We gener-
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ated 18 properties to check all possible stock transactions.
Since each transaction involves operation activities (events)
in a path of the UML activity diagram, spatial decomposi-
tion is not feasible in this case. Therefore, we only adopted
the temporal decomposition to reduce the test generation
time. In this example, each transaction is temporally de-
composed into several stages which specify branch activities
along the transaction flow, and for each stage we created a
sub-property. Among the 18 properties, we selected 12 com-
plex ones whose CNF clause number is larger than 300000.

Table 3 Test Generation Results for the OSES Example

Clustering Learning # of Time Speedup
Methods Methods Clust. (second)
MiniSAT None 12 16.51 1.00
Structural Inter+Intra 4 4.06 4.07
Clustering Temporal 4 2.58 6.40

Textual Inter+Intra 4 4.06 4.07
Clustering Temporal 4 2.58 6.40

Influence-based Inter+Intra 3 5.59 2.95
Clustering Temporal 3 7.41 2.23

CNF Intersection Inter+Intra 5 3.33 4.96
Clustering Temporal 5 3.14 5.26

Decomposition Inter+Intra 4 7.85 2.10
based Approach Temporal 4 2.56 6.45

Table 3 shows the clustering and test generation results
for the 12 properties. It can be found that the combination of
the decomposition based clustering and temporal decompo-
sition based learning can achieve the best performance (i.e,
6.45 times improvement over MiniSAT). This is consistent
with the results achieved in Section 6.1.

To illustrate the efficiency of our approaches, Table 4
shows the test generation details using our temporal decom-
position technique. By using the decomposition based clus-
tering, the 12 properties are clustered into 4 groups, and each
group has 3 properties. The first column indicates the trans-
action type of properties. There are four transaction types
in this example: market buy, market sell, limit buy and limit
sale. The second column indicates the property index. The
third column provides the bound information for each prop-
erty. Columns 4-5 give the variable and clause statistics of
the generated CNF files for each property. For each prop-
erty, we performed the temporal decomposition. Column 6
shows the number of decomposed sub-properties (includ-
ing the base property). The seventh column presents the test
generation time using MiniSAT without any decomposition
and learning techniques. Columns 8-9 present the results us-
ing the Intra+Inter approach proposed in [9], including the
overall test generation time and corresponding improvement
over MiniSAT. The final three columns show the test gener-
ation time using our temporal decomposition method. Col-
umn 10 gives the temporal similarity between the base prop-
erty and the other properties in a cluster, and columns 11-

12 give the test generation time as well as its improvement
over MiniSAT. Our approach can achieve 4.37-7.42 times
improvement over MiniSAT, and 1.07-5.99 times improve-
ment over the Intra+Inter approach.

7 Conclusions

Since fewer tests can achieve required coverage, directed
tests are promising to reduce overall validation effort. How-
ever, most automated directed test generation methods, es-
pecially for SAT-based BMC, suffer from the state space ex-
plosion problem. Although learning techniques are promis-
ing to check a cluster of similar properties, the base prop-
erty cannot benefit from any external learning because it is
checked first. To enable efficient test generation for a large
number of properties using SAT-based BMC, this paper pre-
sented a novel approach that utilizes both property decom-
position and learning techniques to reduce the overall test
generation time. The case study using both hardware and
software designs demonstrated the effectiveness of our method.
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